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Abstract: Multicore hardware platforms are being incorporated into spacecraft on-board systems to
achieve faster and more efficient data processing. However, such systems lead to increased complexity
in software development and represent a considerable challenge, especially concerning the runtime
verification of fault-tolerance requirements. To address the ever-challenging verification of this kind of
requirement, we introduce a LEON4 multicore virtual platform called LeonViP-MC. LeonViP-MC is
an evolution of a previous development called Leon2ViP, carried out by the Space Research Group of
the University of Alcalá (SRG-UAH), which has been successfully used in the development and testing of
the flight software of the instrument control unit (ICU) of the energetic particle detector (EPD) on board
the Solar Orbiter. This paper describes the LeonViP-MC architectural design decisions oriented towards
fault-injection campaigns to verify software fault-tolerance mechanisms. To validate the simulator,
we developed an ARINC653 communications channel that incorporates fault-tolerance mechanisms
and is currently being used to develop a hypervisor level for the GR740 platform.

Keywords: virtual platform; fault injection; hypervisor; multicore

1. Introduction

Design complexity and the increase in software-centric systems is an unstoppable
trend today. According to the International Technology Roadmap for Semiconductors
(ITRS) [1], the number of multicore processors will continually grow in the future. The use
of multicore processors offers the opportunity to host different software stacks in each of
the cores residing within the same processor, and therefore, increase system performance.
However, designing and verifying the embedded software in this type of system represents
a considerable challenge.

Embedded software development is carried out according to specific standardized
frameworks such as AUTOSAR or ARINC653. The former is mainly used in automotive,
while the latter is used in avionics. AUTOSAR uses a top-down approach to describe
the hierarchical layer structure of the embedded software. These layers are isolated and can
only communicate with adjacent layers through well-defined interfaces. The software
architecture defined in standard ARINC653 also separates the application software from
the core modules and connects the two separated functional parts via the application
executive (APEX) interface. Central to the ARINC653 philosophy is the concept of par-
titioning, whereby the applications running in the system are spatially and temporally
isolated. This feature allows mixing software components with different safety-criticality
levels on the same computing platform. AUTOSAR defines a weaker concept of application
separation using only memory protection mechanisms. It is possible to build an operating
system microkernel that exposes both interfaces to the application software. The work [2]
does so and describes the essential characteristics of both frameworks.
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If the software suite under development is part of a critical embedded system, in which
fault-tolerant requirements must be taken into account, a comprehensive verification
of those requirements consumes an increasingly large percentage of resources. In fact,
the verification of the software fault-tolerance mechanisms is, most of the time, impossible
to be carried out within the deployment target. In this context, the use of virtual platforms
provides faster edit–compile–debug cycles for embedded software development. Therefore,
virtual platforms have become essential for the development and early verification of
embedded software [3,4].

Virtual platforms (VPs) provide software engineers with full simulation environments.
Instruction set simulators (ISS) allow the software to be developed and tested with high
accuracy in a very early hardware development stage, even long before actual hardware is
available. From a hardware perspective, the development of virtual devices can also be
addressed throughout VPs. The behavior of these devices can be also verified in the pres-
ence of faults as is described in [5]. Virtual platforms enable the concurrent development
of hardware and software stacks, shortening their integration time.

These simulation environments range from register transfer level (RTL) simulations
with cycle precision to purely accurate ISS-based simulations. Moreover, these simulation
environments do not lose their importance and applicability once the first version of
the hardware is available. Even though the development effort can be massive, in today’s
embedded software development, it is commonly accepted that the use of virtual platforms
is essential, especially for hardware-dependent software development (HDS) [6] and when
applying agile methodologies [7].

1.1. Motivation

The Space Research Group of the University of Alcalá (SRG-UAH) has developed
the software of the control unit of the energetic particle detector (EPD) instrument of
the Solar Orbiter mission [8]. Due to the high radiation environment that the spacecraft
has to endure, it was necessary to ensure a high fault tolerance for the system. This
constraint influence permeated across every hardware and software element and led to
the development of Leon2ViP [9], a LEON2-based virtual platform with fault injection
capabilities that allowed the fault-tolerance testing of the flight software of EPD. A brief
description of how this simulator was used in the verification of the EPD ICU boot software
can be found in Section 3.

The increment of software complexity in space has increased the popularity of multicore
processors [10]. This fact has encouraged the development of radiation-hardened systems
such as the system-on-chip (SoC) GR740 [11], based on a LEON4 quad-core processor.
This system results from an initiative led by the European Space Agency (ESA) called
the ESA Next Generation Microprocessor (NGMP) [12]. In addition, the agency itself has led
the upgrade of the RTEMS operating system [13], which already supports applications for
multiprocessor systems in its latest version of November 2018. The LEON4 processor is based
on the SPARC Version 8 instruction set architecture (ISA) and is the next evolutionary step
in the microprocessors adopted by ESA for its space missions, namely the ERC32 platform
and its successors, the LEON [14] family. ERC32 implemented Version 7 of the SPARC ISA.
It was developed by TEMIC (now ATMEL) under an ESA contract in the early 1990s. In 1997,
the European Space Research and Technology Center (ESTEC) began developing the LEON
processor, a high-performance 32-bit processor for European space missions beyond the year
2000. This processor was the successor to the ERC32 and upgraded its ISA to SPARC Version 8.
This first version lacked FPU, PCI, and DRAM interfaces, which led to the release of version
2.0 (LEON2) in February 2000 [15]. LEON2-based systems have been used on different
spacecraft such as Solar Orbiter, BepiColombo, Gaia, and the recent Chinese Chang’e-4 lunar
lander [16,17]. The next evolutionary step is LEON3, which expanded the five-stage LEON2
pipeline to a seven-stage pipeline. It was the first member of the LEON family to support
asymmetric and symmetric multiprocessing (AMP/SMP) with up to 16 CPUs. It has been
used in the Galileo Global Navigation Satellite System (GNSS) [18]. LEON4 is the current
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iteration and extends LEON3 with Level 2 cache support, 64-bit internal load/store data
paths, and a 64-bit or 128-bit AMBA bus interface. Currently, the fifth version of the processor,
codenamed LEON5, is being developed by Cobham Gaisler.

Multicore systems have a higher performance when the software is designed with
multicore support. However, the execution becomes non-deterministic due to the pseudo-
random arbitration of the cores’ common resources, the use of the cache, and cache snoop-
ing. In this scenario, memory upsets produced by radiation have a more significant impact,
since the behavior of each core can affect the others, which multiplies the chances of
critical failure.

To validate the fault tolerance of satellite on-board systems, we developed a validation-
oriented software simulator based on Leon2ViP, which supports, in addition to the original
LEON2 and LEON3 architectures, the new multicore systems based on the LEON4 architec-
ture. For the new version of the simulator, we used the LLVM Compiler Infrastructure [19],
which is composed of different subprojects related to the static and dynamic compilation
of arbitrary programming languages. In this paper, we mainly use the LLVM Core libraries
to generate an intermediate code for each instruction and compile and optimize it “just
in time”. This platform, called LeonViP-MC, employs dynamic binary translation (DBT)
techniques through LLVM coroutines, achieving increased performance in the target soft-
ware’s execution. In addition, the use of coroutines allows the easy simulation of relevant
mechanisms, as the arbitration of shared resources and the accurate counting of the cycles
consumed by the various instructions. For the peripheral accesses, we use an average
estimation to maintain the reproducibility of the executions.

The simulator also has batch execution capabilities, allowing it to perform multiple
binary executions with different fault injection configurations. Binary translations and com-
piled coroutines can be reused between runs, which avoids the need for compilation
in subsequent simulations and saves time when performing the fault-tolerance testing of
the target software.

SRG-UAH is currently involved in the development of a hypervisor for the GR740
platform. The development and test of this kind of hardware-dependent software is
a complex issue, especially the verification of the fault tolerance and recovery mechanisms
that have to be taken into account in every space software development.

The remainder of the paper is organized as follows: relevant related works are detailed
in Section 1.2 and paper contributions are presented in Section 1.3. Section 2 describes
the original simulator architecture used as a base and the evolution and new features
presented in this paper, Section 3 introduces the software used for the fault-tolerance
campaign test and the campaign results. Finally, Section 4 contains the conclusions.

1.2. Related Works

Instruction set simulators (ISS) have evolved in order to suit different environments
and use cases. They started as simple interpreters that allowed binary code from the target
platform to be simulated in a host machine. These interpreters used structures and variables
to hold the target architecture registers and data. This approach was accurate but slow.
In [20], an instruction-set-compiled simulation was introduced, moving decodification
and other arithmetic and logical operations from runtime to the initialization stage, thus
removing a considerable overhead from every instruction executed.

If the timing requirements are not essential, dynamic binary translation gives a signif-
icant performance leap, allowing one to take advantage of new hardware virtualization
tools as seen in QEMU [21]. However, there are some intermediate approaches as gem5 [22]
which incorporates the timing models that improve the simulated platform’s accuracy
without a substantial performance penalty.

The simulation of a single-core system can be fast when using these techniques since
there is only one execution flow running at a time. All system resources are accessible at
all times by the core when it needs them. Thus, if a more accurate simulation is needed,
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the only temporal constraints to be taken into account are those arising from pipeline
hazards and bus accesses.

1.2.1. Multicore Simulation Techniques

Multicore systems integrate two or more processing cores that share external resources
accessible from the system bus. In this configuration, each core usually has mechanisms to
interrupt other cores, and each core can be stopped independently of the state of the other
cores. Keeping the cores synchronized is also necessary so that events are generated
in order, as having one core running far ahead or behind the others can disrupt the timeline
of events. Cache coherence between cores and the arbitration of access to shared resources
must also be taken into account.

QEMU is capable of simulating multiprocessor systems. In a first implementation,
the simulated cores’ execution was performed in a single thread, arbitrating the execution
time between them with a round-robin scheduler. Subsequently, an update of the simulator
made it possible to simulate each virtual processor on a separate thread. As in the single-
core case, its main focus is on performance. Therefore, it does not provide timing accuracy.
There are works, such as [23], that add timing models to QEMU to improve the simu-
lation’s temporal accuracy. These models include atomic instructions and other shared
resource accesses and synchronize all cores’ execution whenever one of them reaches
a time-dependent system event or instruction.

In contrast, gem5, in its most accurate configuration, iterates through each core on
every cycle while applying a synchronization model. In this case, the temporal accuracy is
very high, but the performance decreases significantly.

The R2VM simulator [24] uses a custom mechanism inspired by coroutines called fiber
to improve the performance in synchronizing the different simulated cores. This mechanism
launches each hardware core in a coroutine and the DBT generates yields to the next fiber
whenever the pipeline model detects that it has to wait for some cycles. The event loop is
also launched in a fiber. The results of this work show that cycle-level simulation with this
mechanism is nearly 100 times faster than gem5. They also claim that functional simulation
with R2VM performs better than QEMU. In this implementation the DBT is tailored using
the assembly code of the ×86 platform, which limits its portability and requires more effort
to develop, in contrast to the LLVM approach explained in the next Subsection.

1.2.2. LLVM as a Simulation Support Tool

As seen in the last Section, a cycle-accurate multicore simulation needs to synchronize
actions that may affect other devices or cores, in addition to the execution of binary in-
structions. LLVM is a compiler infrastructure that provides a high-level assembly language
called intermediate representation (IR), which can be further translated to the machine
code of different target architectures. LLVM allows compiling and optimizing IR code
on demand, or “just in time”, for the host machine. This feature makes LLVM highly
suitable for the implementation of DBTs. Its infrastructure provides a specific API that
can be used in programs implemented in the C++ language. Various studies have verified
that the generated code has a much higher performance than that obtained through other
DBTs [25–27] or QEMU’s Tiny Code Generator (TCG) [28]. However, LLVM compilation
and optimization processes are expensive. The overhead introduced by them can lead to
a higher total execution time when considering the compilation and optimization steps
than that obtained by using simpler DBTs.

There have been different approaches to increase the global performance of LLVM-
based simulators. Some works have applied an heuristic that only compiles execution
blocks that are executed on several occasions [25,26]. Other works have focused on opti-
mization. For example, [27] reduces the optimization passes so their JIT compilation takes
less time with a minor execution performance drawback and [29] optimizes LLVM IR before
compiling it, reducing the amount of code that has to be compiled from the beginning.
Finally, some works have delegated the JIT tasks to another independent thread as [28],
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which uses QEMU TCG to generate the code and the LLVM thread to optimize the blocks
in runtime, increasing performance over time.

1.3. Paper Contribution

This paper presents a simulator of the GR740 quad-core processor that combines
dynamic binary translation through LLVM and coroutines and works at the instruction
level with cycle estimation. This simulator has fault injection capability and is designed
to run extensive software-fault tolerance test campaigns. To increase test throughput
during a campaign, LeonViP-MC can reuse the compiled LLVM code of the binary target’s
instructions in subsequent executions.

Since injected faults can propagate errors during execution, we had to maintain a rela-
tively low level of abstraction of the execution simulation. For this reason, and although
it does not fully simulate the pipeline of the processing units, LeonViP-MC implements
an instruction-level simulation that considers the internal timing and the dependencies
between instructions in order to achieve cycle accuracy.

Simulator’s core arbitration mimics the hardware without the pseudorandom results
caused by the hardware nature, which may produce differences in the same software exe-
cution due to the bus accesses and other particularities. Our virtual platform avoids those
inconsistencies so the execution of a software without external intervention is reproducible.
This is important for the fault injection testing campaigns, in which errors may lead to
different execution paths and we need to keep track of the differences.

The modularity of the internal components of the simulator allows the efficient imple-
mentation of new devices and interfaces. The architecture of the simulator itself facilitates
its future adaptation to other architectures. For this purpose, it would be necessary to add
the necessary methods to generate the LLVM intermediate representation corresponding to
the target’s instruction set.

Finally, the LLVM-based binary translator allows the virtual platform to be easily
adapted to different host systems. Performance in all cases would be similar, relative to
the host platform’s power, as the generated code is compiled and optimized for the machine
that runs it.

2. Multicore Virtual Platform

As mentioned in the previous Section, the simulated target platform is the GR740
system-on-chip (SoC). This system deploys a quad-core LEON4 processor [11]. This
processor supports the SPARC V8 instruction set architecture. In addition to the four
LEON4 processing units, this device deploys interfaces and peripherals commonly used
in spacecraft computers and interconnected by an AMBA high-performance bus (AHB).
As expected for space systems-oriented hardware, the processor and the other cores that
comprise the SoC incorporate fault-tolerant capabilities. This section is organized as
follows: Section 2.1 describes the previous Leon2ViP simulator used as a basis. Section 2.2
presents the design choices and development of the multicore simulator presented in this
work. Finally, Section 2.3 explains the mechanisms implemented in the presented simulator
to perform the fault-injection campaign tests.

2.1. Base Single-Core Virtual Platform

The original implementation of the simulator presented in this paper was carried
out in support of the development of the software of the instrument control unit (ICU)
of the energetic particle detector (EPD) on board the Solar Orbiter [8]. Solar Orbiter is
a joint mission between ESA and NASA that was launched on 10 February 2020. In this
mission, the SRG-UAH is responsible for the EPD instrument. Specifically, the SRG has
been in charge of designing the common data processing unit (CDPU) of EPD’s ICU
and the on-board software running on it. SRG-UAH developed a virtual platform called
Leon2ViP (LEON2 Virtual Platform) based on the previous development of LEON3 [9]
and has been successfully used to develop and verify the ICU software [30].
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Leon2ViP consisted of a SPARC Version 8 LEON3 Instruction Set Simulator (ISS),
a configurable cache controller, the AMBA AHB main system bus, and some primary
devices connected to it. In the base version, the implemented devices were the memory
controller with EDAC capabilities and an AMBA advanced peripheral bus (APB) bridge.
Several devices connected to the APB were also simulated, such as the general purpose
timer (GPTimer), a universal asynchronous receiver–transmitter (UART), and the interrupt
controller. Some of the above only implemented basic single-core functionality and had to
be upgraded to support the features of the multicore platform.

The ISS implements a variant of the technique called compiled instruction set simulator [31].
We decode the executable code section of the binary at initialization, and these decoded
data are stored in a precompiled instruction cache. This cache contains one entry for each
of the instructions that make up the code section. If any instruction is modified at runtime,
the corresponding entry in the instruction cache is updated. Each entry stores a structure
in the format shown in Figure 1. The cache contains every datum needed at runtime
computations with invariant operands. These data include, for example, the operation
codes of the instruction, the destination address in case the instruction is a call, or the pos-
sible immediate data used by the instruction with its corresponding sign extension so that
they can be directly used at runtime.

By performing this static analysis of the instructions, the simulator can also keep track
of the registers and memory operations used by each instruction. These data are then used
to calculate the cycles consumed in the execution of each instruction. This information
allows the simulator to perform the runtime cycle counting and to achieve cycle accuracy.

Finally, the data stored in this structure also allow the generation of debugging traces
at runtime. Examples of data that can be used for this purpose are the instruction’s type
(arithmetic and logical operations, load/store instructions, conditional branches, etc.) or
the memory bytes that are read or written by it.

In the latest version of the simulator, the size of the structure has been increased to
support new features and properties of the GR740 platform. An instance of the precom-
piled structure in the latest version of LeonViP-MC has a size of 144 bytes. For example,
the EPD ICU boot software has 8752 instructions, so the precompiled code occupies about
1.2 megabytes of host memory. The use case presented in Section 3 has 10,551 instructions,
which translates to about 1.45 megabytes of host memory. Both of these examples represent
acceptable memory usage compared to the improvements obtained with this approach.

Precompiled Structure

Arithmetic 
and logical 
operations

uint32_t instruction
uint8_t op1
uint8_t op2
uint8_t op3
uint8_t rs1
uint8_t rs2
uint8_t rd
bool i
uint8_t asi
uint32_t sign_ext_imm13
uint32_t disp30
bool isJMPL

…….
uint8_t cycles

op a cond op2 imm22
op rd op2 imm22

op rd op3 rs1 i asi rs2
op rd op3 rs1 i simm13
op rd op3 rs1 opf rs2

op disp30
Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI & Branches (Bicc, FBfcc, CBccc)

Format 3 (op = 2 or 3): Remaining instructions
0212429 2831

0122429 431 1318

02931

Figure 1. Precompiled instruction structure generation.
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Cycle Accuracy

Since our simulator does not simulate the complete processor pipeline, we have to
calculate the number of cycles used to execute each instruction. This calculation takes into
account the characteristics of the instruction itself, as well as those of the previous instruc-
tion. In addition, it is also necessary to estimate the cycles used in accessing the various
peripherals. In this way, we distinguish three types of cycle increments per instruction:

• Static cycle counting—The simulator assigns, for each instruction, the number of cycles
it consumes nominally according to the LEON4 processor specification;

• Dynamic cycle counting—The LEON4 specification details those cases where having
two specific instructions executed one after the other causes execution delays. These
delays can be caused by data hazards or by the intrinsic nature of the instructions.
During instruction execution, the simulator temporarily stores the data needed to
calculate this delay effectively.

• Peripheral access cycle counting—When an instruction needs to access data or other
resources beyond the processor cache, accessing the AHB bus may cause a delay
in execution. This delay may be caused by the intrinsic speed of the peripheral and/or
because another core is using the bus in the multicore scenario. Since this delay is
pseudo-random in real hardware, we estimate the average cycles per access based on
empirical tests performed on the real GR740 platform.

The simulator keeps track of the current execution cycle by adding the various cycle
increments to the bus access wait cycles. These cycles are fixed so that two executions
of the same binary with the same initial conditions produce the same result. This repro-
ducibility is key to using the simulator for on-board software development, debugging,
and validation.

2.2. Multicore Simulation

The next step in developing the simulator was to provide it with the ability to simu-
late the execution of multiple processing cores. To synchronize the instruction execution
in the different cores and the bus accesses and control the global execution variables, we added
a new component called the orchestrator. The orchestrator synchronizes each core so that it is
only allowed to continue its execution if its local cycle counter is behind the orchestrator’s
global counter. When allowed, it will execute until the end of the current instruction or when
it needs to access the bus. The local cycle counter is incremented by the static and dynamic
cycle counters. This increment could put the local counter a few cycles ahead of the global
counter, forcing the core to wait until the global cycle counter reaches it to continue executing.
The orchestrator also arbitrates bus accesses, which, together with the global cycle control,
ensures that the cores will not interfere with each other’s execution. It is worth mentioning
that the original simulator has been updated to support the LEON4 instruction set architecture
and its capabilities in single and multicore configurations.

2.2.1. Multicore Simulation with Threads

The initial version of the multicore simulator launched five separate threads, each
of them running exclusively on a specific host core. One of the threads executed the or-
chestrator, while the rest were dedicated to simulating the execution of the target cores.
In this version, the orchestrator synchronized the cores at the cycle level, giving the cores
exclusive access to the bus. As mentioned above, each core has a local cycle counter. When
a core exceeded the orchestrator’s global counter, it stopped and incremented an atomic
variable that kept track of how many cores were “halted”. The orchestrator would perform
core synchronization and bus arbitration and then release each core. Threads were synchro-
nized using the mentioned atomic variable and spinlocks, as our tests showed that other
mechanisms which consumed fewer resources, such as mutual exclusion locks, provided
lower performance.

This design proved functional, but there were some performance issues caused by
thread synchronization compared to the single-core version. For this reason, we decided to
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address the main performance bottlenecks, namely instruction execution and core orches-
tration. A performance comparison between this approach and the final implementation,
described in the following paragraphs, is shown in Section 2.3.

2.2.2. Multicore Simulation with LLVM and Coroutines

As mentioned earlier, one of the leading performance bottlenecks was core orches-
tration. The use of multithreaded algorithms on a host platform with multiple processor
cores is most suitable when the tasks to be performed can be parallelized independently,
and these tasks consume a significant amount of execution cycles. However, when it is
necessary to synchronize the threads’ execution every few cycles, as in our case, the syn-
chronization overhead itself causes the overall performance to drop significantly. To reduce
such overhead, we had two different options: to decrease the number of times the cores
synchronize or not to use threads at all in the implementation. The first approach could be
implemented by synchronizing only when the bus acquiring or releasing cycles is inter-
rupted, but the cores would still need to be synchronized at cycle level or their individual
execution may advance faster than the other cores. The second approach involved going
back to the single-threaded paradigm, but since each core had its particular context, a sim-
ple loop running all the cores caused too much data transfer and unnecessary function
calls. We could address this problem by using coroutines as in [24].

Coroutines allow calling, suspending, resuming, and destroying functions similarly
to how we do it in the multicore version but in a single-threaded configuration. In this
case, the simulated instructions are coded and executed in the form of coroutines. The or-
chestrator will call or resume the coroutines of the instructions that each core executes.
The coroutines will suspend whenever bus access is required, relinquishing control back to
the orchestrator. The orchestrator will be in charge of resolving and ordering the accesses,
resuming the coroutines accordingly. This paradigm allows us to significantly improve
performance, being able to change the context quickly with almost no overhead.

The other bottleneck that we addressed was the instruction execution. The instruction
execution can be broken down into different stages or phases: fetch; decodification; execu-
tion; memory access; writeback; and exception handling. Fetching is always performed
for each instruction and involves access to either the memory or the cache. Decoding is
not performed at runtime, but during initialization, in the binary load, where the decoded
data are stored in the structure corresponding to the precompiled instruction cache. Exe-
cution, memory access, and writeback vary depending on the instruction and may also
require memory access. Exception handling is performed by the orchestrator each time
an exception occurs in a core.

Figure 2 shows the simulator’s main loop. In an ideal case, with the required in-
struction and data cached, the orchestrator will call the instruction execution coroutine,
and it will fetch from the cache, execute, access cache if needed, and also update registers
if needed. Then, it will terminate and pass control to the orchestrator, which will call
the next coroutine after the global cycle counter surpasses the core’s local counter. This
scenario could also be done with a function call that returns to the same point, but if the core
needs to access the bus, it may have to wait if the bus is busy. At this point, the coroutine
can be suspended until the core receives exclusive access to the bus. The cycle counter
would be updated since the core is halted, but the whole system continues to run.

To reduce the number of host instructions required to execute a single target in-
struction, we used dynamic binary translation using LLVM coroutines. Initially, when
we decode the instructions and store them in the precompiled instruction cache, we build
the corresponding LLVM coroutines using LLVM intermediate representation (IR). This
IR code implements the whole instruction execution and calls external C++ routines to
check if the instruction or the data it uses are cached. The coroutine will suspend if it has
to access the bus, if an exception occurs or when the execution ends properly. The IR
code performs the rest of the operations needed to execute the instruction (e.g., arithmetic
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and logic operations or register access and writeback). The LLVM IR code is stored as raw
strings within the precompiled instruction cache.

Orchestrator SparcISS 
ID:X

Coroutine

Phys. Core 0

Decode
Execute

End 
execution

Bus access 
management

No

End
Yes

Fetch

Is 
instruction 
cached?

Is data 
cached?

No

Yes

Fetch Suspend

Final Suspend

AHB Access

Mem Suspend

AHB Access

No

Global Cycle 
Management

Orchestrator 
initialization

For each core
CoreCycle < 
GlobalCycle

No

YesIs coroutine 
done?

Launch next 
instruction 
coroutine

Got Bus 
Access?

Resume 
Coroutine

Yes

Post-suspension 
Management

No

End Core 
Management

Mem Access

Writeback

Update pc

Start

Yes

Yes

No

Figure 2. LLVM coroutines orchestrator loop.

Building the LLVM IR is a quick process that uses data from the decodification stage
and has to be done only once per each instruction code, independently of the instruction’s
address. The compilation could be done right after the code is built, but compiling an
optimized code is more time consuming than building the code. For this reason, we decided
to use just-in-time compilation (JIT) to generate the final host machine code, compiling
the instructions only when they were going to be required.

When an instruction is to be executed, the simulator checks whether the LLVM corou-
tine for that specific instruction code has been previously compiled. If not, the IR coroutine
is compiled, and its pointer is stored in the corresponding entry of the compiled instruction
cache. The coroutine receives as arguments the pointers to the data corresponding to
the specific core that is executing the instruction. The LLVM code will load from these data
only the variables necessary to perform the execution. Since all cores share the precompiled
instruction cache, they can reuse the code that has been previously generated as the result
of the execution of another core.

2.3. Fault-Tolerance Campaign Testing Mechanisms

As mentioned above, the simulator’s primary purpose is to support the development
of on-board software and test its behavior against errors caused by radiation. The simulator
allows injecting errors in the different memory banks. In a single test, we can inject multiple
memory words with errors, which can be one or more bits stuck at zero or one, combined
in the same word. We can also inject an error when the execution reaches a given address,
allowing the simulator to test the system in the worst possible scenario, i.e., an error
appears when the software is to access a memory address in a region that would have been
tagged as safe.
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To improve error injection testing performance, we added a batch mode that reuses
the LLVM coroutines compiled from previous runs. With this feature, running a batch of
error injection tests in different configurations, as in [32], is significantly faster than running
the simulator once per run, which would require compiling and optimizing the LLVM
code each time. In addition, since our simulator uses a single thread of execution, it can
effectively parallelize test runs, reducing the overall execution time on host machines with
multiple processing cores.

We tested both the multithreaded and LLVM coroutine approaches by running dif-
ferent applications. Specifically, we used tests provided along with the RTEMS operating
system [13] with symmetric multiprocessing (SMP) support and the use case detailed
in the following Section. Table 1 displays the difference in performance between the imple-
mentations. The RTEMS tests are compiled for the GR740 and some of them use a different
number of cores. It is worth noting that the first run spends more time due to compilation
passes and LLVM optimization, but the subsequent runs that reuse the code usually have
a substantial performance increase over the original implementation. If the total number
of different instructions is low, as in the smpatomic01 and smpmigration01 tests, the com-
pilation time of LLVM coroutines is diluted in the total execution time, and therefore,
the performance gain in subsequent executions is reduced.

Table 1. Thread and LLVM coroutines approaches performance results.

Thread Approach LLVM First Execution LLVM with Cached Coroutines

smpschededf01 (single-core) 0.57 MIPS 2.745 MIPS 5.052 MIPS
smpmigration01 (dual-core) 0.791 MIPS 4.261 MIPS 4.862 MIPS

smpatomic01 (quad-core) 0.804 MIPS 6.263 MIPS 6.691 MIPS
smpaffinity01 (quad-core) 1.303 MIPS 1.179 MIPS 9.457 MIPS

ARINC653 use case (quad-core) 0.576 MIPS 0.062 MIPS 4.31 MIPS

It is important to remark that the thread approach uses five host machine cores that
must be exclusively assigned to the simulator to synchronize the cores and keep them
moving forward together. In contrast, the LLVM coroutines approach uses only one
host machine core, so it could be possible to run five different instances of this approach
with different subsets of the same fault injection campaign using the same computational
resources that one instance of the thread approach employs. Therefore, the performance
leap is even more significant.

3. Use Case: ARINC653 Message Channel Robustness Verification

Radiation-induced single event effects (SEEs) are the primary cause of space software
malfunctions. In the worst-case scenario, they could lead to the complete loss of a mission.
To analyze the effects of radiation from a software point of view, we need to categorize
the types of potential failures. In a broad sense, SEEs can be classified either as single-
event upsets (SEUs) or single-event latch-ups (SELs). The former, known as “bitflips”,
are transient and correctable, while the latter brings about permanent faults, known as
“stuck-at” bits, and are uncorrectable. A broad description of SEEs effects in spacecrafts is
described in [33].

Figure 3 shows the real (left) and simulated (right) execution platforms of the hypervi-
sor software being developed for the GR740 multicore platform. When developing this type
of hardware-dependent software, it is essential to have virtual platforms that allow running
the same target binary as if on the real system, but in a more controlled and deterministic
way. This is fundamental in evaluating the fault detection, isolation and recovery (FDIR)
mechanisms implemented in the software design. To do so, all random faulty situations
in memory brought about by radiation have to be artificially and systematically reproduced
during the verification phase. This can only be achieved by the use of virtual platforms
which provide debugging and fault injection capabilities, which are unattainable otherwise.
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Figure 3. Use case description: real (left) vs. simulated (right) execution platforms.

Memory bitflips are resolved at runtime using error detection and correction (EDAC)
mechanisms, usually combined with memory scrubbing techniques. On the other hand,
in the case of permanent errors in the memory deployment area of application software,
an updated binary version that avoids the damaged areas must be uploaded to the space-
craft. This critical operation is done by the boot software, which will wait and remain
active until the images have been repaired through service tele-commands that allow
memory patch, dump, and check operations. The boot software runs on ROM and cannot
be corrupted, which on the other hand, prevents its update. This impossibility of updat-
ing makes it necessary to check the FDIR mechanisms implemented in the boot software
thoroughly. However, although boot code runs on ROM, it needs some SDRAM allocation
for the system startup variables. These runtime variables are usually allocated in the stack
section, which is determined at boot time to avoid any damaged locations.

This approach has been successfully used in the verification of EPD’s ICU boot soft-
ware (BSW) on board the Solar Orbiter. The following are several issues related to BSW
verification that highlight the confidence in the results obtained using virtual platforms for
critical software verification:

• The verification of the BSW boot process asks for the possibility of the corruption of
application binaries stored in the EEPROM or permanent faults in the SDRAM appli-
cation deployment areas. First of all, the injection of permanent faults in real hardware
is not technically achievable in a non-intrusive manner. Secondly, in order to carry
out an exhaustive verification, each memory location of EEPROM and SDRAM areas
must be individually corrupted and BSW behavior tested. This leads to a very huge
amount of BSW runs. Although each just takes a few seconds, completing the entire
test would take months running in a single machine. The use of virtual platforms
allows the injection of permanent errors and can significantly reduce the verification
time spent since several instances of the Virtual Platform can be run in parallel on
different real machines, thus shortening the overall testing time [30].

• Although BSW is not deployed in the SDRAM, but is executed directly in the PROM
to increase its reliability, it still uses SDRAM to map the program stack and global vari-
ables. In order to avoid the malfunction of the BSW itself due to SDRAM permanent
faults, stack and runtime variables must not be statically allocated. Therefore, during
system startup, an error-free memory area is searched for and used for nominal boot
as is described in [32].

• The BSW is a criticality category B software, which cannot be replaced during the mis-
sion, so testing this kind of critical software must cover 100% of the source code
statement and decision paths. Coverage is a major concern for dependability because
parts of the code that are never executed during a test workload run cannot be prop-
erly verified. So, the efficient coverage of an exception handling code is an essential
concern. Regarding BSW, the developed framework and figures are described in [7].

3.1. System under Test

Figure 4 shows the basic architecture of the system under test. It is built on a GR740
board. The system is composed of four cores, each one running an ARINC653 partition.
The software belonging to each partition uses an Application Executive API (APEX) to
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access the communication services offered by a hypervisor layer. At partition boot time,
there are two defined message channels, channel A and channel B, which interconnect
the bootstrap core (CORE0) with the remaining cores to achieve a smooth and synchronized
boot of the whole system. The bootstrap core uses the former channel to receive the boot
information of the other cores. The latter channel is used to communicate the responses
and orchestrate the whole system’s boot.

Hypervisor Level: Boot time ARINC653 Inter-partitions Communication Channels

Core1
Partition 2

Core 3
Partition 4

Bare Metal Tasks

Core 2 Partition 3Core0
Partition 1

Bare Metal
Tasks

Bare Metal
Tasks

Bare Metal
Tasks

APEX API APEX API APEX API APEX API

channel A

channel B

Core0 Messages 
buffer

Core1 Messages 
buffer

Core2 Messages 
buffer

Core3 Messages 
buffer

Figure 4. hlMulticore interpartitions ARINC653 channels use case.

Figure 5 shows an activity diagram of the boot process. After system startup, the
bootstrap core carries out some basic system checking and starts the other cores. Each
core carries out its own partition initialization. This approach benefits from a faster boot
process since several tasks are carried out in parallel. All these processes are synchronized
using software barriers, where each core’s software waits for the other cores to complete
their operation.

Core0
bootstrap core

System boot

Start Core1

Start Core2

Start Core3Core1 partition 
initialization

Core2 partition 
initialization

Core3 partition 
initialization

Core0 partition 
initialization

Core0 partition 
deployment

Partition 
deployment 
messages

Core1 partition 
deployment

Core2 partition 
deployment

Core3 partition 
deployment

boot start 
messages

boot start 
messages

boot start 
messages

Figure 5. Startup sequence.

3.2. Channel Buffer Provisioning Approach

Each core has its own input/output message buffer. These buffers are allocated
in SDRAM memory and are critical elements for the system’s reliability since a permanent
error in any of them prevents the normal boot of the system and the loss of the mission. To
improve fault tolerance, we followed a buffer redundancy approach. Rather than having N
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replicated buffers for each core, a buffer’s pool has been allocated. This way, any core can
use any message buffer present in the pool that is free of permanent errors.

The use of spare resource pooling is not new, although this approach has been pro-
gressively replaced by hardware mechanisms when the amount of available memory was
low. However, nowadays, the total available memory in space systems exceeds the needs of
the software. As mentioned above, SRG-UAH has been involved in the hardware/software
development of the instrument control unit (ICU) of the energetic particle detector (EPD)
on board the Solar Orbiter. The ICU has 256 MB of SDRAM memory, while the application
software is around 300 KB, and about 10 MB are used for data buffer by each of the four
EPD’s sensors. These figures mean that the software uses less than 20% of the available
memory. In any case, the idea behind this buffer over-provisioning approach is not to replace
the memory fault-tolerance mechanisms implemented in hardware but to complement them
from a software perspective so that the final system’s overall reliability is improved.

As is pointed in [34] “A little redundancy, thoughtfully deployed and exploited, can yield
significant benefits for fault tolerance; however; excessive or inappropriately applied redundancy is
pointless”. The modest over-provisioning of critical memory resources can be used today
to reduce the impact of permanent faults without incurring an excessive memory usage
penalty. By design, such systems still become alive until no further spare resources are
available. As shown in Figure 6, twelve buffers are allocated in SDRAM memory at boot
time, and in parallel, each core tests and selects a free error buffer. There must be four out
of twelve buffers available for a normal startup of the system.

Core1
Partition 2

Core 3
Partition 4

Core 2
Partition 3

Core0
Partition 1

Buffer0 Buffer1 Buffer2 Buffer3

Buffer4 Buffer5 Buffer6 Buffer7

Buffer8 Buffer9 Buffer10 Buffer11

Buffer test and selection

Figure 6. Buffer pool selection.

3.3. Fault Injection Campaign

This section describes the fault injection campaign to verify that the message buffer
pooling approach followed works correctly. As previously described, the buffers pool
contains twelve buffers from which four buffers are selected that are free of permanent
errors. The system boots as long as there are four buffers available. If there are not enough
buffers available, the system halts and enters in a safe mode.

To verify the buffers’ selection mechanism, we should test all combinations with
permanent errors in buffers. For example, of the 12 buffers available, there may be per-
manent failures in only one or several of them. From a general point of view, these could
be k buffers, with k between 1 and 12, affected by permanent errors. The total number
of combinations without repetition is given by the binomial coefficient, as can be seen in
Equation (1), where n is the number of buffers available:(

n
k

)
=

n!
k!(n − k)!

(1)

The worst situation that still allows a successful boot is achieved when eight buffers
suffer permanent errors, in this case, n = 12, k = 8, as is shown in Equation (2):(

12
8

)
=

12!
8!(12 − 8)!

= 495 combinations (2)
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The total number of faulty configurations to be tested was obtained by sweeping
k between 1 and the buffers pool size, as is described in Table 2. In addition to them,
the error-free nominal execution, known as golden run, should be added:

Table 2. Faulty configurations.

k 1 2 3 4 5 6 7 8 9 10 11 12 Total

Faulty configurations 12 66 220 495 792 924 792 495 220 66 12 1 4095

3.4. Results

While developing the ARINC software, LeonViP-MC has been used to ensure that
the fault-tolerance mechanisms worked adequately since some compiler optimizations
do not consider that the RAM could change randomly due to an external factor. The use
of the simulator allowed us to incorporate mechanisms that prevent software undefined
behavior such as executing wrong instructions or doing unaligned memory accesses.

Once the ARINC software development finished, we made a fault injection campaign
that enclosed the 12 different buffer pool corruption combinations and the nominal case
without injected faults. LeonViP-MC was capable of running the 4096 tests in 6 min and 28 s
approximately, showing that 3797 ended up appropriately and the 299 remaining aborted
their execution after the buffer checking process without reaching an undefined behavior.
Since four buffer pools are needed for the program to initialize, every test with more than
eight corrupted buffers does not start the partition’s initialization and deployment.

In terms of performance, this campaign executed a total of 1,592,350,631 instructions
in approximately 387.92 s, which means that the average performance for the execution is
around 4.1 MIPS. The machine used for executing the campaign and the performance tests
in Section 2.3 was an Intel i5 9600 K 3.7 GHz with 8 GB of DDR4 RAM.

4. Conclusions

Space software has been incrementing in terms of its complexity in recent years.
The need for more computational power is leading to the development and usage of
multicore processors in on-board space applications. Furthermore, in recent years, space
agencies and companies have been planning programs with greater scopes. These pro-
grams include a permanent human presence on the Moon and its orbit, as in the NASA
Artemis Program, or the Chinese Lunar Exploration Program, or even on Mars’ surface
with the SpaceX Starship spacecraft. Both the Moon sphere of influence and Mars have
environments where radiation involves a greater risk than in the Earth’s orbit.

This paper presents the implementation of a multicore simulator designed to run
fault-tolerance test campaigns. In order to simulate the multicore environment, LLVM
and coroutines have been implemented. The LLVM coroutines that implement instructions
have been reused between executions of the same software during the campaign to improve
the global simulator performance. The simulator mimics the GR740 but can be configured
to adapt to other LEON platforms. Furthermore, its modularity allows the implementation
of other multicore processors with a different instruction set architectures.

A test campaign for a fault-tolerant ARINC653 message channel application has been
carried out as a use case. This application detects corrupted message buffers and starts mes-
saging only after checking whether there are enough correct buffers available. To validate
these procedures, we had to test a large number of faulty configurations, demonstrating
the virtual platform’s fault injection capabilities.

The development of virtual platforms like LeonViP-MC has a double positive impact on
embedded software development since its incorporation in the development toolchain gives us
a better understanding of the hardware and its particularities. This also allows us to implement
and use new features and paradigms that improve the embedded software development
process and are almost impossible or challenging to apply in a real hardware environment.
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