
electronics

Review

Structural Decomposition in FSM Design: Roots, Evolution,
Current State—A Review

Alexander Barkalov 1,2 , Larysa Titarenko 1,3 and Kazimierz Krzywicki 4,*

����������
�������

Citation: Barkalov, A.; Titarenko, L.;

Krzywicki, K. Structural

Decomposition in FSM Design: Roots,

Evolution, Current State—A Review.

Electronics 2021, 10, 1174. https://

doi.org/10.3390/electronics10101174

Academic Editors: Paolo Colantonio

and Alessandro Cidronali

Received: 14 April 2021

Accepted: 12 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Metrology, Electronics and Computer Science, University of Zielona Góra, ul. Licealna 9,
65-417 Zielona Góra, Poland; a.barkalov@imei.uz.zgora.pl (A.B.); l.titarenko@imei.uz.zgora.pl (L.T.)

2 Department of Mathematics and Information Technology, Vasyl’ Stus Donetsk National University,
600-richya str. 21, 21021 Vinnytsia, Ukraine

3 Department of Infocommunication Engineering, Faculty of Infocommunications, Kharkiv National
University of Radio Electronics, Nauky Avenue 14, 61166 Kharkiv, Ukraine

4 Department of Technology, The Jacob of Paradies University, ul. Teatralna 25,
66-400 Gorzów Wielkopolski, Poland

* Correspondence: kkrzywicki@ajp.edu.pl

Abstract: The review is devoted to methods of structural decomposition that are used for optimizing
characteristics of circuits of finite state machines (FSMs). These methods are connected with the
increasing the number of logic levels in resulting FSM circuits. They can be viewed as an alternative
to methods of functional decompositions. The roots of these methods are analysed. It is shown that
the first methods of structural decomposition have appeared in 1950s together with microprogram
control units. The basic methods of structural decomposition are analysed. They are such methods as
the replacement of FSM inputs, encoding collections of FSM outputs, and encoding of terms. It is
shown that these methods can be used for any element basis. Additionally, the joint application of
different methods is shown. The analysis of change in these methods related to the evolution of the
logic elements is performed. The application of these methods for optimizing FPGA- based FSMs is
shown. Such new methods as twofold state assignment and mixed encoding of outputs are analysed.
Some methods are illustrated with examples of FSM synthesis. Additionally, some experimental
results are represented. These results prove that the methods of structural decomposition really
improve the characteristics of FSM circuits.

Keywords: finite state machine; synthesis; microprogram control unit; logic elements; structural
decomposition; PROM; PLA; PAL; CPLD; FPGA

1. Introduction

The development of information technologies has led to the widespread use of various
digital systems in different areas of mankind’s activity [1–9]. It is known that digital systems
consist of various combinational and sequential blocks [10,11]. As a rule, the circuits of
combinational blocks are regular [12]. A designer can use standard library elements of
computer-aided design (CAD) systems to implement such circuits [11]. For example, a
multi-bit adder can be represented as a composition of standard single-bit adders. The
sequential blocks could be very complex (for example, control units of computers) or rather
simple (such as binary counters). It is known that the circuits of complex sequential blocks
are irregular [10,12]. As a rule, there are no standard library solutions for such blocks. It
means that each sequential block is synthesised anew. To synthesise the logic circuit of a
sequential block, some tools are used to present the law of its behaviour.

Very often, the behaviour of sequential blocks is represented using the model of a
finite state machine (FSM) [10,13,14]. Three characteristics of an FSM circuit significantly
influence the characteristics of a digital system. These characteristics are the hardware
amount, the operating frequency (the performance), and the power consumption. Because

Electronics 2021, 10, 1174. https://doi.org/10.3390/electronics10101174 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4941-3979
https://orcid.org/0000-0001-9558-3322
https://orcid.org/0000-0002-1088-5784
https://www.mdpi.com/article/10.3390/electronics10101174?type=check_update&version=1
https://doi.org/10.3390/electronics10101174
https://doi.org/10.3390/electronics10101174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10101174
https://www.mdpi.com/journal/electronics


Electronics 2021, 10, 1174 2 of 44

of it, there is continuous interest in developing the various approaches that aimed at opti-
mizing the basic characteristics of FSM circuits. As a rule, the less hardware is consumed
by a sequential block’s circuit, the less power it requires [15–20]. Accordingly, it is very
important to reduce the amount of hardware that is consumed by an FSM circuit.

The development of various methods of optimizing the characteristics of the FSM
circuits has been started since 1951. A characteristic feature of such methods is the consider-
ation of the characteristics of the logic elements that are used for the design of FSM circuits.
At various times, various logic elements were used for implementing FSM circuits. Among
these elements, there are logic gates, decoders, multiplexors, read-only memories (ROMs),
programmable ROMs (PROMs), programmable logic arrays (PLAs), programmable array
logic (PAL), complex programmable logic devices (CPLDs), and field-programmable gate
arrays (FPGAs). Some of these logic elements have been used together.

The structural decomposition is one of the approaches used for reducing the hardware
amount [21–24]. The roots of this approach go back to 1951, when M. Wilkes put forward
the idea of a microprogram control unit (MCU) [25,26]. Over the following times, Wilkes’
ideas were modified with a change in the elemental basis used for implementing FSM
circuits.

The main idea of the structural decomposition is the following. An FSM circuit
is represented by some big logic blocks. Each such a block has its own unique input
variables and output functions. The outputs of some blocks are used as the inputs of
other blocks. This allows for eliminating the direct connection between FSM inputs and
outputs. In the best case, the logic circuit of each block has exactly a single level of logic
elements [21,27,28]. In this article, we present a rather brief survey of the known methods
of structural decomposition. At the same time, almost half of the article is devoted to the
methods of structural decomposition used for optimizing the circuits of FPGA-based FSMs.

The main contribution of this paper is a survey of methods of structural decomposition
of FSM circuits. The analysis of these methods shows that the structural decomposition is a
powerful tool that allows for significantly improving the characteristics of FSM circuits as
compared to their counterparts based on other known approaches.

The rest of the paper is organized as the following. Section 2 presents the theoretical
background of finite state machines. Section 3 discusses the methods of implementing
microprogram control units. Section 4 presents the methods of structural decomposition
used in application-specific integratedcircuits. Section 5 considers the methods targeting
simple programmable logic devices. Section 6 considers the structural decomposition of
FPGA-based FSMs. A brief conclusion ends the paper.

2. Implementing Circuits of Finite State Machines

An FSM can be defined as a tuple A = 〈S, I, O, δ, λ, s1〉 [10,13], where S = {s1, . . . , sM}
is a set of internal states, I = {i1, . . . , iL} is a set of inputs, O = {o1, . . . , oN} is a set of
outputs, δ is a transition function, λ is a function of output, and s1 ∈ S is an initial state. An
FSM can be represented using such tools as: state transition graphs [10], binary decision
diagrams [29], and-inverter graphs [30], graph-schemes of algorithms [13].

The most obvious way to represent an FSM is the state transition graph. For example,
the STG that is shown in Figure 1 represents a Mealy FSM A1.

The FSM states are represented by the nodes s1, . . . , s4. The arcs define the interstate
transitions that are determined by the input signals that are the conjunctions of inputs
(or their complements). These conjunctions are written above the arcs together with the
outputs generated during these transitions. Using STG (Figure 1), we can find the following
parameters of Mealy FSM A1: the number of inputs L = 3, the number of outputs N = 5,
the number of states M = 4, and the number of transitions H = 8. Additionally, this STG
uniquely defines the functions of transitions and output of FSM A1.



Electronics 2021, 10, 1174 3 of 44

s 1

s 2

i1/o1o2  

s 3

i1i2/o3

s 4

i1i2/o2o4

i3/o5

i3/o1o2         

i2/o3

i2/o2o4

-/o5

Figure 1. The state transition graph of Mealy finite state machine (FSM) A1.

To design an FSM circuit, an STG should be transformed into the corresponding
STT. An STT includes the following columns [10,13]: sC is a current state; sT is a state of
transition; Ih an input signal determining a transition from sC to sT ; and, Oh is a subset of
the set of outputs generated during the transition from the current state sC to the state of
transition sT . We name this subset a collection of outputs. The numbers of the transitions
(h ∈ {1, . . . , H}) are shown in the last column of the STT.

In this article, we mostly use STTs for initial representation of FSMs. For example,
the FSM A1 is represented by the STT (Table 1). We hope that there is the transparent
connection between the STG (Figure 1) and STT (Table 1).

Table 1. State transition table (STT) of Mealy finite state machine (FSM) A1.

sC sT Ih Oh h

s1 s2 i1 o1o2 1
s3 i1i2 o3 2
s4 i1 i2 o2o4 3

s2 s3 i3 o1o2 4
s2 i3 o5 5

s3 s1 i2 o3 6
s4 i2 o2o4 7

s4 s2 1 o5 8

There are two main types of FSM, namely, Mealy [31] and Moore [32] FSMs. The first
of them was proposed in 1955 by G. Mealy; the second was proposed in 1956 by E. Moore.
In both cases, the function δ determines the states of transition as functions depending on
the current states and inputs. So, it is the following function:

δ(A, X) = A. (1)

For Mealy FSMs, the function λ determines the outputs as functions depending on
the current states and inputs. It gives the following function:

λ(A, X) = O. (2)

For Moore FSMs, the function λ determines the outputs as functions depending only
on the current states. So, it is the following function:

λ(A) = O. (3)



Electronics 2021, 10, 1174 4 of 44

The difference among (2) and (3) leads to a difference in the synthesis methods of
Mealy and Moore FSMs. We now explain the stages of Mealy FSM’s synthesis starting from
Table 1.

In 1965, Viktor Glushkov proved a theorem of the structural completeness [33]. Ac-
cording to this theorem, an FSM circuit is represented as a composition of the combinational
part and the memory. The memory is necessary for keeping the history of the FSM’s opera-
tion. The history is represented by FSM internal states. This fundamental approach is still
widely used for the synthesis of FSM circuits [34–38].

An FSM logic circuit is represented by some systems of Boolean functions (SBFs) [10,13].
To find these SBFs for Mealy FSMs, it is necessary to [13]: (1) encode states sm ∈ S by
binary codes K(sm); (2) construct sets of state variables T = {T1, . . . , TR} and input memory
functions (IMFs) D = {D1, . . . , DR}; and, (3) transform an initial STT into a direct structure
table (DST). The states sm ∈ S are encoded during the step of state assignment [10].

The minimum possible number of state variables RS is determined as

RS = dlog2Me. (4)

The approach based on (4) defines so-called maximum binary codes [10]. This method
is used, for example, in the well-known academic system SIS [39]. However, the number of
state variables can be different from (4). For example, the one-hot state codes with R = M
are used in the academic system ABC [30,40] of Berkeley. The maximum binary codes and
one-hot codes define the extreme points of the encoding space. There are other approaches
for state assignment where the following relation holds: dlog2Me ≤ RS ≤ M.

A state register (RG) keeps the state codes. The register includes R memory elements
(flip-flops) having shared inputs of synchronization (Clock) and reset (Start). Very often,
master–slave D flip-flops are used to organize state registers [41,42]. The pulse Clock allows
the functions Dr ∈ D to change the RG content.

After the execution of the state assignment, we should create a direct structure table.
A DST includes all of the columns of an STT and three additional columns. These columns
include the current state codes K(sC) and the codes K(sT) of the states of transitions. Finally,
a column Φh includes the symbols Dr ∈ D corresponding to 1’s in the code K(sT) from the
row h of a DST (h ∈ {1, . . . , H}). A DST is a base to construct the following SBFs:

D = D(T, I); (5)

Y = Y(T, I). (6)

The systems (5) and (6) determine a structural diagram of P Mealy FSM (Figure 2)
[42].

LUTerF

T

I

Start

Clock
State

register

Block of input
memory functions

Block of
outputs

O

D

Figure 2. Structural diagram of P Mealy FSM.

The block of input memory functions generates the functions (5). The block of outputs
generates the system (6). The pulse Start loads the code of the initial state to RG. The pulse
of synchronization Clock allows information to be written to the register.



Electronics 2021, 10, 1174 5 of 44

A DST of Moore FSM is a base for deriving the systems (5) and

O = O(T). (7)

A P Moore FSM is represented by a structural diagram that is similar to the one shown
in Figure 2. However, as follows from SBF (7), there is no connection between the inputs
il ∈ I and block of outputs.

We now discuss how to obtain systems (5) and (6) for P Mealy FSM A1. There is
M = 4. Using (4) gives the value of RS = 2. This determines the sets T = {T1, T2} and
D = {D1, D2}. Let us encode states in the trivial way: K(s1) = 00, . . . , K(s4) = 11. Having
state codes allows transforming Table 1 (the initial STT) to Table 2. Table 2 is the DST of P
FSM A1.

Table 2. Direct structure table (DST) of Mealy FSM A1.

sC K(sC) sT K(sT) Ih Oh Dh h

s1 00 s2 01 i1 o1o2 D2 1
s3 10 i1i2 o3 D1 2
s4 11 i1 i2 o2o4 D1D2 3

s2 01 s3 10 i3 o1o2 D1 4
s2 01 i3 o5 D2 5

s3 10 s1 00 i2 o3 - 6
s4 11 i2 o2o4 D1D2 7

s4 11 s2 01 1 o5 D2 8

To fill the column Dh, we should take into account that the value of Dr ∈ D is equal
to the value of the r-th bit of code K(sT) [13]. Systems (5) and (6) are represented as a
sum-of-products (SOPs) [10,43]. These SOPs include product terms Fh ∈ F corresponding
to rows of a DST. The elements of the set of terms F are determined as

Fh = SC ∧ Ih (h ∈ 1, . . . , H). (8)

In (8), the first member SC is a conjunction of state variables corresponding to a code
of the current state K(sC) from the h-th row of DST. There are the following conjunctions
SC in the discussed case: S1 = T1 T2, . . . , S4 = T1T2.

Using Table 2, we can obtain the following SBFs:

o1 = F1 ∨ F4 = T1 T2 i1 ∨ T1 T2 i3;

o2 = F1 ∨ F3 ∨ F4 ∨ F7; (9)

o3 = F2 ∨ F6; o4 = F3 ∨ F7;

o5 = F5 ∨ F8 = T1 T2 i3 ∨ T1 T2.

D1 = [F2 ∨ F3] ∨ F4 ∨ F7 = T1 T2 i1 ∨ T1 T2 i3 ∨ T1 T2 i1; (10)

D2 = F1 ∨ F3 ∨ F5 ∨ F7 ∨ F8.

The SBF (9) determines the circuit of block of outputs and the SBF (10) determines the
circuit of block of input memory functions.

The hardware amount in an FSM circuit depends on the combination of SBF charac-
teristics (the numbers of literals, functions, and product terms of SOPs) and specifics of
the used logic elements (the number of inputs, outputs and product terms). Denote, by
NA( fi, Fh), the number of literals in a term Fh of the SOP of a function fi, and, by NT( fi),



Electronics 2021, 10, 1174 6 of 44

the number of terms in a SOP of this function. Obviously, the following conditions are true
for a SOP of any function fi ∈ D ∪O:

NA( fi, Fh) ≤ L + RS; (11)

NT( fi) ≤ H. (12)

Consider the SOP of function D1 from SBF (10). Each term of this SOP includes
NA(D1, Fh) = 3 literals. There are NT(D1) = 3 terms in this SOP. If NAND gates having
NINAND = 3 inputs are used for implementing a logic circuit corresponding to D1, then
there are four gates and two levels of gates in the circuit. This is the best solution, because
the circuit includes the minimum possible number of gates (the minimum hardware
amount), their levels (the maximum operating frequency), and interconnections.

However, if there is NINAND = 2, then the SOP should be transformed. After the
transformation, the SOP is represented by the following formula:

D1 = T1 T2 i1 · T1 T2 i3 · T1 T2 i1 (13)

Twelve gates are necessary for implementing the function (13). The resulting circuit
has six levels of gates. Thus, an imbalance between the characteristics of the function and
logic elements leads to an increase in the number of gates and levels of logic in the resulting
logic circuit.

This situation can occur for any logical elements (logic gates, ROMs, PROMs, PLAs,
PALs, CPLDs, FPGAs, and so on). In this case, it is necessary to optimize the characteristics
of a resulting logic circuit. The structural decomposition is one of the ways for such an
optimization [21].

3. Roots of Structural Decomposition

The control units’ circuits of the first computers were characterized by an irregular
structure [44–48] with all the ensuing consequences. In 1951, Professor of Cambridge M.
Wilkes proposed a principle of microprogram control [25,26]. According to this principle,
each computer instruction is represented as a microprogram kept into a special control
memory (CM). A microprogram consists of microinstructions. Each microinstruction has
an operational part with control outputs (microoperations) and an address part having data
used for generating an address of transition (the address of the next microinstruction to be
executed). A special register is used to keep the microinstruction address. This approach
allows for obtaining a microprogram control unit (MCU) with a regular circuit, which is
quite simple to implement and test. A trivial structural diagram of the MCU is shown in
Figure 3.

LUTerF

T

I

Start

Clock

Register of 
microinstruction 

address

Control
memory

DO

Figure 3. Trivial implementation of microprogram control unit.



Electronics 2021, 10, 1174 7 of 44

The MCU (Figure 3) uses the microinstruction address from the register and logical
conditions (inputs) il ∈ I to generate outputs on ∈ O and the next address represented by
variables Tr ∈ T. A comparison of Figures 2 and 3 shows that the MCU is a finite state
machine in which blocks of input memory functions and outputs are replaced by the control
memory. At the same time, microinstructions correspond to FSM states; microinstruction
addresses correspond to state codes. This connection between FSMs and MCUs was first
noted in [49].

The circuit of control memory was implemented using ROM [50–52]. For MCU
(Figure 3), the required volume of such a ROM, VROM, is determined as

VROM = (N + RS)2L+RS . (14)

For average FSMs [13], there is N = 50, RS = 8, L = 30. If such a control unit is
implemented as MCU (Figure 3), then it is necessary for 1013 bits of control memory. In the
1950s, the use of such a big control memory would lead to a significant increase in the cost
of a computer. Because of it, Figure 3 rather shows an idea of MCU, not the practical way
of its implementation.

In order to diminish the required value of VROM, two approaches have been proposed
by M. Wilkes. The first of them is the selection of an input that should be used for generation
of the transition address. As a rule, only a single logic condition is selected in each cycle of
MCU operation. This allows for reducing the length of the address part of microinstruction.
This approach leads to a two-level MCU shown in Figure 4.

LUTerF

I

Start

Clock

Register of 
microinstruction 

address

Block
of addressing

D

Control memory

T

Operational
part

Address
partO

Figure 4. Two-level microprogram control unit.

The second approach is an encoding of collections of microoperations Yq ⊆ O by
maximum binary codes K(Yq) having RQ bits. In practical cases [53], there is RQ ≤ 8. This
allows reducing the length of the operational part of microinstruction up to

RQ = dlog2Qe. (15)

In (15), we use Q to denote the number of different COs for a particular STT.
If an MCU is implemented starting from STT (Table 1), then the following collections

of outputs (COs) can be found: Y1 = {o1, o2}, Y2 = {o3}, Y3 = {o2, o4}, Y4 = {o5}.
Accordingly, there is Q = 4. Using (15) gives RQ = 2. Let us use elements of the set
Z = {z1, . . . , zRQ} for encoding of the COs. It gives the set Z = {z1, z2}. Figure 5 shows
one of the possible outcomes of encoding.



Electronics 2021, 10, 1174 8 of 44

z1

z2 0 1

0

1

Y1 Y2

Y3 Y4

Figure 5. Maximum codes of collections of outputs.

As follows from Figure 5, there is K(Y1) = 00, ..., K(Y4) = 11. The system of outputs is
represented by the following SOP:

o1 = Y1 = z1 z2; o2 = Y1 ∨Y3 = z1;

o3 = Y2 = z1 z2; o4 = Y3 = z1 z2; (16)

o5 = Y4 = z1 z2.

To implement the system (16), we should include in the MCU a block of outputs.
This block consists of a decoder (DC) and a coder. Hence, this block has two levels of
logic. The decoder transforms codes of COs into one-hot codes corresponding to COs. The
coder transforms these one-hot codes into outputs. In the general case, the outputs are
represented by the system

O = O(Z). (17)

If both of the approaches are used simultaneously, then there are three levels of logic
blocks in the MCU. Figure 6 shows the structural diagram of three-level MCU with the
compulsory addressing of microinstructions [50,54].

LUTerF

I

Start

Clock

Register of 
microinstruction 

address

Block
of addressing

D

Control memory

T

Operational
part

Address
part

Y

Block of outputs

O

Figure 6. Three-level microprogram control unit.

In the case of the compulsory addressing of microinstructions, the microinstruction for-
mat includes the operational part having RQ bits and the address part having RL = dlog2Le
bits with a code of logical condition to be checked and two address fields. The first address
field includes an address of transition, if a logical condition to be checked is equal to 0 (or
an address of unconditional transition). The second address field includes an address of
transition if a logical condition to be checked is equal to 1. If a microprogram includes M
microinstructions, then the number of address bits is determined by (4). Accordingy, each
microinstruction has RQ + RL + 2× RS bits. If RQ = RS = 8 and RL = 6, then the value of
VROM is equal to 30× 256 = 7680 bits.

The block of addressing generates address variables Dr ∈ D. These variables depend
on the inputs and microinstruction address part. This block is implemented on multiplexers
(MXs) [52]. The block of outputs generates outputs as functions of the MCU operational
part. Hence, an MCU is a Moore FSM.

The MCU with the block of addressing became the prototype of the FSMs with
replacement of inputs. In literature [41] such FSMs are called MP FSMs, where “M” means
“multiplexer”. The MCU with the block of outputs became the prototype of PY FSMs with



Electronics 2021, 10, 1174 9 of 44

encoding of collections of outputs. The three-level MCU (Figure 6) corresponds to MPY
FSM. This means that various methods of structural decomposition can be used together.

The method of encoding of fields of compatible outputs (FCOs) was proposed to
eliminate the coder from the block of outputs [55]. The outputs are compatible if they are
not written in the same rows of STT. The set O is divided by I classes of compatible outputs:

O = O1 ∪O2 ∪ . . . ∪OI . (18)

Outputs on ∈ Oi are encoded by maximum binary codes Ki(on). There are Ri bits in
the code Ki(on):

Ri = dlog2(Ni + 1)e. (19)

In (19), we use the symbol Ni to denote the number of outputs in the class Oi. The one
is added to Ni to take the relation on /∈ Oi into account.

The outputs on ∈ Oi are encoded using variables zr ∈ Zi. The total number of
operational part bits, RFCO, is determined by summation of the values of (19). The structural
diagram of the MCU based on this principle is the same as the one shown in Figure 6.
However, the block of outputs consists of I decoders DCi. A decoder DCi generates outputs
from the field FCOi.

This approach was used in optimizing control units of IBM/360 [56]. Additionally,
they became the prototypes of PD FSMs [41].

There are three possible organizations of the block of outputs that are shown in
Figure 7.

Operational
part

1 N

O

Operational
part

1 Ra

O

Decoder

Coder

W

Z

Operational
part

FCO1 FCOI

DC1

1z

1O

DCI

Iz

kO

. . .

a) b) c)

Figure 7. Organization of block of outputs with one-hot (a), maximum encoding (b) and encoding of
FCO (c).

As follows from Figure 7, the one-hot organization (Figure 7a) leads to the fastest
MCUs having the longest operational part. The block of outputs is absent. The maximum
encoding of collections of outputs (Figure 7b) results in the two-level block of outputs.
This is the slowest solution, but it provides the shortest operational part. As follows from
Figure 7c, the encoding of FCOs results in a single-level block of outputs. This approach
provides a compromise solution with the average delay and hardware amount.

The value of VROM can be reduced due to using the nanomemory [44,54]. We now
explain the idea of this approach (Figure 8).



Electronics 2021, 10, 1174 10 of 44

LUTerF

I

Start

Clock

Register of 
microinstruction 

address

Block
of addressing

D

Micro-memory

To

Address part

V

Nanomemory

O T

Figure 8. Organization of microprogram control unit (MCU) with nanomemory.

If there are Mo unique microinstructions in a microprogram, then they are encoded
using Ro variables vr ∈ V, where Ro is determined as it is for RS. These codes are kept into a
micro-memory (the first level of control memory). There are M codes in the micro-memory.
The second level of memory (nanomemory) keeps the operational and addresses parts of
these microinstructions. For example, there is M = 1024, M0 = 256, and a microinstruction
contains 64 bits. In the case of MCU (Figure 6), there are V0 = 1024× 64 = 64k = 65,536
bits. We have R0 = 10. Accordingly, there are 1024× 10 bits of the micro-memory and
256× 64 = 16k bits of the nanomemory. Hence, there are 26,624 bits of the control memory
for MCU (Figure 8). It means that that approach allows reducing the volume of control
memory by 2.46 time when compared to the MCU (Figure 6). This approach is a prototype
of PH FSMs with encoding of product terms [41].

One fundamental law follows from the analysis of different methods of minimizing
the value of VROM. This is the following: the reducing hardware amount leads to an
increase in the delay time of the resulting circuit (due to an increase in the number of logic
levels). This law holds for all methods of structural decomposition.

4. Structural Decomposition in Matrix-Based Fsms

If an FSM is a part of an application-specific integrated circuit (ASIC) [57], then its
circuit can be implemented using custom matrices [13,58]. These matrices are used as
either AND-planes or OR-planes [59]. Each plane is a system of wires connected by
CMOS transistors. Two wires (direct and compliment values of corresponding arguments)
represent each literal of a SOP. Each term of a SOP corresponds to a wire.

To implement a matrix circuit of Mealy FSM, it is enough to use a single AND-matrix
M1 and a single OR-matrix M2. This is a trivial matrix implementation of P Mealy FSM
(Figure 9).

F1

. . .

. 
. 

.

FH

&
M1 M2

1

RG

D
Start

ClockY

. . .

T

i1 iL T1 TR

Figure 9. Trivial matrix implementation of P Mealy FSM.



Electronics 2021, 10, 1174 11 of 44

The trivial matrix circuit (Figure 9) represents a P Mealy FSM [41]. This is the fastest
matrix solution. However, such a solution is very redundant.

The hardware amount of matrix circuits is defined in conventional units of area (CUA)
of matrices [13]. These areas are determined as the following:

S(M1) = 2(L + RS) · H; (20)

S(M2) = H(N + RS). (21)

In (20) and (21), the symbols S(M1), S(M2) stand for area of matrices M1 and M2,
respectively.

If there is L = 30, N = 50, RS = 8, and H = 2000 (an average FSM [13]), then
S(M1) = 152,000 CUA and S(M2) = 116,000 CUA. It gives the total area equal to
268,000 CUA. If each product term of SBFs (5) and (6) includes 3 + R = 11 literals, then
there are 11× 2000 = 22,000 useful interconnections in M1. If each term enters SOPs of
five functions, then there are 5× 2000 = 10,000 useful interconnections in M2. Hence,
only 32,000 interconnections are used for implementing an FSM circuit. Because there are
268,000 interconnections, only 12% of the area is really used.

Two methods of structural decomposition were used to reduce the chip area that is
occupied by an FSM circuit, namely [58]:

1. The replacement of inputs (MP FSM).
2. The encoding of collections of outputs (PY FSM).

To design an MP FSM, it is necessary to replace the set I by some set P = {p1, . . . , pG}.
This makes sense if

G � L. (22)

The value of G is determined by the maximum number of inputs causing transitions
from states sm ∈ S [58]. Consider the DST of Mealy FSM A2 (Table 3).

Table 3. Direct structure table (DST) of Mealy FSM A2.

sC K(sC) sT K(sT) Ih Oh Dh h

s1 000 s2 001 i1 o1o2 D3 1
s3 010 i1 o3 D2 2

s2 001 s2 001 i2 o2o4 D3 3
s3 010 i2i3 o1o2 D2 4
s4 100 i2 i3 o5 D1 5

s3 010 s4 100 i4 o3 D1 6
s5 011 i4i5 o3o5 D2D3 7
s6 101 i4 i5 o1o2 D1D3 8

s4 100 s3 010 i6 o2o4 D2 9
s1 000 i6 - - 10

s5 011 s2 001 i7 o3 D3 11
s2 001 i7i8 o1o2 D3 12
s4 100 i7 i8 o3o5 D1 13

s6 101 s1 000 1 - - 14

In the case of A2, we have G = 2. Accordingly, there is a set P = {p1, p2}.
To replace inputs, it is necessary to create the following SBF:

P = P(T, I). (23)

This SBF is constructed using a table of replacement. In the discussed case, Table 4
presents the table of replacement.



Electronics 2021, 10, 1174 12 of 44

Table 4. Table of replacement of P Mealy FSM A2.

sm s1 s2 s3 s4 s5 s6

p1 i1 i2 i4 - i7 -

p2 - i3 i5 i6 i8 -

K(sm) 000 001 010 100 011 101

Using Table 4 gives the following SBF:

p1 = T1 T2 T3 i1 ∨ T1 T2 T3 i2 ∨ T1T2T3 i4 ∨ T1T2T3 i7; (24)

p2 = T1 T2 T3 i3 ∨ T1T2T3 i5 ∨ T1 T2 T3 i6 ∨ T1T2T3 i8.

The SOP for p1 includes terms v1–v4; the SOP for p2 includes terms v5–v8. Hence,
there is NT(P) = 8.

We should construct a table of MP FSM to design the circuit of MP FSM. It can be done
by a transformation of the DST of P FSM. The transformation is reduced to the replacement
of the column Ih by the column Ph [58]. In the discussed case, this leads to Table 5.

Table 5. DST of MP Mealy FSM A2.

sC K(sC) sT K(sT) Ph Oh Dh h

s1 000 s2 001 p1 o1o2 D3 1
s3 010 p1 o3 D2 2

s2 001 s2 001 p1 o2o4 D3 3
s3 010 p1 p2 o1o2 D2 4
s4 100 p1 p2 o5 D1 5

s3 010 s4 100 p1 o3 D1 6
s5 011 p1 p2 o3o5 D2D3 7
s6 101 p1 p2 o1o2 D1D3 8

s4 100 s3 010 p2 o2o4 D2 9
s1 000 p2 - - 10

s5 011 s2 001 p1 o3 D3 11
s2 001 p1 p2 o1o2 D3 12
s4 100 p1 p2 o3o5 D1 13

s6 101 s1 000 1 - - 14

From Table 5, we can find that the IMFs and outputs of MP FSM are represented by
the following SBFs:

D = D(T, P); (25)

O = O(T, P). (26)

Systems (23)–(25) determine a matrix circuit of MP FSM that is shown in Figure 10.

F1
&

M1 M2

1

RG

D
Start

ClockO

T

&
M3

1
M4

P

V

I

Figure 10. Structural diagram of MP Mealy FSM.



Electronics 2021, 10, 1174 13 of 44

In the MP Mealy FSM (Figure 10), the matrix M3 implements terms of SBF (23).
The matrix M4 transforms terms vr ∈ V into functions (23). The matrix M1 implements
terms Fh ∈ F. These terms correspond to the rows of DST. The matrix M2 generates
functions (25) and (26). These matrices have the following areas:

S(M1) = 2(G + RS) · H;

S(M2) = H(N + RS); (27)

S(M3) = (L + 2RS) · NT(P);

S(M4) = NT(P) · G.

To optimize the matrix M2, the method of encoding of COs can be used [58]. As it is
for MCU, Q COs are encoded by binary codes K(Yq). These codes have RQ bits, where the
expression (15) determines the value of RQ.

For FSM A2, the following COs can be found: Y1 = ∅, Y2 = {o1, o2}, Y3 = {o3}, Y4 =
{o2, o4}, Y5 = {o5}, Y6 = {o3, o5}. Accordingly, there is Q = 6, RQ = 3, Z = {z1, z2, z3}. To
minimize the number of literals in (17), it is necessary to encode COs Yq ⊆ O using the
approach [60]. In the discussed case, Figure 11 shows the outcome of encoding.

z1z2

z3 00 01 11 10

0

1

Y1 Y4 Y6Y3

* Y2 Y5*

Figure 11. Optimal codes of collections of outputs.

Using codes (Figure 11), we can get the following SBF:

o1 = Y2 = z2z3; o2 = Y2 ∨Y4 = z1z2;

o3 = Y3 ∨Y6 = z1z3; o4 = Y4 = z1 z2 z3; (28)

o5 = Y6 = z1 z2 z3.

There are N = 5 terms in (28). In the general case, there are NT(O) terms in (17). They
form a set W.

To implement a PY FSM circuit, it is necessary to create a DST of PY FSM. For the
FSM A2, it is Table 6.

Table 6. DST of PY Mealy FSM A2.

sC K(sC) sT K(sT) Ih Zh Φh h

s1 000 s2 001 i1 z2z3 D3 1
s3 010 i1 z1z2 D2 2

s2 001 s2 001 i2 z2 D3 3
s3 010 i2i3 z2z3 D2 4
s4 100 i2 i3 z1z3 D1 5

s3 010 s4 100 i4 z1z2 D1 6
s5 011 i4i5 z1 D2D3 7
s6 101 i4 i5 z2z3 D1D3 8

s4 100 s3 010 i6 z2 D2 9
s1 000 i6 - - 10

s5 011 s2 001 i7 z1z2 D3 11
s2 001 i7i8 z2z3 D3 12
s4 100 i7 i8 z1 D1 13

s6 101 s1 000 1 - - 14



Electronics 2021, 10, 1174 14 of 44

The DST is a base for deriving SBFs (5) and

Z = Z(T, I). (29)

The SBFs (5), (17), and (29) determine a PY Mealy FSM whose structural diagram is
shown in Figure 12.

In PY FSM, the matrix M2 implements functions Dr ∈ D and variables zr ∈ Z. The
matrix M5 transforms zr ∈ Z into terms of SBF (17). The matrix M6 generates outputs
on ∈ D. These matrices have the following areas:

S(M1) = 2(L + RS) · H;

S(M2) = H(RS + RQ); (30)

S(M5) = 2RQ · NT(O);

S(M6) = NT(O) · N.

F1

M2

1

RG

D
Start

Clock

T

&
M1

I

Z

&
M5

1
M6

WO

Figure 12. Structural diagram of PY Mealy FSM.

These approaches can be used simultaneously [58]. This leads to MPY Mealy FSM
(Figure 13).

F1

M2

1

RG

D
Start

Clock

T

&
M1

Z

&
M5

1
M6

WO

1
M4

&
M3

V P

I

Figure 13. Structural diagram of MPY Mealy FSM.

In the matrix circuit (Figure 13), the matrices M3 and M4 implement the SBF (23),
the matrices M5 and M6 implement the SBF (17). The matrices M1 and M2 implement
SBFs (25) and

Z = Z(T, P). (31)

There are two levels of logic in the matrix circuit of P Mealy FSM (Figure 9). This
circuit has six levels of logic. Obviously, the P FSM is three times faster than an equivalent
MPY FSM (Figure 13). Let us compare areas of equivalent FSMs.

As shown in [58], the average FSMs have the following characteristics: L = 30, N = 50,
RS = 8, H = 2000, G = 4, NT(P) = 50, RQ = 6, NT(O) = 80. This gives the following:
S(M1) = 2(G + RS) · H = 48,000, S(M2) = H(RS + RQ) = 28,000, S(M3) = (L + 2RS)·
NT(P) = 2300, S(M4) = NT(P) · G = 200, S(M5) = 2RQ · NT(O) = 960, S(M6) =
NT(O) · N = 4000. Now, we have the following total area of MPY FSM circuit: 83,460
CUA. There are 268,000 CUA of the area of P Mealy FSM (Figure 9). This gives around 69%
of economy. Accoridngly, an increase in the number of levels of a matrix circuit leads to
an average reduction in area by 3.23 times. Of course, the FSM performance practically
decreases to the same extent.



Electronics 2021, 10, 1174 15 of 44

Accordingly, the methods of structural decomposition can be used for optimizing
matrix circuits of Mealy FSMs. The same is true for Moore FSMs [61]. For further reducing
the area, it is necessary to apply various methods of joint minimization of SBFs [43].

5. Structural Decomposition in Spld-Based Fsms

In the 1970s, a wide range of so-called simple programmable logic devices (SPLDs)
appeared. This class includes programmable logic arrays (PLAs), programmable read-only
memories (PROMs), and programmable array logic (PAL) [62–65]. A SPLD is a general
purpose chip whose hardware can be configured by an end user to implement a particular
product [66–69].

There is one common feature of SPLDs. Namely, they can be viewed as a composition
of AND and OR arrays [62–65,70]. A typical SPLD structure is exactly the same as the one
shown in Figure 9. Accordingly, SPLDs can implement SOPs representing the systems of
Boolean functions.

In the case of PROM, the AND-array is fixed. It creates an address decoder. The OR-
array is programmable. A PROM is the best tool for implementing SBFs that are represented
by truth tables [10]. The number of address inputs of a PROM was rather small. Acccord-
ingly, PROMs were used for implementing only parts of FSM circuits [71].

The joint using PROMs and multiplexers (MXs) leads to MP FSMs. The MXs im-
plement the replacement of inputs that are represented by (23). The PROMs implement
systems (25) and (26). To keep state codes, the register RG is used (Figure 14a). The joint
using PROMs, decoders (DCs), and MXs leads to MPD FSMs (Figure 14b). To implement
MPY FSMs, it is necessary to use MXs and PROMs (Figure 14c).

MXs PROMs
P

RG
D

T

O

I

a)

MXs PROMs
P

RG
D

T

Z

I

b)

DCs
O

MXs PROMs
P

RG
D

T

Z

I

c)

PROMs

Start

Clock

Start

Clock

O
Start

Clock

Figure 14. Organization of MP (a), MPD (b), and MPY (c) programmable read-only memory
(PROM)-based FSMs.

As follows from Figure 14, different logic elements implement different parts of FSM
circuits. This approach is a heterogeneous implementation of FSM circuit [71]. Of course,
it is enough to use only memory blocks for implementing an FSM circuit [72].

The PLAs have the following specifics: both of the arrays are programmable [62,63].
Because of it, PLAs are used for implementing reduced SOPs [43] of SBFs [13,41,70]. Typical
PLAs have SPLA = 16 inputs, tPLA = 8 outputs, and qPLA = 48 terms [73,74].

As a rule, FSM circuits were represented by networks of PLAs [13,75]. To optimize
the number of chips in a circuit, the methods of structural decomposition were used.
Additionally, the principle of heterogeneous implementation was used. For example, MPY
FSMs could be implemented using MXs, PLAs, and PROMs (Figure 15).

Different approaches were used for optimizing characteristics of PLA-based FSMs [76–82].
One of the new approaches was an encoding of FSM terms [78], leading to PH FSMs.



Electronics 2021, 10, 1174 16 of 44

MXs PLAs
P

RG
D

T

Z

I

PROMs
O

Start

Clock

Figure 15. Heterogeneous circuit of MPY FSM.

In this case, terms Fh ∈ F, corresponding to rows of STT, were encoded by binary
codes K(Fh) having RH bits:

RH = dlog2He. (32)

To encode terms, variables zr ∈ Z were used, where |Z| = RH . The following SBFs
represent PH FSMs:

Z = Z(I, T);

D = D(Z); (33)

O = O(Z).

These SBFs were implemented using PLAs (for Z) and PROMs (for D, O). Such a
composition of PLAs and PROMs leads to PH FSM (Figure 16).

PLAs PROMs
Z

RG
D

T

O

I

Start

Clock

Figure 16. The structural diagram of PH FSM.

To implement a PH FSM, it is necessary to: (1) encode terms Fh ∈ F; (2) create a DST
of PH FSM; (3) create SBFs (33); and, (4) program PLAs and PROMs. For example, there is
H = 14 for Mealy FSM A2 (Table 3). Using (32) gives RH = 4 and Z = {z1, . . . , z4}. Let us
encode terms in the trivial way: K(F1) = 0000, . . . , K(F14) = 1101. Table 7 is a DST of PH
Mealy FSM A2. Table 8 shows the PROMs’ contents.

Obviously, PH FSM (Figure 16) can be transformed into MPH, MPHY, MPHD, PHY,
and PHD FSMs. To optimize circuits with decoders, the method [50] can be used.

To optimize hardware of PLA-based FSMs, it is possible to use the methods that are
based on transformation of objects [27,83,84]. The following objects are characteristic for
the Mealy FSMs [71]: states, outputs, and collections of outputs. The main idea of this
approach is a representation of some objects as functions of other objects and additional
variables.



Electronics 2021, 10, 1174 17 of 44

Table 7. DST of PH Mealy FSM A2.

sC K(sC) Ih Fh K(Fh) Zh h
s1 000 i1 F1 0000 - 1

i1 F2 0001 z4 2
s2 001 i2 F3 0010 z3 3

i2i3 F4 0011 z3z4 4
i2 i3 F5 0100 z2 5

s3 010 i4 F6 0101 z2z4 6
i4i5 F7 0110 z2z3 7
i4 i5 F8 0111 z2z3z4 8

s4 100 i6 F9 1000 z2 9
i6 F10 1001 z2z4 10

s5 011 i7 F11 1010 z2z3 11
i7i8 F12 1011 z1z3z4 12
i7 i8 F13 1100 z1z2 13

s6 101 1 F14 1101 z1z2z4 14

Table 8. Contents of programmable read-only memories (PROMs) of PH Mealy FSM A2.

Fh K(Fh) o1 o2 o3 o4 o5 D1 D2 D3 h

F1 0000 1 1 0 0 0 0 0 1 1

F2 0001 0 0 1 0 0 0 1 0 2

F3 0010 0 1 0 1 0 0 0 1 3

F4 0011 1 1 0 0 0 0 1 0 4

F5 0100 0 0 0 0 1 1 0 0 5

F6 0101 0 0 1 0 0 1 0 0 6

F7 0110 0 0 1 0 1 0 1 1 7

F8 0111 1 1 0 0 0 1 0 1 8

F9 1000 0 1 0 1 0 0 1 0 9

F10 1001 0 0 0 0 0 0 0 0 10

F11 1010 0 0 1 0 0 0 0 1 11

F12 1011 1 1 0 0 0 0 0 1 12

F13 1100 0 0 1 0 1 1 0 0 13

F14 1101 0 0 0 0 0 0 0 0 14

The transformation of states into outputs leads to PS FSMs (Figure 17a). The transfor-
mation of states into COs leads to PSY FSMs (Figure 17b). The transformation of COs into
states leads to POY FSMs (Figure 17c).



Electronics 2021, 10, 1174 18 of 44

PLAs

PLAs

V

RG

T

O

I

D

PLAs

PLAs

V

RG

T

Z

I

D

PROMs

O

PLAs

PROMs

Z

PROMs

O

I

V

RG

D

a) b) c)

T

Start

Clock

Start

Clock

Start

Clock

Figure 17. Structural diagrams of Mealy FSMs with transformation of states into outputs (a), states
into collections of outputs (b), and collections of outputs into states (c).

As follows from Figure 17a, additional variables vr ∈ V replace inputs ie ∈ I in the
SBF of outputs:

O = O(T, V). (34)

If |V| � L, then the SOPs of (34) are much simpler than SOPs of (6). In PSY FSMs
(Figure 17b), the following SBFs are generated:

V = V(T, I); (35)

Z = Z(T, V). (36)

In the case of POY FSMs (Figure 17c), the following new SBF is implemented:

D = D(V, Z). (37)

As follows from [83], the transformation of objects improves performance as compared
with MPY FSMs. Because of it, they are used in FPGA-based design [21].

The PAL chips have the following specific [64,85]: the AND array is programmable
and OR-array is fixed. the terms of PAL are assigned to macrocells [23,74]. The evolution of
this conception led to complex programmable logic devices (CPLDs) [15,69,86]. There are a
huge number of publications related to PAL- and CPLD-based synthesis [64,73,85,87–91].
We do not discuss these methods in this survey. However, we note that the structural
decomposition is used in CPLD-based FSMs [23].

6. Structural Decomposition in Fpga-Based Fsms
6.1. Basic Methods of Structural Decomposition in Design with Luts and Embs

Field-programmable gate arrays are widely used for implementing circuits of various
digital systems [12,15,69,92]. To implement an FSM circuit, the following internal resources
of FPGA chip can be used: look-up table (LUT) elements, embedded memory blocks
(EMBs), programmable flip-flops, programmable interconnections, input-output blocks,
and block of synchronization. LUTs and flip-flops form configurable logic blocks (CLBs).
The “island-style” architecture is used in the majority of FPGAs [17,93,94].

A LUT is a block having SL inputs and a single output [95–98]. If a Boolean function
depends on up to SL arguments [67], then the corresponding circuit only includes a single
LUT. However, the number of LUT inputs is very limited [95–97]. Due to it, the methods of
functional decomposition are used to implement the FPGA-based FSM circuits [99–103].
As a result, the FSM circuits have a lot of logic levels and a complex systems of intercon-
nections [29]. Such circuits resemble programs that are based on intensive use of “go-to”
operators [104]. Using terminology from programming, we can say that the functional
decomposition produces the “spaghetti-type” LUT-based FSM circuits.



Electronics 2021, 10, 1174 19 of 44

Modern FPGAs include a lot of configurable embedded memory blocks [95,96]. These
CLBs allow for implementing systems of regular functions [28]. If at least a part of the
FSM circuit is implemented using EMBs, then the characteristics of this circuit can be
significantly improved [16]. Because of it, there are a lot of design methods targeting EMB-
based FSMs [16,105–115]. In [28], there is the survey of various methods of EMB-based
FSM design. However, very often, practically all available EMBs are used for implementing
the operational blocks of digital systems. Accordingly, the EMB-based FSM design methods
can only be applied if a designer has some “free” EMBs.

An EMB can be characterized by a pair 〈SA, tF〉, where SA is a number of address
inputs and tF is a number of memory cell outputs. A single EMB can keep a truth table
of an SBF including up to tF Boolean functions depended on up to SA arguments [116].
A pair 〈SA, tF〉 defines a configuration of an EMB with the constant total number of bits
(size of EMB):

V0 = 2SA × tF. (38)

The parameters SA and tF could be defined by a designer [66]. It means that EMBs
are configurable memory blocks [67]. The following configurations exist for modern
EMBs [95,96]: 〈15, 1〉, 〈14, 2〉, . . . , 〈9, 64〉. Accordingly, modern EMBs are very flexible and
can be tuned to meet characteristics of a particular FSM. This explains the existence of a
wide spectrum of EMB-based design methods [16,105–115].

If the condition
2(RS+L)(RS + N) ≤ V0 (39)

holds, then a single EMB implements an FSM circuit [28]. If (39) is violated, then an FSM
circuit could be implemented as: (1) a homogenous network of EMBs or (2) a heterogeneous
network where LUTs and EMBs are used together [16,114].

There are three approaches for implementing combinational parts of CLB-based FSMs.
They are the following: (1) using only LUTs; (2) using only EMBs; and, (3) using the
heterogeneous approach, when both LUTs and EMBs are applied [28].

One of the most crucial steps in the CLB-based design flow is the technology map-
ping [29,117,118]. The outcome of the technology mapping is a network of interconnected
CLBs representing an FSM circuit. This step largely determines the resulting characteristics
of an FSM circuit. These characteristics are strongly interrelated.

A chip area occupied by a CLB-based FSM circuit is mostly determined by the number
of CLBs and the system of their interconnections. Obviously, to reduce the area, it is
necessary to reduce the CLB count in an FSM circuit. As follows from [119], the more LUTs
are included into an FSM circuit, the more power it consumes. Now, “process technology
has scaled considerably . . . with current design activity at 14 and 7 nm. Due to it, inter-
connection delay now dominates logic delay” [18]. As noted in [120], the interconnections
are responsible for the consume up to 70% of power. Accordingly, it is very important to
reduce the amount of interconnections to improve the characteristics of FSM circuits. All of
this can be done using methods of structural decomposition.

As follows from (39), an FSM circuit can be implemented by a single EMB if the
following conditions hold for a configuration 〈SA, tF〉:

SA ≥ RS + L; (40)

tF ≥ RS + N. (41)

As a rule, the modern EMBs are synchronous blocks. Hence, there is no need in an
additional register to keep FSM state codes [28]. Figure 18 shows a trivial EMB-based
circuit of Mealy FSM.



Electronics 2021, 10, 1174 20 of 44

EMB

Start

Clock

O

I

T

Figure 18. A trivial embedded memory block (EMB)-based circuit of Mealy FSM.

To design such a circuit, it is necessary to [28]: (1) execute the state assignment; (2)
construct a DST on the base of an STT; and, (3) create the truth table corresponding to the
DST. This truth table has L + RS columns containing an address of a particular cell. Each
cell has RS + N bits. Transitions from any state sm ∈ S are represented by H(sm) rows of
the truth table [28]:

H(sm) = 2L. (42)

The following parameters can be found for A1 (Table 2): the number of inputs L = 3,
and the number of state variables RS = 2. Accordingly, using (42) gives H(sm) = 8. If
an input ie ∈ I is insignificant for transitions from a state sm ∈ S, then there are the same
values of IMFs and outputs for cells with addresses having either ie = 0 or ie = 1. This rule
is illustrated by Table 9 with the transitions from state s2 from Table 2.

Table 9. Part of truth table for FSM A1.

Address Contents of Cells
q h

T1 T2 i1 i2 i3 o1 o2 o3 o4 o5 D1 D2

0 1 0 0 0 0 0 0 0 1 0 1 9 5
0 1 0 0 1 1 1 0 0 0 1 0 10 4
0 1 0 1 0 0 0 0 0 1 0 1 11 5
0 1 0 1 1 1 1 0 0 0 1 0 12 4
0 1 1 0 0 0 0 0 0 1 0 1 13 5
0 1 1 0 1 1 1 0 0 0 1 0 14 4
0 1 1 1 0 0 0 0 0 1 0 1 15 5
0 1 1 1 1 1 1 0 0 0 1 0 16 4

In Table 9, the number of a cell is shown in the column q. The column h is added to
compare Tables 2 and 9. The even rows of Table 9 correspond to i3 = 1, and the odd rows
correspond to i3 = 0.

The transition from LUTs to EMBs is similar to the transition from gates to large
scale integration circuits. This transition improves all the characteristics of an FSM circuit,
namely, the chip area that is occupied by FSM circuit, the FSM performance and power
consumption. If conditions (40) and (41) are violated, then methods of structural decompo-
sition can be used [21]. In this case, an FSM circuit is represented as a network of EMBs
and LUTs.

The analysis of numerous literature has shown that the following methods of structural
decomposition are used in EMB-based FSM design:

1. The replacement of inputs ie ∈ I by additional variables pg ∈ P leading to MP
FSMs [16,107–113].

2. The maximum encoding of collections of outputs leading to PY FSMs [28].
3. Mixed encoding of outputs leading to PYM FSMs [121].
4. The encoding of product terms leading to PH FSMs [122].



Electronics 2021, 10, 1174 21 of 44

Following the notation of [21], we denote, as LUTer, a block consisting of LUTs and.
as EMBer, a block consisting of EMBs. The structural diagram of MP Mealy FSM is shown
in Figure 19.

EMBer

Start

Clock

O T

LUTerP

I

P

Figure 19. Structural diagram of field-programmable gate array (FPGA)-based MP Mealy FSM.

In MP FSM, the LUTerP implements SBF (23), the EMBer contains a truth table of
SBFs (25) and (26). As follows from Figures 18 and 19, the outputs on ∈ O are synchronized.
This is necessary to stabilize FSM outputs [42]. The MP Mealy FSM can be used if the
following condition holds:

2G+RS(N + RS) ≤ Vo. (43)

Clearly, the MP FSM (Figure 19) uses an idea of the two-level MCU (Figure 4) in an
FPGA environment. The state variables create the address part of microinstructions. The
number of EMBs in EMBer is determined as

nEMB =

⌈
RS + N

tF

⌉
. (44)

To diminish the value of nEMB, the maximum encoding of COs Yq ⊆ O can be used [21].
The replacement of inputs can be used together with this approach. This results in the
MPY Mealy FSM (Figure 20).

EMBer

Start

Clock

Z T

LUTerP

I

P

LUTerO

O

Figure 20. The structural diagram of FPGA-based MPY Mealy FSM.



Electronics 2021, 10, 1174 22 of 44

In MPY FSM, the EMBer implements SBFs (23) and (31). The LUTerO transforms
codes K(Oq) into outputs on ∈ O. To do it, SBF (17) is implemented by LUTerO. Now, the
number of EMBs in EMBer is determined as

nEMB =

⌈
RS + RQ

tF

⌉
. (45)

The value of RQ is determined by (15).
If the condition

RQ ≤ SL (46)

holds, then a single-level circuit of LUTerO includes up to N LUTs. If (46) is violated, then
a mixed encoding of outputs [121] can be used. The idea of this approach is the following.

Let it be Q = 17, RQ = 5, and SL = 4. The analysis of these values shows that the
condition (46) is violated. Let the set of COs include COs Y5 = {o1, o3, o4} and Y8 = {o1, o4}.
If we eliminate o3 ∈ O from Y5, then Y5 ≡ Y8. Now, there is RQ = 4 = SL. The eliminated
outputs form a set OE. The set of outputs is represented as O = OE ∪OL, where OL ∩OE =
∅. This leads to MPYM Mealy FSM (Figure 21).

In MPYM FSM, the outputs on ∈ OE are represented by SBF (26). The outputs on ∈ OL
are represented by (17). The outputs on ∈ OE are represented by one-hot codes, the outputs
on ∈ OL by maximum binary codes. Because of that, this is a mixed encoding of outputs.

EMBer

Start

Clock

Z T

LUTerP

I

P

LUTerO

OL OE

Figure 21. Structural diagram of MPYM Mealy FSM.

In [121], there is proposed a method allowing to create such a partition of the set O.
It allows for eliminating the minimum possible number elements of O to create the set OE.

This approach can be used to diminish the number of CLBs in the circuit of LUTerO.
For example, there is SL = 6 for LUTs of Virtex 7 [96]. If RQ = 6, then the number of LUTs
in the circuit of LUTerO is equal to N. However, the CLB can be organized as two LUTs
having five shared inputs. If the mixed encoding of outputs gives the set OL with RQ = 5,
then the number of LUTs in LUTerO is determined as d|OL|/2e. The closer the values of N
and |OL| are, the greater the saving in the number of CLBs.

Two approaches are possible for implementing EMB-based Mealy FSMs [122]. In both
cases, the binary codes K(Fh) encode the terms Fh ∈ F. These codes have RH bits. The
variables zr ∈ Z are used for encoding of terms, where |Z| = RH . The value of RH is
determined by (32). The system Z = Z(T, I) represents the block of terms [122]. This
system can be implemented as either the network of LUTs (Figure 22a) or the network of
EMBs (Figure 22b).



Electronics 2021, 10, 1174 23 of 44

Both methods should be used. Finally, the method leading to the minimum hardware
should be selected [122].

EMBer

Start

Clock

O T

LUTerP

I

Z

LUTerZ

LUTer

Start

Clock

O T

LUTerP

I

Z

EMBer

a) b)

Figure 22. Structural diagrams of PH Mealy FSM with 〈LUTer, EMBer〉 (a) and 〈EMBer, LUTer〉
(b) organization.

6.2. Structural Decomposition in Lut-Based Design

As mentioned in [12], EMBs are widely used for implementing various blocks of digital
systems. Accordingly, it is quite possible that only LUTs can be used for implementing FSM
circuits. The methods of structural decomposition may be used in LUT-based FSMs [21].
They are used to improve LUT counts (and other characteristics) of LUT-based P Mealy
FSMs (Figure 23).

LUTerD

Start

Clock

OT

LUTerO

I

Figure 23. Structural diagram of look-up table (LUT)-based P Mealy FSM.

In P FSMs, the LUTerD implements SBF (5) and the LUTerO implements SBF (6). Each
function fi ∈ D ∪O is represented by a SOP having NA( fi) literals. In the best case, there
are RS LUTs in the circuit of LUTerD and N LUTs in the circuit of LUTerO. The following
relation determines this case:

NA( fi) ≤ SL (i ∈ {1, . . . , RS + N}). (47)

If (47) is violated, then a P FSM is represented by a multi-level circuit. To improve
LUT count of such circuits, the model of MPY FSM can be used.

This approach is proposed in [123]. It leads to a three-level circuit that is shown in
Figure 24.

Start

Clock O

I
LUTerP LUTerD

P

LUTerZ LUTerO
Z

Figure 24. Structural diagram of LUT-based MPY Mealy FSM.

In MPY FSM, the LUTerP implements system (23). It generates additional variables
pg ∈ P replacing inputs ie ∈ I. The LUTerD generates input memory functions that are
represented by (25). The LUTerZ generates variables zr ∈ Z used for encoding of collections



Electronics 2021, 10, 1174 24 of 44

of outputs. This block implements SBF (31). The LUTerO implements outputs on ∈ O that
are represented by SBF (17).

The method of synthesis of LUT-based MPY FSM includes the following steps [123]:

1. Executing the replacement of inputs.
2. Executing the state assignment optimizing (23).
3. Deriving collections of outputs from the STT.
4. Executing the encoding of COs.
5. Creating the DST of MPY FSM.
6. Deriving SBFs (25) and (31) from the DST.
7. Implementing FSM circuit using particular LUTs.

In [123], the results of experiments conducted to compare the characteristics of various
models of LUT-based FSMs are shown. The standard benchmarks [124] were used for
investigation. These benchmarks are Mealy FSMs; they are represented in KISS2 format.
Table 10 contains the characteristics of these benchmark FSMs.

To conduct experiments [123], the CAD tool Vivado (ver. 2019.1) [125] was used with
the target chip XC7VX690T2FFG1761 (Xilinx Virtex 7) [126]. There is SL = 6 for LUTs of
Virtex 7 family.

Four other methods were compared with MPY FSMs. They were Auto of Vivado, one-
hot of Vivado, JEDI [39,127], and DEMAIN [128]. The benchmarks were divided by five
categories. To do it, the values of RS + L and SL = 6 were used. If RS + L ≤ 6, then bench-
marks belong to category 0; if 6 < RS + L ≤ 12, it is the category 1; if 12 < RS + L ≤ 18,
then it defines the category 2; if 18 < RS + L ≤ 24, then benchmarks belong to category 3;
finally, the relation RS + L > 24, determines category 4.

Table 11 (the LUT counts) and Table 12 (the maximum operating frequency) represent
the results of investigations [123]. As follows from Table 11, MPY-based FSMs have
minimum number of LUTs. As follows from Table 12, MPY-based FSMs are the slowest.
However, this disadvantage is reduced with the increase in the number of category.



Electronics 2021, 10, 1174 25 of 44

Table 10. Characteristics of Mealy FSM benchmarks.

Benchmark L N R + L M/R H

Category 0

bbtas 2 2 6 9/4 24

dk17 2 3 6 16/4 32

dk27 1 2 5 10/4 14

dk512 1 3 6 24/5 15

ex3 2 2 6 14/4 36

ex5 2 2 6 16/4 32

lion 2 1 5 5/3 11

lion9 2 1 6 11/4 25

mc 3 5 6 8/3 10

modulo12 1 1 5 12/4 24

shiftreg 1 1 5 16/4 16

Category 1

bbara 4 2 8 12/4 60

bbsse 7 7 12 26/5 56

beecount 3 4 7 10/4 28

cse 7 7 12 32/5 91

dk14 3 5 8 26/5 56

dk15 3 5 8 17/5 32

dk16 2 3 9 75/7 108

donfile 2 1 7 24/5 96

ex2 2 2 7 25/5 72

ex4 6 9 11 18/5 21

ex6 5 8 9 14/4 34

ex7 2 2 12 17/5 36

keyb 7 7 12 22/5 170

mark1 5 16 10 22/5 22

opus 5 6 10 18/5 22

s27 4 1 8 11/4 34

s386 7 7 12 23/5 64

s8 4 1 8 15/4 20

sse 7 7 12 26/5 56



Electronics 2021, 10, 1174 26 of 44

Table 10. Cont.

Benchmark L N R + L M/R H

Categories 2–4

ex1 9 19 16 80/7 138

kirkman 12 6 18 48/6 370

planet 7 19 14 86/7 115

planet1 7 19 14 86/7 115

pma 8 8 14 49/6 73

s1 8 7 14 54/6 106

s1488 8 19 15 112/7 251

s1494 8 19 15 118/7 250

s1a 8 6 15 86/7 107

s208 11 2 17 37/6 153

styr 9 10 16 67/7 166

tma 7 9 13 63/6 44

sand 11 9 18 88/7 184

s420 19 2 27 137/8 137

s510 19 7 27 172/8 77

s820 18 19 25 78/7 232

s832 18 19 25 76/7 245

Table 11. Experimental results for MPY Mealy FSMs [123] (LUT counts).

Benchmark Auto One-Hot JEDI DEMAIN MPY

Category 0

bbtas 5 5 5 5 8

dk17 5 12 5 6 8

dk27 3 5 4 4 7

dk512 10 10 9 10 12

ex3 9 9 9 9 11

ex5 9 9 9 9 10

lion 2 5 2 2 6

lion9 6 11 5 5 8

mc 4 7 4 5 6

modulo12 7 7 7 7 9

shiftreg 2 6 2 2 4



Electronics 2021, 10, 1174 27 of 44

Table 11. Cont.

Benchmark Auto One-Hot JEDI DEMAIN MPY

Category 1

bbara 17 17 10 9 10

bbsse 33 37 24 26 26

beecount 19 19 14 16 14

cse 40 66 36 38 33

dk14 10 27 10 12 12

dk15 5 16 5 6 6

dk16 15 34 12 14 11

donfile 31 31 22 26 21

ex2 9 9 8 9 8

ex4 15 13 12 13 11

ex6 24 36 22 23 21

ex7 4 5 4 4 6

keyb 43 61 40 42 37

mark1 23 23 20 21 19

opus 28 28 22 26 21

s27 6 18 6 6 6

s386 26 39 22 25 20

s8 9 9 9 9 9

sse 33 37 30 32 26

Categories 2–4

ex1 70 74 53 57 40

kirkman 42 58 39 41 33

planet 131 131 88 94 78

planet1 131 131 88 94 78

pma 94 94 86 91 72

s1 65 99 61 64 54

s1488 124 131 108 112 89

s1494 126 132 110 117 90

s1a 49 81 43 54 38

s208 12 31 10 11 9

styr 93 120 81 88 70

tma 45 39 39 41 30

sand 132 132 114 121 99

s420 10 31 9 10 8

s510 48 48 32 39 22

s820 88 82 68 76 52

s832 80 79 62 70 50

Total 1792 2104 1480 1601 1321

Percentage 135.65% 159.27% 112.04% 121.20% 100%



Electronics 2021, 10, 1174 28 of 44

Table 12. Experimental results for MPY Mealy FSMs [123] (the operating frequency, MHz).

Benchmark Auto One-Hot JEDI DEMAIN MPY

Category 0

bbtas 204.16 204.16 206.12 208.32 194.43

dk17 199.28 167.00 199.39 172.19 147.22

dk27 206.02 201.90 204.18 205.10 181.73

dk512 196.27 196.27 199.75 197.49 175.63

ex3 194.86 194.86 195.76 193.43 174.44

ex5 180.25 180.25 181.16 181.76 162.56

lion 202.43 204.00 202.35 201.32 185.74

lion9 205.30 185.22 206.38 205.86 167.28

mc 196.66 195.47 196.87 192.53 178.02

modulo12 207.00 207.00 207.13 207.37 189.7

shiftreg 262.67 263.57 276.26 276.14 248.79

Category 1

bbara 193.39 193.39 212.21 198.46 183.32

bbsse 157.06 169.12 182.34 178.91 159.24

beecount 166.61 166.61 187.32 184.21 156.72

cse 146.43 163.64 178.12 174.19 153.24

dk14 191.64 172.65 193.85 187.32 162.78

dk15 192.53 185.36 194.87 188.54 175.42

dk16 169.72 174.79 197.13 189.83 164.16

donfile 184.03 184.00 203.65 194.83 174.28

ex2 198.57 198.57 200.14 199.75 188.95

ex4 180.96 177.71 192.83 178.14 168.39

ex6 169.57 163.80 176.59 174.12 156.42

ex7 200.04 200.84 200.60 200.32 191.43

keyb 156.45 143.47 168.43 157.16 136.49

mark1 162.39 162.39 176.18 169.65 153.48

opus 166.20 166.20 178.32 168.79 157.42

s27 198.73 191.50 199.13 198.43 185.15

s386 168.15 173.46 179.15 169.21 164.65

s8 180.02 178.95 181.23 180.39 168.32

sse 157.06 169.12 174.63 169.69 158.14



Electronics 2021, 10, 1174 29 of 44

Table 12. Cont.

Benchmark Auto One-Hot JEDI DEMAIN MPY

Categories 2–4

ex1 150.94 139.76 176.87 186.14 164.32

kirkman 141.38 154.00 156.68 143.76 155.36

planet 132.71 132.71 187.14 185.73 174.68

planet1 132.71 132.71 187.14 185.73 173.29

pma 146.18 146.18 169.83 153.57 156.12

s1 146.41 135.85 157.16 149.17 145.32

s1488 138.50 131.94 157.18 153.12 141.27

s1494 149.39 145.75 164.34 159.42 155.63

s1a 153.37 176.40 169.17 158.12 166.36

s208 174.34 176.46 178.76 172.87 166.42

styr 137.61 129.92 145.64 138.83 118.02

tma 163.88 147.80 164.14 168.19 137.48

sand 115.97 115.97 126.82 120.63 120.07

s420 173.88 176.46 177.25 172.87 186.35

s510 177.65 177.65 198.32 183.18 199.05

s820 152.00 153.16 176.58 166.29 175.69

s832 145.71 153.23 173.78 160.03 174.39

Total 8127.08 8061.22 8718.87 8461.10 7917.10

Percentage 102.65% 101.82% 110.13% 106.87% 100%

6.3. New Methods of Structural Decomposition

In all thw discussed methods, only maximum state codes are used when the value
of RS is determined by (4). In [129–131], there is a method of twofold state assignment
proposed. In this case, any state sm ∈ S has two codes. The code K(sm) determines the
state as an element of the set S. The code C(sm) defines the state as an element of some
partition class.

To use the method [129,130], it is necessary to construct a partition ΠS = {S1, . . . , SK}
of the set of states S. For each class Sk ∈ ΠS, the following condition holds:

Rk + Lk ≤ SL (k = 1, K). (48)

In (48), the symbol Rk denotes the length (the number of bits) of a code C(sm) for states
sm ∈ Sk; the symbol Lk defines the number of inputs ie ∈ I determining the transitions
from states sm ∈ Sk.

Each class Sk ∈ ΠS determines a DSTk with transitions from states sm ∈ Sk. This table
includes inputs from the set Ik ⊆ I, outputs from the set Ok ⊆ O, and IMFs that are equal
to 1 for transitions from states sm ∈ Sk. These IMFs form a set Dk ⊆ D. A DSTk determines
the SBFs

Dk = Dk(τk, Ik); (49)

Ok = Ok(τk, Ik). (50)

The variables τr ∈ τk encode states as elements of the set Sk ⊆ S.
This approach determines PT Mealy FSMs. The logic circuits of PT FSMs include three

levels of logic blocks. Figure 25 showsn the structural diagram of PT FSM.



Electronics 2021, 10, 1174 30 of 44

LUTer1 LUTerK. . .

LUTerTO
Start

Clock

LUTert

T

O

t

1
I

1t K
I

Kt

1O 1D K
O

K
D

Figure 25. Structural diagram of PT Mealy FSM.

In PT Mealy FSM, the LUTerk (k ∈ {1, . . . , K}) implements SBF (49) and (50). The
LUTerTO implements the following SBFs:

D = D(D1, . . . , DK); (51)

O = O(O1, . . . , OK). (52)

The LUTerτ transform state codes K(sm) into state codes C(sm). To do it, the following
SBF is implemented:

τ = τ(T). (53)

The structural diagram (Figure 25) determines a case of the one-hot encoding of out-
puts [130]. In [129], there was a method proposed combining the twofold state assignment
with the maximum encoding of COs. This leads to PTY Mealy FSM, as shown in Figure 26.

In PTY FSM, the SBFs (50) and (52) are replaced by SBFs:

Zk = Zk(τk, Ik); (54)

Z = Z(Z1, . . . , ZK). (55)

LUTer1 LUTerK. . .

LUTerTZ
Start

Clock

LUTert

T

O
t

1
I

1t K
I

Kt

1
Z 1D K

Z
K

D

LUTerO

Z

Figure 26. Structural diagram of PTY Mealy FSM.

Because of (48), each function (49), (50), and (54) are implemented as a single-level
circuit; moreover, each function is implemented by a circuit having exactly one LUT. If
there is

K ≤ SL, (56)

then it is enough a single LUT to implement a circuit for each determined by (52) and (54).
If there is

RS ≤ SL, (57)

then the circuit of the LUTerτ is a single-level one. If the condition (46) holds, then there
are up to N LUTs in the circuit of LUTerO.



Electronics 2021, 10, 1174 31 of 44

In the best case, the conditions (46), (48), (56), and (57) are true. This best case
determines the three-level LUT-based circuits of both PT and PTY Mealy FSMs. Logic
circuits of PTY FSMs consume fewer LUTs than equivalent PY FSMs, as shown in [129].
The experimental results [130] show that the logic circuits of PT FSMs consume fewer LUTs
than this is for the equivalent P Mealy FSMs.

Using the twofold state assignment improves the characteristics of EMB-based FSMs,
as shown in [122]. In [122], this method is used to improve LUT count in PH Mealy FSMs
(Figure 22b). The method is based on finding a partition ΠF = {F1, . . . , Fk} of the set of
terms F. For each class of this partition, the following condition holds:

Rk ≤ SL (k ∈ {1, . . . , K}). (58)

The value of Rk can be found as dlog2Hke, where Hk is a number of elements in the
set Fk.

The binary codes K(Fh) encode the classes Fk ∈ ΠF. These codes have Rc bits, where

Rc = dlog2Ke. (59)

The code of a term Fh ∈ F is represented as

K(Fh) = C(Fk) ∗ C(Fh). (60)

In (60), C(Fh) is a code of a term as an element of the set Fk ⊆ F, ∗ is a sign of
concatenation. To encode terms, the variables zr ∈ Z are used. To use free outputs of EMB,
the set D is represented as DE ∪ DL and the set O is represented as OE ∪OL. The classes
of ΠF are encoded using variables vr ∈ V. Now, the PH FSM is represented, as shown in
Figure 27.

In [122], the results of experiments are shown. The following models were com-
pared: P FSMs (Figure 23), MP FSMs (Figure 19), PH FSMs (Figure 22b), and the pro-
posed approach (Figure 27). Table 13 (LUT counts), Table 14 (the maximum operating
frequency), and Table 15 (the consumed power) show the results of experiments for some
benchmarks [124].

The experiments have been conducted for the benchmarks [124], the evolution board
with chip XC7VX690TFFG1761-2 [126] and CAD tool Vivado [125]. It is enough a single
EMB of Virtex 7 to implement the logic circuits for any from 33 benchmarks [124], as shown
in [122]. A network of LUTs and EMBs is used to implement circuits for other benchmarks.

It is possible to improve the characteristics of LUT-based FSM circuits using the
transformation of objects [21]. For example, there is a structural diagram of PoY Mealy
FSM shown in Figure 28 [132].

LUTer1 LUTerK. . .

LUTerTO
Start

Clock

1D
1O KD KOL L L L

EMB 

T OL

OE

I

DE V

Z

Figure 27. The structural diagram of PH Mealy FSM.



Electronics 2021, 10, 1174 32 of 44

Table 13. Experimental results [122] (LUT counts).

Benchmark P MP PH [122]

ex1 22 19 48 36

kirkman 30 26 27 11

planet 21 16 51 38

planet1 21 16 51 38

pma 28 23 27 14

s1 26 23 24 12

s1488 24 21 52 37

s1494 28 24 50 39

s208 29 23 8 7

s420 38 36 8 7

s510 39 36 22 15

s820 40 34 47 36

s832 41 34 47 35

sand 27 23 29 16

styr 26 20 31 18

Total 440 374 522 359

Percentage 123% 104% 145% 100%

Table 14. Experimental results [122] (the operating frequency, MHz).

Benchmark P MP PH [122]

ex1 141.43 105.78 158.28 212.93

kirkman 125.78 107.81 155.11 174.73

planet 122.01 105.41 124.31 187.95

planet1 122.01 105.41 124.31 187.95

pma 115.41 114.49 127.65 186.22

s1 124.49 117.80 132.85 178.84

s1488 127.80 112.79 131.77 186.37

s1494 122.79 124.92 135.73 181.62

s208 144.92 128.04 144.05 209.36

s420 148.04 112.66 152.65 192.14

s510 122.66 111.42 138.75 192.87

s820 121.42 88.65 133.36 163.18

s832 98.65 115.57 100.53 184.69

sand 135.57 104.68 146.78 178.65

styr 114.68 116.47 115.69 181.22

Total 1887.66 1671.90 2021.82 2798.72

Percentage 67.4% 59.7% 72.2% 100%



Electronics 2021, 10, 1174 33 of 44

Table 15. Experimental results [122] (the consumed power, Watts).

Benchmark P MP PH [122]

ex1 3.560 3.290 3.014 2.918

kirkman 4.922 3.562 2.811 2.476

planet 3.222 3.756 1.727 1.527

planet1 3.222 3.756 1.727 1.527

pma 4.778 4.915 4.257 3.683

s1 3.694 3.813 3.578 3.058

s1488 1.586 2.412 1.449 1.785

s1494 1.730 2.398 1.453 1.302

s208 3.005 3.544 2.574 2.248

s420 1.604 3.384 1.543 1.292

s510 1.883 1.996 1.878 1.682

s820 2.465 2.161 1.756 1.843

s832 2.515 2.504 2.193 1.732

sand 2.579 2.578 2.385 2.017

styr 1.467 1.556 1.307 1.112

Total 42.232 45.625 33.652 30.202

Percentage 139.8% 151% 111.4% 100%

Z

LUTerZV

Start

Clock LUTerT

T

V

LUTerO

O

I

Figure 28. Structural diagram of PoY Mealy FSM.

In PoY FSM, the LUTerZV implements SBFs (35) and

Z = Z(T, I). (61)

The LUTerT generates the functions from the SBF (37) and the LUTerO implements
SBF (17). This approach is used to: (1) improve the operating frequency of multi-level
MPY FSMs and (2) reduce the LUT count as compared with P FSMs if the condition (47) is
violated.

If condition (47) is violated for functions fi ∈ V ∪ Z, then the LUTerZV is represented
by a multi-level circuit. To improve the characteristics of PoY FSMs, the following approach
is proposed in [132].

The set S is divided by classes Sk ∈ ΠS, such that the condition (48) holds for each
class of ΠS. Next, states sm ∈ Sk are encoded by codes C(sm) having the minimum possible
number of bits. The following SBFs should be implemented [132]: (54), (55), (17), (37), and

Vk = Vk(τk, Ik); (62)



Electronics 2021, 10, 1174 34 of 44

V = V(V1, . . . , VK). (63)

This approach leads to PoTY FSMs. The circuit of PoTY FSM includes three levels of
LUTs (Figure 29).

LUTer1 LUTerK. . .

LUTerZV

Start

Clock LUTert

V

O
t

1
I

1t K
I

Kt

1
Z 1V K

Z K
V

LUTerO

Z

Figure 29. The structural diagram of LUT-based PoTY Mealy FSM.

In PoTY FSM, the LUTerk (k ∈ {1, . . . , K}) implements SBFs (54) and (62). The
LUTerZV generates functions zr ∈ Z and vr ∈ V. They are represented by SBFs (55)
and (63). The LUTerO implements SBF (17), the LUTerτ generates functions (37).

There are experimental results in [132] that are obtained using the CAD tool Vivado [125]
and the evolution board with Virtex 7 FPGA chip [126]. The following characteristics have
been compared: the LUT counts (Table 16), maximum operating frequency (Table 17), and
area-time products (Table 18).

As follows from Table 16, the PoY FSMs require fewer LUTs than other investigated
methods. The PoTY FSMs consume more LUTs (8.84%) when compared to PoY FSMs.
However, other FSMs are based on functional decomposition. Their circuits require more
LUTs than for PoTY FSMs. The gain increases along with the growth of the category number.

As follows from Table 17, the PoTY-based FSMs have the highest operating frequency
as compared to other investigated methods. The following can be found from Table 18:
the PoTY-based FSMs produce circuits with better area-time products then it is for other
investigated methods. Starting from average FSMs, PoTY-based circuits have better area-
time products.

Table 16. Experimental results [132] (LUT counts).

Benchmark Auto One-Hot JEDI PoY PoTY

Category 0

bbtas 5 5 5 8 9

dk17 5 12 5 8 10

dk27 3 5 4 7 9

dk512 10 10 9 12 14

ex3 9 9 9 11 14

ex5 9 9 9 10 12

lion 2 5 2 6 8

lion9 6 11 5 8 10

mc 4 7 4 6 8

modulo12 7 7 7 9 11

shiftreg 2 6 2 4 6



Electronics 2021, 10, 1174 35 of 44

Table 16. Cont.

Benchmark Auto One-Hot JEDI PoY PoTY

Category 1

bbara 17 17 10 10 14

bbsse 33 37 24 26 29

beecount 19 19 14 14 16

cse 40 66 36 33 35

dk14 16 27 10 12 14

dk15 15 16 12 8 11

dk16 15 34 12 11 13

donfile 31 31 24 21 24

ex2 9 9 8 8 10

ex4 15 13 12 11 13

ex6 24 36 22 21 23

ex7 4 5 4 6 8

keyb 43 61 40 37 40

mark1 23 23 20 19 21

opus 28 28 22 21 23

s27 6 18 6 6 8

s386 26 39 22 20 22

s8 9 9 9 9 11

sse 33 37 30 26 29

Categories 2–4

ex1 70 74 53 40 44

kirkman 42 58 39 33 35

planet 131 131 88 78 82

planet1 131 131 88 78 82

pma 94 94 86 72 76

s1 65 99 61 54 58

s1488 124 131 108 89 93

s1494 126 132 110 90 94

s1a 49 81 43 38 42

s208 12 31 10 9 11

styr 93 120 81 70 78

tma 45 39 39 30 34

sand 132 132 114 99 103

s420 10 31 9 8 10

s510 48 48 32 22 23

s820 88 82 68 52 56

s832 80 79 62 50 52

Total 1808 2104 1489 1320 1448

Percentage 124.86% 145.30% 102.83% 91.16% 100%



Electronics 2021, 10, 1174 36 of 44

Hence, using the methods of structural decomposition allows for improving charac-
teristics of FPGA-based FSMs. Three-level circuits improve the LUT count and two-level
circuits improve the performance. These methods can be applied together with other
optimization methods used in FSM design [21].

Table 17. Experimental results [132] (the maximum operating frequency, MHz).

Benchmark Auto One-Hot JEDI PoY PoTY

Category 0

bbtas 204.16 204.16 206.12 194.43 201.47

dk17 199.28 167.00 199.39 147.22 172.99

dk27 206.02 201.90 204.18 181.73 190.32

dk512 196.27 196.27 199.75 175.63 187.45

ex3 194.86 194.86 195.76 174.44 187.26

ex5 180.25 180.25 181.16 162.56 162.56

lion 202.43 204.00 202.35 185.74 195.73

lion9 205.30 185.22 206.38 167.28 183.45

mc 196.66 195.47 196.87 178.02 182.95

modulo12 207.00 207.00 207.13 189.70 201.74

shiftreg 262.67 263.57 276.26 248.79 253.72

Category 1

bbara 193.39 193.39 212.21 183.32 210.21

bbsse 157.06 169.12 182.34 159.24 193.43

beecount 166.61 166.61 187.32 156.72 194.47

cse 146.43 163.64 178.12 153.24 182.62

dk14 191.64 172.65 193.85 162.78 201.39

dk15 192.53 185.36 194.87 175.42 206.74

dk16 169.72 174.79 197.13 164.16 199.14

donfile 184.03 184.00 203.65 174.28 206.83

ex2 198.57 198.57 200.14 188.95 196.58

ex4 180.96 177.71 192.83 168.39 196.18

ex6 169.57 163.80 176.59 156.42 187.53

ex7 200.04 200.84 200.60 191.43 204.16

keyb 156.45 143.47 168.43 136.49 178.59

mark1 162.39 162.39 176.18 153.48 182.37

opus 166.20 166.20 178.32 157.42 186.34

s27 198.73 191.50 199.13 185.15 201.26

s386 168.15 173.46 179.15 164.65 192.34

s8 180.02 178.95 181.23 168.32 191.32

sse 157.06 169.12 174.63 158.14 171.18



Electronics 2021, 10, 1174 37 of 44

Table 17. Cont.

Benchmark Auto One-Hot JEDI PoY PoTY

Categories 2–4

ex1 150.94 139.76 176.87 164.32 180.72

kirkman 141.38 154.00 156.68 155.36 184.62

planet 132.71 132.71 187.14 174.68 212.45

planet1 132.71 132.71 187.14 173.29 212.45

pma 146.18 146.18 169.83 156.12 192.43

s1 146.41 135.85 157.16 145.32 145.32

s1488 138.50 131.94 157.18 141.27 182.14

s1494 149.39 145.75 164.34 155.63 186.49

s1a 153.37 176.40 169.17 166.36 188.92

s208 174.34 176.46 178.76 166.42 192.15

styr 137.61 129.92 145.64 118.02 164.52

tma 163.88 147.80 164.14 137.48 182.72

sand 115.97 115.97 126.82 120.07 143.14

s420 173.88 176.46 177.25 186.35 218.62

s510 177.65 177.65 198.32 199.05 221.19

s820 152.00 153.16 176.58 175.69 195.73

s832 145.71 153.23 173.78 174.39 199.18

Total 8127.08 8061.22 8718.87 7873.36 9005.11

Percentage 90.25% 89.52% 96.82% 87.43% 100%

Table 18. Experimental results [132] (area-time products, LUTs ×ns).

Benchmark Auto One-Hot JEDI PoY PoTY

Category 0

bbtas 24.49 24.49 24.26 41.15 44.67

dk17 25.09 71.86 25.08 54.34 57.81

dk27 14.56 24.76 19.59 38.52 47.29

dk512 50.95 50.95 45.06 68.33 74.69

ex3 46.19 46.19 45.97 63.06 74.76

ex5 49.93 49.93 49.68 61.52 73.82

lion 9.88 24.51 9.88 32.30 40.87

lion9 29.23 59.39 24.23 47.82 54.51

mc 20.34 35.81 20.32 33.70 43.73

modulo12 33.82 33.82 33.80 47.44 54.53

shiftreg 7.61 22.76 7.24 16.08 23.65



Electronics 2021, 10, 1174 38 of 44

Table 18. Cont.

Benchmark Auto One-Hot JEDI PoY PoTY

Category 1

bbara 87.91 87.91 47.12 54.55 66.60

bbsse 210.11 218.78 131.62 163.28 149.93

beecount 114.04 114.04 74.74 89.33 82.27

cse 273.17 403.32 202.11 215.35 191.65

dk14 83.49 156.39 51.59 73.72 69.52

dk15 77.91 86.32 61.58 45.60 53.21

dk16 88.38 194.52 60.87 67.01 65.28

donfile 168.45 168.48 117.85 120.50 116.04

ex2 45.32 45.32 39.97 42.34 50.87

ex4 82.89 73.15 62.23 65.32 66.27

ex6 141.53 219.78 124.58 134.25 122.65

ex7 20.00 24.90 19.94 31.34 39.18

keyb 274.85 425.18 237.49 271.08 223.98

mark1 141.63 141.63 113.52 123.79 115.15

opus 168.47 168.47 123.37 133.40 123.43

s27 30.19 93.99 30.13 32.41 39.75

s386 154.62 224.84 122.80 121.47 114.38

s8 49.99 50.29 49.66 53.47 57.50

sse 210.11 218.78 171.79 164.41 169.41

Categories 2–4

ex1 463.76 529.48 299.66 243.43 243.47

kirkman 297.07 376.62 248.91 212.41 189.58

planet 987.11 987.11 470.24 446.53 385.97

planet1 987.11 987.11 470.24 450.11 385.97

pma 643.04 643.04 506.39 461.18 394.95

s1 443.96 728.74 388.14 371.59 399.12

s1488 895.31 992.88 687.11 630.00 510.60

s1494 843.43 905.66 669.34 578.29 504.05

s1a 319.49 459.18 254.18 228.42 222.32

s208 68.83 175.68 55.94 54.08 57.25

styr 675.82 923.65 556.17 593.12 474.11

tma 274.59 263.87 237.60 218.21 186.08

sand 1138.23 1138.23 898.91 824.52 719.58

s420 57.51 175.68 50.78 42.93 45.74

s510 270.19 270.19 161.36 110.52 103.98

s820 578.95 535.39 385.09 295.98 286.11

s832 549.04 515.56 356.77 286.71 261.07

Total 12228.61 14168.64 8844.90 8554.93 7877.31

Percentage 155.24% 179.87% 112.28% 108.60% 100%



Electronics 2021, 10, 1174 39 of 44

7. Conclusions

Since the 1950s, digital systems have increasingly influenced different areas of our
lives. The control units and other sequential blocks are very important parts of digital
systems. Very often, the behaviour of sequential blocks is represented using a model of
finite state machine. During these 70 years, several generations of logic elements that are
used to implement FSM circuits have changed. However, one thing remained unchanged:
regardless of the generation of logic elements, there is always the problem of reducing their
number in the FSM circuit. This problem arises if a single-level FSM circuit with minimum
possible amount of elements cannot be implemented. One of the ways for reducing the
required hardware is the applying various methods of structural decomposition.

These approaches have roots in various methods that are used for optimizing the
size of the control memory of microprogram control units. The following basic methods
of structural decomposition are known: the replacement of FSM inputs, encoding of the
collections of outputs, encoding of product terms corresponding to interstate transitions,
and transformation of objects. Using these methods requires taking the peculiarities of
logic elements into account. Recently, two new methods of structural decomposition have
appeared. These new methods are: (1) the twofold state assignment and (2) the mixed
encoding of FSM outputs. These methods are focused on FPGA-based FSMs.

This orientation is related to the fact that FPGA devices are very often used for
implementing digital systems. These chips include a lot of LUT elements and embedded
memory blocks. It allows implementing very complex digital systems. Embedded memory
blocks are effective tools for implementing FSM circuits. However, it is quite possible that
all available EMBs are used for implementing various blocks of a digital system. In this
case, an FSM circuit is implemented as a network of LUTs. The main specific of LUTs is a
very small number of inputs (for the vast majority of FPGAs the value of SL is less than
7). This feature makes it necessary to use the methods of functional decomposition in the
FPGA-based design. As a rule, this leads to multi-level FSM circuits that are characterized
by the very complex systems of “spaghetti-type” interconnections.

The optimization of the chip area that is occupied by a LUT-based FSM circuit can be
achieved due to applying various methods of structural decomposition. Numerous studies
show that the structural decomposition produces the FSM circuits having better character-
istics than their counterparts based on the functional decomposition. The FSM circuits that
are based on the structural decomposition are characterized by the regular system of inter-
connections and predicted number of logic levels. The same is true for the heterogeneous
implementation of FSM circuits when LUTs and EMBs are used simultaneously.

In this review, we have shown the roots of structural decomposition methods and
their development starting from the 1950s. Our research shows that these methods can be
used for optimizing FSM circuits that were implemented with any logic elements (PROMs,
PLAs, PALs, CPLDs, FPGAs, and custom matrices of ASIC). Now, the majority of digital
systems are implemented using FPGAs and ASICs. It is difficult to imagine what elements
will replace them in the future. However, one thing remains clear: these elements will
also have limits on the number of inputs, outputs, and terms. The results of the research
presented in this article allow us to conclude that the methods of structural decomposition
will be used in the future generations of the logic elements implementing FSM circuits.

Author Contributions: Conceptualization, A.B., L.T. and K.K.; methodology, A.B., L.T. and K.K.; for-
mal analysis, A.B., L.T. and K.K.; writing—original draft preparation, A.B., L.T. and K.K.; supervision,
A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 1174 40 of 44

Abbreviations
The following abbreviations are used in this manuscript:

CLB configurable logic block
COF collection of output functions
CO collection of output
CPLD complex programmable logic device
DST direct structure table
EMB embedded memory block
ESC extended state code
FCO field of compatible outputs
FD functional decomposition
FSM finite state machine
FPGA field-programmable gate array
IMF input memory function
LUT look-up table
PAL programmable array Logic
PLA programmable logic array
PROM programmable read-only memory
ROM read-only memory
SBF systems of Boolean functions
SD structural decomposition
SOP sum-of-products
SRG state register
STT state transition table

References
1. Alur, R. Principles of Cyber-Physical Systems; MIT Press: Cambridge, MA, USA, 2015.
2. Suh, S.C.; Tanik, U.J.; Carbone, J.N.; Eroglu, A. Applied Cyber-Physical Systems; Springer: New York, NY, USA, 2014.
3. Krzywicki, K.; Barkalov, A.; Andrzejewski, G.; Titarenko, L.; Kolopienczyk, M. SoC research and development platform for

distributed embedded systems. Prz. Elektrotech. 2016, 92, 262–265. [CrossRef]
4. Nowosielski, A.; Małecki, K.; Forczmański, P.; Smoliński, A.; Krzywicki, K. Embedded Night-Vision System for Pedestrian

Detection. IEEE Sens. J. 2020, 20, 9293–9304. [CrossRef]
5. Barkalov, A.; Titarenko, L.; Mazurkiewicz, M. Foundations of Embedded Systems; Springer International Publishing: New York, NY,

USA, 2019.
6. Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems: A Cyber-Physical Systems Approach; MIT Press: Cambridge, MA, USA, 2017.
7. Barkalov, A.; Titarenko, L.; Andrzejewski, G.; Krzywicki, K.; Kolopienczyk, M. Fault detection variants of the CloudBus protocol

for IoT distributed embedded systems. Adv. Electr. Comput. Eng. 2017, 17, 3–10. [CrossRef]
8. Zajac, W.; Andrzejewski, G.; Krzywicki, K.; Królikowski, T. Finite State Machine Based Modelling of Discrete Control Algorithm

in LAD Diagram Language With Use of New Generation Engineering Software. Procedia Comput. Sci. 2019, 159, 2560–2569.
[CrossRef]

9. Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things, 3rd ed.;
Springer International Publishing: New York, NY, USA, 2018.

10. De Micheli, G. Synthesis and Optimization of Digital Circuits; McGraw-Hill: Cambridge, MA, USA, 1994.
11. Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification; Springer Science

& Business Media: Berlin/Heidelberg, Germany, 2009.
12. Sklyarov, V.; Skliarova, I.; Barkalov, A.; Titarenko, L. Synthesis and Optimization of FPGA-Based Systems; Lecture Notes in Electrical

Engineering; Springer: Berlin, Germany, 2014; Volume 294.
13. Baranov, S. Logic Synthesis of Control Automata; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
14. El-Maleh, A.H. Finite state machine-based fault tolerance technique with enhanced area and power of synthesised sequential

circuits. IET Comput. Digit. Tech. 2017, 11, 159–164. [CrossRef]
15. Jenkins, J.H. Designing with FPGAs and CPLDs; Prentice Hall: Hoboken, NJ, USA, 1994 .
16. Tiwari, A.; Tomko, K.A. Saving power by mapping finite-state machines into embedded memory blocks in FPGAs. In Proceedings

of the Proceedings Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004;
Volume 2, pp. 916–921.

17. Trimberger, S.M. Field-Programmable Gate Array Technology; Springer Science & Business Media: Berlin, Germany, 2012.
18. Feng, W.; Greene, J.; Mishchenko, A. Improving FPGA Performance with a S44 LUT structure. In Proceedings of the

2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA”18), Monterey, CA, USA,
25–27 February 2018; p. 6. [CrossRef]

http://doi.org/10.15199/48.2016.10.59
http://dx.doi.org/10.1109/JSEN.2020.2986855
http://dx.doi.org/10.4316/AECE.2017.02001
http://dx.doi.org/10.1016/j.procs.2019.09.431
http://dx.doi.org/10.1049/iet-cdt.2016.0085
http://dx.doi.org/10.1145/3174243.3174272


Electronics 2021, 10, 1174 41 of 44

19. Benini, L.; De Micheli, G. State assignment for low power dissipation. IEEE J. Solid-State Circuits 1995, 30, 258–268. [CrossRef]
20. Agrawal, R.; Borowczak, M.; Vemuri, R. A state encoding methodology for Side-Channel security vs. power Trade-Off exploration.

In Proceedings of the 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID), Delhi, India, 5–9 January 2019; pp. 70–75.

21. Barkalov, A.; Titarenko, L.; Mielcarek, K.; Chmielewski, S. Logic Synthesis for FPGA-Based Control Units—Structural Decomposition
in Logic Design; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 636.

22. Barkalov, A.; Titarenko, L. Logic Synthesis for FSM-Based Control Units; Springer: Berlin, Germany, 2009; Volume 53.
23. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for Complex Programmable Logic Devices; Vol. 231 of Lecture Notes in

Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013.
24. Barkalov, A.; Titarenko, L.; Mazurkiewicz, M.; Krzywicki, K. Improving LUT count of FPGA-based sequential blocks. Bull. Pol.

Acad. Sci. Tech. Sci. 2021. [CrossRef]
25. Wilkes, M.V. The best way to design an automatic calculating machine. In Proceedings of the Manchester University Computer

Inaugural Conference, London, UK, 9–12 July 1951; pp. 16–18.
26. Wilkes, M.V.; Stringer, J.B. Micro-programming and the design of the control circuits in an electronic digital computer. In Mathemat-

ical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1953; Volume 49, pp. 230–238.
27. Barkalov, A.; Titarenko, L.; Barkalov, A., Jr. Structural decomposition as a tool for the optimization of an FPGA-based implemen-

tation of a Mealy FSM. Cybern. Syst. Anal. 2012, 48, 313–322. [CrossRef]
28. Barkalov, A.; Titarenko, L.; Kolopienczyk, M.; Mielcarek, K.; Bazydlo, G. Logic Synthesis for FPGA-Based Finite State Machines;

Springer: Chem, Switzerland, 2015; pp. 2–31.
29. Kubica, M.; Opara, A.; Kania, D. Technology Mapping for LUT-Based FPGA; Springer: Cham, Switzerland, 2021.
30. Brayton, R.; Mishchenko, A. ABC: An Academic Industrial-Strength Verification Tool. In Computer Aided Verification; Touili, T.,

Cook, B., Jackson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 24–40.
31. Mealy, G.H. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 1955, 34, 1045–1079. [CrossRef]
32. Moore, E.F. Gedanken-experiments on sequential machines. Autom. Stud. 1956, 34, 129–153.
33. Glushkov, V.M. Synthesis of Digital Automata; Foreign Technology Div Wright-Patterson Afb Ohio: Dayton, OH, USA, 1965.
34. Issa, H.H.; Ahmed, S.M.E. FPGA implementation of floating point based cuckoo search algorithm. IEEE Access 2019,

7, 134434–134447. [CrossRef]
35. Senhadji-Navarro, R.; Garcia-Vargas, I. Methodology for Distributed-ROM-based Implementation of Finite State Machines. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020. [CrossRef]
36. Klimowicz, A. Combined State Splitting and Merging for Implementation of Fast Finite State Machines in FPGA. In International

Conference on Computer Information Systems and Industrial Management; Springer: Cham, Switzerland, 2020; pp. 65–76.
37. Gazi, O.; Arlı, A.Ç. VHDL Implementation of Finite State Machines and Practical Applications. In State Machines Using VHDL;

Springer: Cham, Switzerland, 2021; pp. 55–113.
38. Yan, Z.; Jiang, H.; Li, B.; Yang, M. A Flowchart Based Finite State Machine Design and Implementation Method for FPGA. In

International Conference on Internet of Things as a Service; Springer: Cham, Switzerland, 2020; pp. 295–310.
39. Sentowich, E.; Singh, K.J.; Lavagno, L.; Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; Stephan, P.R.; Brayton, R.K.;

Sangiovanni-Vincentelli, A. SIS: A System for Sequential Circuit Synthesis; University of California: Berkely, CA, USA, 1992.
40. ABC System. Available online: https://people.eecs.berkeley.edu/~alanmi/abc/ (accessed on 6 April 2021).
41. Baranov, S.; Skliarov, V. Digital Devices with Programmable LSIs with Matrix Structure; Radio and Communications; Radio Sviaz:

Moscow, Russia, 1986.
42. Skliarov, V. Synthesis of Automata with Matrix LSIs; Nauka i Technika: Minsk, Belarus, 1984.
43. McCluskey, E.J. Logic Design Principles with Emphasis on Testable Semicustom Circuits; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1986.
44. Agerwala, T. Microprogram optimization: A survey. IEEE Comput. Archit. Lett. 1976, 25, 962–973. [CrossRef]
45. Agrawala, A.K.; Rauscher, T.G. Foundations of Microprogramming; Academic Press: New York, NY, USA, 1976.
46. Chu, Y. Computer Organization and Microprogramming; Prentice Hall: Hoboken, NJ, USA, 1972. [CrossRef]
47. Flynn, M.J.; Rosin, R.F. Microprogramming: An introduction and a viewpoint. IEEE Trans. Comput. 1971, 100, 727–731.
48. Habib, S. Microprogramming and Firmware Engineering Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988.
49. Palagin, A.; Rakitskij, A. Three structures of microprogram control units. Control Mach. Syst. 1984, 3, 40–43.
50. Kravcov, L.; Chernicki, G. Design of Microprogram Control Units; Energy: Leningrad, Russia, 1976. [CrossRef]
51. Dasgupta, S. The organization of microprogram stores. ACM Comput. Surv. (CSUR) 1979, 11, 39–65.
52. Husson, S.S.; Mm, S. Microprogramming: Principles and Practices; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1970.
53. Salisbury, A.B. Microprogrammable Computer Architectures; Elsevier Science Inc.: Amsterdam, The Netherlands, 1976.
54. Baranov, S.; Barkalov, A. Microprogramming: principles, methods, applications. Foreign Radioelectron. 1984, 5, 3–29.
55. Schwartz, S.J. An algorithm for minimizing read only memories for machine control. In Proceedings of the 9th Annual Symposium

on Switching and Automata Theory, Schenedtady, NY, USA, 15–18 October 1968; pp. 28–33. [CrossRef]
56. Tucker, S.G. Microprogram control for System/360. IBM Syst. J. 1967, 6, 222–241.
57. Solovjev, V.; Chyzy, M. Refined CPLD macrocell architecture for the effective FSM implementation. In Proceedings of the 25th

EUROMICRO Conference, Informatics: Theory and Practice for the New Millennium, Milan, Italy, 8–10 September 1999; Volume 1,
pp. 102–109.

http://dx.doi.org/10.1109/4.364440
http://dx.doi.org/10.24425/bpasts.2021.136728
http://dx.doi.org/10.1007/s10559-012-9410-2
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1109/ACCESS.2019.2942205
http://dx.doi.org/10.1109/TCAD.2020.3039913
https://people.eecs.berkeley.edu/~alanmi/abc/
http://dx.doi.org/10.1109/TC.1976.1674537
http://dx.doi.org/10.1109/T-C.1971.223341
http://dx.doi.org/10.1145/356757.356761
http://dx.doi.org/10.1147/sj.64.0222


Electronics 2021, 10, 1174 42 of 44

58. Baranov, S.I. Synthesis of Microprogram Machines; Energiya: Leningrad, Russia, 1979.
59. Navabi, Z. Embedded Core Design with FPGAs; McGraw-Hill Professional: New York, NY, USA, 2006.
60. Achasova, S. Synthesis algorithms for automata with PLAs. Sov. Radio 1987, 3, 22–33.
61. Barkalov, A.; Węgrzyn, M. Design of Control Units with Programmable Logic; University of Zielona Góra Press: Zielona Góra,

Poland, 2006.
62. Baranov, S.; Barkalov, A. Application of programmable logic arrays in digital systems. Foregin Radioelectron. 1982, 6, 67–79.
63. Baranov, S.; Sinjov, V. Programmable logic arrays in digital systems. Foregin Radioelectron. 1976, 1, 78–84.
64. Palagin, A.; Barkalov, A.; Usifov, S.; Szwets, A. Synthesis of microprogram automata with PLIs. Kiev IC NAN 1992, 92, 18–26.
65. Gorman, K. The programmable logic array: A new approach to microprogramming. Electron. Des. News 1973, 18, 68–75.
66. Maxfield, C. The Design Warrior’s Guide to FPGAs: Devices, Tools and Flows; Elsevier: Amsterdam, The Netherlands, 2004.
67. Maxfield, C. FPGAs: Instant Access; Elsevier: Amsterdam, The Netherlands, 2011.
68. Hemel, A. The PLA: A different kind of ROM. Electron. Des. 1976, 24, 28–47. [CrossRef]
69. Brown, S.; Rose, J. Architecture of FPGAs and CPLDs: A tutorial. IEEE Des. Test Comput. 1996, 13, 42–57.
70. Bibilo, P. Synthesis of Combinational PLA Structures for VLSI; Nauka i Tehnika: Minsk, Belarus, 1992.
71. Below, P.L.A.L. Digital Systems Design with Programmable Logic; Addison-Wesley: Boston, MA, USA, 1990.
72. Sasao, T. Memory-Based Logic Synthesis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
73. Solovjov, V. Design of functional blocks of digital systems with programmable logic devices. Bestprint 1996, 7, 40–52.
74. Solovjov, V. Design of Digital Systems Basing on Programmable Logic Integrated Circuits; Hotline–Telecom: Moscow, Russia, 2001.
75. Baranov, S.I. Logic and System Design of Digital Systems; TUT Press: Tallinn, Estonia, 2008. [CrossRef]
76. Baer, J.L.; Koyama, B. On the minimization of the width of the control memory of microprogrammed processors. IEEE Comput.

Archit. Lett. 1979, 28, 310–316.
77. Novikov, S. Synthesis Of Logic-Circuits With Programmable Logic-Arrays. Avtomatika I Vychislitelnaya Tekhnika 1977, 5, 1–4.
78. Skilarov, V. Synthesis of Microprogram Automata with Standard PLAs; Automatic Control and Computer Sciences; Allerton Press Inc.:

New York, NY, USA, 1983; pp. 28–35.
79. Skilarov, V. Using decoders in microprogram automata with matrix structure. Izwiestia Wuzow Priborostrojenie 1982, 12, 27–31.
80. Sorokin, B. A Method of Synthesis of Microprogram Automata on Standard ROMs and PLAs. Avtomatika I Vychislitelnaya Tekhnika

1984, 2, 69–77.
81. Barkalov, A. Multilevel PLA schemes for microprogram automata. Cybern. Syst. Anal. 1995, 31, 489–495.
82. Barkalov, A. Optimization of multilevel circuit of mealy FSM with PLAs. Control Syst. Mach. 1994, 93, 13–16.
83. Barkalov, A.A.; Barkalov, A.A.J. Design of Mealy finite-state machines with the transformation of object codes. Int. J. Appl. Math.

Comput. Sci. 2005, 15, 151–158. [CrossRef]
84. Barkalov, A.; Titarenko, L.; Mielcarek, K.; Wegrzyn, M. Design of EMB-based mealy FSMs with transformation of output functions.

IFAC-PapersOnLine 2015, 48, 197–201.
85. Palagin, A.; Barkalov, A.; Usifov, S.; Starodubov, K.; Svetc, A. Realization of microprogrammed automata on CPLD. Control Syst.

Mach. 1991, 8, 18–22.
86. Zeidman, B. Designing with FPGAS and CPLDS; CRC Press: Boca Raton, FL, USA, 2002. [CrossRef]
87. Kania, D. Two-level logic synthesis on PALs. Electron. Lett. 1999, 35, 879–880.
88. Kania, D. Two-level logic synthesis on PAL-based CPLD and FPGA using decomposition. In Proceedings of the 25th EUROMICRO

Conference, Informatics: Theory and Practice for the New Millennium, Milan, Italy, 8–10 September 1999; Volume 1, pp. 278–281.
[CrossRef]

89. Kania, D. Coding capacity of PAL-based logic blocks included in CPLDs and FPGAs. IFAC Proc. Vol. 2000, 33, 167–172.
90. Kania, D. An Efficient Algorithm for Output Coding in PAL Based CPLDs. Int. J. Eng. 2002, 15, 325–328. [CrossRef]
91. Kania, D.; Milik, A. Logic Synthesis based on decomposition for CPLDs. Microprocess. Microsyst. 2010, 34, 25–38. [CrossRef]
92. Bomar, B.W. Implementation of microprogrammed control in FPGAs. IEEE Trans. Ind. Electron. 2002, 49, 415–422.
93. Kuon, I.; Tessier, R.; Rose, J. FPGA Architecture: Survey and Challenges; Now Publishers Inc.: Delft, The Netherlands, 2008.

[CrossRef]
94. Trimberger, S.M.S. Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology: This Paper Reflects on

How Moore’s Law Has Driven the Design of FPGAs Through Three Epochs: the Age of Invention, the Age of Expansion, and the
Age of Accumulation. IEEE Solid-State Circuits Mag. 2018, 10, 16–29.

95. Altera. Cyclone IV Device Handbook. Available online: http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.
pdf (accessed on 6 April 2021).

96. Xilinx FPGAs. Available online: https://www.xilinx.com/products/silicon-devices/fpga.html (accessed on 6 April 2021).
97. Intel FPGAs and Programmable Devices. Available online: https://www.intel.pl/content/www/pl/pl/products/programmable.

html (accessed on 6 April 2021).
98. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; Wiley-IEEE Press: Hoboken, NJ, USA, 2007.
99. Łuba, T.; Rawski, M.; Jachna, Z. Functional decomposition as a universal method of logic synthesis for digital circuits. In

Proceedings of the 9th International Conference Mixed Design of Integrated Circuits and Systems MixDes, Wroclaw, Poland,
20–22 June 2002; Volume 2, pp. 285–290.

http://dx.doi.org/10.1109/54.500200
http://dx.doi.org/10.1109/TC.1979.1675352
http://dx.doi.org/10.1016/j.ifacol.2015.08.131
http://dx.doi.org/10.1049/el:19990639
http://dx.doi.org/10.1016/S1474-6670(17)35607-0
http://dx.doi.org/10.1016/j.micpro.2009.11.002
http://dx.doi.org/10.1109/41.993275
http://dx.doi.org/10.1109/MSSC.2018.2822862
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.intel.pl/content/www/pl/pl/products/programmable.html
https://www.intel.pl/content/www/pl/pl/products/programmable.html


Electronics 2021, 10, 1174 43 of 44

100. Scholl, C. Functional Decomposition with Applications to FPGA Synthesis; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2013.

101. Nowicka, M.; Luba, T.; Rawski, M. FPGA-based decomposition of boolean functions. Algorithms and implementation. In ACS’98:
Advanced Computer Systems; Instytut Informatyki Politechniki Szczecinskiej: Szczecin, Poland, 1998; pp. 502–509. [CrossRef]

102. Łuba, T. Multi-level logic synthesis based on decomposition. Microprocess. Microsyst. 1994, 18, 429–437. [CrossRef]
103. Machado, L.; Cortadella, J. Support-reducing decomposition for FPGA mapping. IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst. 2018, 39, 213–224.
104. Dahl, O.J.; Dijkstra, E.W.; Hoare, C.A.R. Structured Programming; Academic Press Ltd.: Cambridge, MA, USA, 1972.
105. Kolopienczyk, M.; Barkalov, A.; Titarenko, L. Hardware reduction for RAM-based Moore FSMs. In Proceedings of the 7th

International Conference on Human System Interactions (HSI), Costa da Caparica, Portugal, 16–18 June 2014; pp. 255–260.
[CrossRef]

106. Kołopieńczyk, M.; Titarenko, L.; Barkalov, A. Design of EMB-based Moore FSMs. J. Circuits Syst. Comput. 2017, 26, 1750125.
[CrossRef]

107. Das, N.; Priya, P.A. FPGA implementation of reconfigurable finite state machine with input multiplexing architecture using
hungarian method. Int. J. Reconfigurable Comput. 2018. [CrossRef]

108. Garcia-Vargas, I.; Senhadji-Navarro, R. Finite state machines with input multiplexing: A performance study. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 867–871.

109. Garcia-Vargas, I.; Senhadji-Navarro, R.; Jiménez-Moreno, G.; Civit-Balcells, A.; Guerra-Gutierrez, P. ROM-based finite state
machine implementation in low cost FPGAs. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics,
Vigo, Spain, 4–7 June 2007; pp. 2342–2347. [CrossRef]

110. Senhadji-Navaro, R.; Garcia-Vargas, I. High-speed and area-efficient reconfigurable multiplexer bank for RAM-based finite state
machine implementations. J. Circuits Syst. Comput. 2015, 24, 1550101. [CrossRef]

111. Senhadji-Navarro, R.; Garcia-Vargas, I. High-performance architecture for Binary-Tree-Based finite state machines. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 796–805. [CrossRef]

112. Senhadji-Navarro, R.; Garcia-Vargas, I.; Jimenez-Moreno, G.; Civit-Ballcels, A. ROM-based FSM implementation using input
multiplexing in FPGA devices. Electron. Lett. 2004, 40, 1249–1251.

113. Sklyarov, V. Synthesis and implementation of RAM-based finite state machines in FPGAs. In International Workshop on Field
Programmable Logic and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 718–727. [CrossRef]

114. Rawski, M.; Selvaraj, H.; Łuba, T. An application of functional decomposition in ROM-based FSM implementation in FPGA
devices. J. Syst. Archit. 2005, 51, 424–434.

115. Rawski, M.; Tomaszewicz, P.; Borowik, G.; Łuba, T. 5 logic synthesis method of digital circuits designed for implementation
with embedded memory blocks of FPGAs. In Design of Digital Systems and Devices; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 121–144.

116. Rafla, N.I.; Gauba, I. A reconfigurable pattern matching hardware implementation using on-chip RAM-based FSM. In Proceedings
of the 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 49–52.

117. Mishchenko, A.; Chattarejee, S.; Brayton, R. Improvements to technology mapping for LUT-based FPGAs. IEEE Trans. CAD 2006,
27, 240–253. [CrossRef]

118. Kubica, M.; Kania, D.; Kulisz, J. A technology mapping of fsms based on a graph of excitations and outputs. IEEE Access 2019, 7,
16123–16131.

119. Cong, J.; Yan, K. Synthesis for FPGAs with embedded memory blocks. In Proceedings of the 2000 ACM/SIGDA Eighth
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 10–11 February 2000; pp. 75–82.

120. Barkalov, A.; Bukowiec, A. Synthesis of mealy finite states machines for interpretation of verticalized flow-charts. Theor. Appl.
Inform. 2005, 5, 39–51. [CrossRef]

121. Barkalov, A.; Titarenko, L.; Chmielewski, S. Mixed encoding of collections of output variables for LUT-based mealy FSMs. J.
Circuits Syst. Comput. 2019, 28, 1950131. [CrossRef]

122. Barkalov, A.; Titarenko, L.; Mazurkiewicz, M.; Krzywicki, K. Encoding of terms in EMB-based Mealy FSMs. Appl. Sci. 2020,
10, 2762. [CrossRef]

123. Barkalov, A.; Titarenko, L.; Krzywicki, K. Reducing LUT Count for FPGA-Based Mealy FSMs. Appl. Sci. 2020, 10, 5115.
124. McElvain, K. LGSynth93 Benchmark; Mentor Graphics: Wilsonville, OR, USA, 1993.
125. Vivado Design Suite User Guide: Synthesis. UG901 (v2019.1). Available online: https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf (accessed on 6 April 2021).
126. VC709 Evaluation Board for the Virtex-7 FPGA User Guide; UG887 (v1.6); Xilinx, Inc.: San Jose, CA, USA, 2019.
127. Lin, B. Synthesis of multiple-level logic from symbolic high-level description languages. In Proceedings of the IFIP International

Conference on Very Large Scale Integration, Munich, Germany, 16–18 August 1989.
128. Rawski, M.; Łuba, T.; Jachna, Z.; Tomaszewicz, P. The influence of functional decomposition on modern digital design process.

In Design of Embedded Control Systems; Springer: Boston, MA, USA, 2005; pp. 193–204. [CrossRef]
129. Barkalov, O.; Titarenko, L.; Mielcarek, K. Hardware reduction for LUT-based Mealy FSMs. Int. J. Appl. Math. Comput. Sci. 2018,

28, 595–607.

http://dx.doi.org/10.1016/0141-9331(94)90090-6
http://dx.doi.org/10.1109/TCAD.2018.2878187
http://dx.doi.org/10.1142/S0218126617501250
http://dx.doi.org/10.1155/2018/6831901
http://dx.doi.org/10.1109/TCAD.2015.2406859
http://dx.doi.org/10.1142/S0218126615501017
http://dx.doi.org/10.1109/TCAD.2017.2731678
http://dx.doi.org/10.1049/el:20046007
http://dx.doi.org/10.1016/j.sysarc.2004.07.004
http://dx.doi.org/10.1109/ACCESS.2019.2895206
http://dx.doi.org/10.1142/S0218126619501317
http://dx.doi.org/10.3390/app10082762
http://dx.doi.org/10.3390/app10155115
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
http://dx.doi.org/10.2478/amcs-2018-0046


Electronics 2021, 10, 1174 44 of 44

130. Barkalov, A.; Titarenko, L.; Mielcarek, K. Improving characteristics of LUT-based Mealy FSMs. Int. J. Appl. Math. Comput. Sci.
2020, 30, 745–759. [CrossRef]

131. Barkalov, A.; Titarenko, L.; Krzywicki, K.; Saburova, S. Improving Characteristics of LUT-Based Mealy FSMs with Twofold State
Assignment. Electronics 2021, 10, 901. [CrossRef]

132. Barkalov, A.; Titarenko, L.; Krzywicki, K.; Saburova, S. Improving the Characteristics of Multi-Level LUT-Based Mealy FSMs.
Electronics 2020, 9, 1859.

http://dx.doi.org/10.3390/electronics10080901
http://dx.doi.org/10.3390/electronics9111859

	Introduction
	Implementing Circuits of Finite State Machines
	Roots of Structural Decomposition
	Structural Decomposition in Matrix-Based Fsms
	Structural Decomposition in Spld-Based Fsms
	Structural Decomposition in Fpga-Based Fsms
	Basic Methods of Structural Decomposition in Design with Luts and Embs
	Structural Decomposition in Lut-Based Design
	New Methods of Structural Decomposition

	Conclusions
	References

