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Abstract: The IoT market has grown significantly in recent years, and it is estimated that it will 

continue to do so. For this reason, the need to identify new solutions to ensure security is vital for 

the future development in this field. Inadequate sources of entropy are one of the factors that nega-

tively influence security. In this study, inspired by NIST’s latest entropy estimation recommenda-

tions, we proposed a methodology for analyzing and validating a sensor-based entropy source, 

highlighted by an innovative experiment design. Moreover, the proposed solution is analyzed in 

terms of resistance to multiple types of attacks. Following an analysis of the influence of sensor 

characteristics and settings on the entropy rate, we obtain a maximum entropy value of 0.63 per bit, 

and a throughput of 3.12 Kb/s, even when no motion is applied on the sensors. Our results show 

that a stable and resistant entropy source can be built based on the data obtained from the sensors. 

Our assessment of the proposed entropy source also achieves a higher complexity than previous 

studies, in terms of the variety of approached situations and the types of the performed experiments. 
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1. Introduction 

The IoT market is continuously growing. At this moment, is close to 250 billion US 

dollars, and is estimated to exceed the threshold of 1500 billion in 2025 [1]. More and more 

fields of activity are using different types of IoT sensors to solve specific problems in 

healthcare, industry, automation, smart homes, electrical grids, etc. [2–5]. However, the 

large and diverse number of used sensors brings a significant amount of concern regard-

ing security and privacy [6–8]. These aspects are treated punctually in specialized research 

approaching different techniques and procedures [9–11]. All of them use cryptographic 

techniques, to ensure security features such as confidentiality, authentication, and integ-

rity. All cryptographic methods need reliable and verifiable sources of randomness 

[12,13]. These features are even more difficult to obtain in the case of devices with limited 

resources, such as those available from IoT devices. 

Modern cryptographic mechanisms are available to the public and are analyzed in 

detail. Cryptographic security depends on the ability to have strong and secret keys. A 

key is strong if it is difficult to guess, therefore random. According to NIST [14], a crypto-

graphic key must have at least 112 bits, which means that the effort required to break the 

key involves trying at least 2112 combinations. The cryptographic community allocates 

considerable time and resources for the analysis of the cryptographic strength of the al-

gorithms, or for the identification of specific implementation errors, but, overall, it ne-

glects the analysis of the degree of randomness of the cryptographic keys [15]. A study 

conducted in 2012 [16] to identify weaknesses in TLS showed that 0.75% of the certificates 

contain keys with insufficient entropy. The same analysis conducted in 2016 [17] showed 
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that the number of affected devices has increased over time, even though notifications 

about these vulnerabilities have been made public. 

According to NIST [18], the cryptographic key must be generated using approved 

deterministic random bit generators (DRBGs). Thus, the random sequence generated us-

ing the seed as input can be reconstructed. In this way, the problem is transferred to the 

entropy source, with which DRBG’s seeds are generated. Compared to other types of ap-

plications, much more restrictive conditions are imposed for entropy sources in cryptog-

raphy. Thus, it is mandatory for DRBGs mechanisms to use seeds with at least the number 

of bits of entropy as their rated security strength [19]. In order to ensure the desired en-

tropy level, a detailed analysis of the entropy source is required [20]. For this purpose, it 

is necessary to know in detail the natural source of noise, the access to the raw generated 

data and to have the possibility to analyze its behavior to different environmental factors 

or adversarial attacks. To achieve all these objectives, in the case of IoT devices, is very 

difficult due to their high degree of diversity. 

There are several types of entropy sources which can be divided into two main cate-

gories: software and hardware [15]. Software solutions extract their source of randomness 

from variation of system events and processes. These are especially suitable for devices 

that have an operating system, see [21] for Linux and [22] for Windows. In IoT devices 

these solutions have several disadvantages as they require considerable resources and are 

suitable for machines that are running many processes. Usually, hardware sources of en-

tropy are based on the unstable behavior of electronic circuits [23], or logic gates in the 

case of FPGA devices [24–26]. These solutions offer good entropy rates, but should be 

implemented separately or on existing IoT devices, involving additional resources. Thus, 

some manufacturers have implemented random number generators directly on electronic 

boards used in IoT (Raspberry Pi, Arduino, STM32), but most of these sources of random-

ness are not documented well enough, or they manage to solve the problem only for a 

limited category of devices. 

In this paper, we analyzed and validated a sensor-based entropy source. This ap-

proach, in which random data is collected from sensors, has also been addressed in several 

papers [27–36]. The test methodology used in the analysis of entropy sources is varied and 

often incomplete. Moreover, the use case scenarios were not taken into account. For these 

reasons, the values obtained for entropy are varied and cannot be a benchmark for decid-

ing on the practical implementation. The testing and validation methodology used in our 

study brings improvements regarding the following aspects: entropy estimation, amount 

of data evaluated, use case analysis, entropy source stability, and resistance to side chan-

nels attacks. 

The entropy estimation methodology uses 10 different estimators according to the 

latest NIST recommendation [20]. The lowest value of the entropy obtained from these 

estimates is considered the real one. The current methodology is more complete than the 

ones used in the analyzed studies, which lead us to the conclusion that the values of en-

tropy have been overestimated and unrealistic. In our experiments, all entropy estima-

tions were made using 1,000,000 bits sequences as input. The use of smaller sequences can 

significantly influence the estimated value of entropy, as in the study [28], where differ-

ences of approximately 50% were reported. The sensors’ use case scenarios significantly 

influence the value of entropy, a fact also reported in [36]. Depending on the application 

in which a sensor is used, certain settings are applied. The influence of sampling frequency 

on the entropy value has been analyzed in other works [27,29], but the influence of band-

width and measurement range has not been addressed so far. The analysis of the influence 

of the temperature has been done before in [29], but it was not performed on large data 

sequences. The stability estimate of the entropy source after restarting and for a long time 

period has not been performed so far. In [28], several side channel attacks are presented, 

but none of them were experimentally conducted. In our experiments, we demonstrated 

that the generated string of sensors could not be obtained using an identical platform lo-

cated in the proximity. 
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The sensor-based entropy source, proposed in this paper, is suitable for the use in 

IoT environments. The first aspect that supports this statement is that we used sensors for 

the entropy extraction that are resources already available on the IoT nodes. This solution 

can have a large applicability because the accelerometer, gyroscope, and magnetometer 

are used in a variety of IoT applications, such as fitness and sports, drones for flight sta-

bilization, phones, tablets and cameras for rotation control function, vehicle collisions, 

navigation, orientation, and velocity. To highlight the utility of this method in an IoT en-

vironment, we performed a performance and power analysis on a device used as IoT 

node. 

The remainder of this paper is structured as follows. Section 2 presents state of the 

art of sensor-based entropy sources. Section 3 presents background referring to the NIST 

recommendation for entropy source validation. In Section 4, the architecture of the en-

tropy source and methodology for analyzing and validation of the proposed solution are 

presented. Section 5 provides a detailed description of the experiments performed to val-

idate the entropy source while Section 6 offers some conclusions and future work. 

2. State of the Art 

Many studies address the problem of harvesting entropy from sensor data. The re-

sults obtained are often contradictory or do not address all aspects necessary to implement 

a source of entropy. The differences that appear in the obtained results are largely given 

by the entropy measurement methodology or using the sensors in various scenarios by 

applying different setting. On the other hand, the lack of analysis of the entropy source in 

terms of unpredictability, stability, and protection against adversarial knowledge and 

control does not give total confidence in the source’s ability to provide, all the time and 

under any conditions, the same level of entropy. In this chapter, we have summarized the 

most important works in the field, focusing on aspects that have not been fully addressed 

in terms of validating an entropy source, according to NIST requirements. 

In [27], the data extracted from different types of sensors (vibration, accelerometer, 

magnetic, motion, gas pressure, temperature, humidity), that are found on most boards 

used for IoT nodes, are analyzed. The analysis is performed using three scenarios (normal, 

dynamic and saturation), depending on the specificity of each sensor. To assess the level 

of entropy, the authors used the NIST methodology available at that time-first draft NIST 

Special Publication 800-90B, Jan. 2012. Taking into account that the data are biased, they 

used the estimation methodology used for non i.i.d. (independently and identically dis-

tributed) entropy sources using four estimators (frequency test, the collision test, partial 

collection and compression test), Shannon entropy, and min-entropy. The value of the 

source entropy was considered to be the minimum of the entropy values obtained from 

the estimators. From the analysis, it was found that Shannon entropy and min-entropy 

are even five times higher than those obtained by the other estimators. This can explain 

the differences in entropy values reported by other authors. Although the entropy analy-

sis performed in this study is closest to the NIST methodology, several aspects can influ-

ence the correctness of the results. In this study, four estimators were used compare to the 

final version of the NIST recommendations where ten estimators are used. The amount of 

data collected for each experiment is not the same and that influence the estimated values 

of entropy. In some cases, for various reasons, they cannot collect a sufficient amount of 

data necessary for good estimation of entropy. 

In [28], the authors demonstrated that the type of environment measurements and 

the sensor devices are sources of randomness, especially on the least significant bits ex-

tracted from the measured data. Subsequently, all entropy estimates were made using 1-

bit sequences using min entropy and Shannon entropy. Two kinds of experiment were 

implemented. In the first one, the entropy was calculated using on-board temperature, 

humidity and light sensors in a home-office environment. In the second, the resilience of 

the sensors to the reduction of environmental influence and micro-differences of the elec-

tronics of the sensors were analyzed. The obtained results showed that good values of 
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entropy could be obtained, especially for temperature and light sensors. Moreover, the 

second experiment, in which the sensors were sealed in a black box, revealed that the 

entropy depends on electronic devices with which the measurements are conducted. The 

experiments showed high values for entropy obtained from high inertia sensors such as 

temperature and light when performed on small samples. When a longer-term analysis 

was used, these values decreased by 50%. These values may be even lower if the NIST 

methodology for estimating entropy is used. 

In [29], the possibility of implementing a random number generator using the data 

purchased from an accelerometer is studied. Moreover, the authors present a solution im-

plemented on a RFID tag, a device with limited resources. The authors demonstrate that 

the accelerometer generates entropy even when it is used in stationary mode and that it is 

resistant to a variety of environmental variations and adversarial manipulation. The en-

tropy level is calculated for different types of movements, noise levels, sampling rates, 

temperatures and even the resonant frequency of the sensor. The conclusion is that the 

lowest level of entropy is obtained when the sensor is in stationary state. 

Seong-Min Cho et al. propose [30] a random number generator, specially designed 

for drones, with seed extracted from data sensors used for flight: accelerometer, gyroscope 

and barometer. They used only bits with entropy for seeding the RNG. For that, they iden-

tified the positions of the bits that generate entropy depending on the state of the drone: 

stationary or flight. They also make a comparison between the classic RNGs used for 

drones and the proposed solution. Finally, a power consumption evaluation is performed. 

The method used for randomness analysis of data extracted from sensors is derived from 

the NIST statistical tests [37]. In this approach, a number of 15 tests were used, and a large 

amount of data. In this paper, only seven tests were used, and there is no information 

about the amount of data used for experiments. Moreover, NIST recommends another 

standard [20] to analyze and estimate the entropy sources. 

Papers [31–34] analyze different random number generators that can be developed 

on mobile phones, using random data extracted from on-build sensors. In this paper, the 

amount of entropy sources was not estimated, instead some of the tests implemented in 

NIST statistical tests [37] were deployed for random analysis of sensor data. Because, for 

statistic reasons, the methodology involves the analysis of a very large number of data 

(1000 samples of length 1,000,000 bits, the results obtained are not conclusive. For exam-

ple, in [31,32], a number of three tests were used and, for 75% of tests passed, a sample is 

considered random. In other papers, the tests were conducted after the application of a 

conditioning function [33], or an extractor [32]. 

In papers [35,38,39] are presented different types of random number generators that 

use sensors. Further, in these studies, the value of entropy was not estimated, but NIST 

statistical tests were used to directly evaluate the proposed random number generator. 

Even if the results obtained are satisfactory for RNGs, it is necessary to estimate the en-

tropy they generate to ensure unpredictability for the random material generated. 

All the works presented above tried to prove that enough entropy can be extracted 

from the sensors. Each paper presents a series of experiments performed using different 

sensors, deployed in various conditions. In addition, the evaluation methodologies are 

also heterogeneous and non-standardized. For this reason, the obtained results are also 

often divergent. 

The following table presents a comparison between different methodologies used to 

analyze and validate a source of randomness using five indicators: 

- Entropy estimation. 

- Amount of data used in experiments. 

- Influence of sensors parameters on entropy value. 

- Attack resistance and entropy source validation. 

As can be seen from Table 1, none of the studies analyzed used 10 estimators for 

entropy estimation. The use of a large and varied number of estimators increases the level 
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of confidence in the randomness of the entropy source. This is an important factor, as the 

assessed entropy is the lowest value obtained from these estimators. With one exception 

[33], the experiments performed in these studies did not use an amount of 1,000,000 sam-

ples. 

Table 1. Randomness source analysis and validation methodologies comparison. 

Paper Ana-

lyzed 

Entropy Estimation Methodol-

ogy 
Amount of Data 

Parameters that Influ-

ence Entropy Value 
Attack Resistance 

Entropy Source Vali-

dation 

[27] 4 estimators 
Not sufficient for all experi-

ments 
No No No 

[28] 3 estimators 
Short- and long-term analysis 

(max 300.000 samples) 
No Theoretical analysis Theoretical validation 

[29] 1 Estimator  
Not sufficient for all experi-

ments 
No No Partial 

[30] No  Not mentioned No No No 

[31] No 
Good for microphone and low 

for GPS sensor 
No No No 

[32] No Not specified No No No 

[33] No 1,000,000 samples No No No 

[34] No N/A No No No 

[35] No Not sufficient (200,000 samples) No No No 

[38] No N/A No No No 

[39] No N/A No  No 

Our paper 10 estimators 1,000,000 samples 
Bandwidth 

Measurement Range 
Side channel attack 

Long term analysis 

Restart tests Health 

tests 

3. Background 

In 2018, NIST has released the final version of recommendations for the entropy 

sources used for random bit generation [20]. This publication contains all the information 

needed for constructing an entropy source that can be used as input for a NIST approved 

random bit generator (RBG). Relevant aspects of NIST recommendations for the construc-

tion and validation of entropy sources will be presented below. 

3.1. Definitions 

In order to create a unitary understanding of the concepts described and used in this 

paper, we will further present a series of basic terms and definitions [20]: 

Entropy: A measure of unpredictability, variability or randomness of information 

contained in a message. 

Min-entropy: Min-entropy is a method to measure entropy and it is used in all per-

formed experiments. It quantifies the efficiency of the method of guessing the most likely 

result of the source of entropy. The formula used in our experiment is presented in (1), 

where X is an independent discrete random variable that takes values from the set A = 

{a1,a2, …, ak} with probability pi = Pr(X = ai). 

� = min
�����

(−������) = −���� max
�����

��  (1)

Deterministic random bit generator (DRBG): An RBG that use a deterministic mech-

anism to produces a sequence of bits from a secret initial value called a seed, along with 

other possible inputs. For a DRBG to produce bit sequences with certain entropy value, it 

will use as inputs values extracted from an entropy source. 

Entropy rate: The rate at which an entropy source provides entropy. It is a value be-

tween 0 and 1, and it is computed by dividing the bitstring assessed entropy to the total 

number of bits in the bitstring. 

Noise source: The component of an entropy source that contains the non-determin-

istic, entropy–producing activity–in our case, the data collected from the sensors. 
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Entropy source: The component that produces random bitstrings using a noise 

source, at the output of which health tests, and, optionally, a conditioning component are 

used. 

Conditioning component: A function used to process the raw data from the noise 

source in order to reduce bias and ensure a certain entropy rate. 

Health tests: A test implemented after or during normal operation of an entropy 

source, to determine that the implementation continues to perform as implemented and 

as validated. 

Independent and identically distributed (IID): A sequence of random variables, with 

the same probability distribution, and mutually independent. 

Raw data: The digitized output of a noise source. 

3.2. Entropy Source Rate Estimation and Validation 

The process of validation of an entropy source rate is very important in order to ob-

tain assurance that all relevant requirements are met. For example, the source of entropy 

must be consistent and provide entropy at a rate that is at least equal to a specified value, 

or, if the raw noise-source output is biased, an appropriate conditioning component 

should be included. The main steps of entropy source estimation, which we also followed 

in this paper, are: noise source entropy estimate, entropy estimation after restart, and en-

tropy estimation after the conditioning component. To validate the entropy source rate, a 

stability analysis, an adversarial attack analysis, and a health test should be performed. 

3.2.1. Noise Source Entropy Estimation 

The first step of entropy estimate is made on the raw data collected from the noise 

source. The estimation method depends on the type of data analyzed. These can be of two 

types: IID or non-IID. Data can be considered independent and identically distributed if 

the IID assumption is verified. The IID assumption is tested by applying statistical tests 

that have the role of highlighting the fact that samples are not IID. If no evidence is iden-

tified that these samples are non-IID, then it is assumed that the samples are IID. The 

statistical tests used for IID data are of two types: permutation tests and chi-square tests. 

Permutation testing is a method of testing a statistical hypothesis, in which the result of 

the statistical test applied to a permutation of the original data is compared with the result 

of the statistical test applied to the original data, and not with a standard statistical distri-

bution. The individual statistical tests used for permutation testing are the following [20]: 

excursion test statistic, number of directional runs test, length of directional runs test, 

number of increases and decreases test, number of runs based on the median test, average 

collision test statistic, maximum collision test, statistic periodicity test statistic, covariance 

test statistic, and compression test statistic. Chi-square additional testing is performed to 

test independence and goodness-of-fit as following: test the independence for binary/non-

binary data, test the goodness-of-fit for binary/non-binary data, and longest repeated sub-

string test. 

For entropy sources with IID output, the entropy rate is estimated using the most 

common value estimator. 

For sources with non-IID outputs, the entropy rate is the minimum value obtained 

by the following ten estimators: most common value estimate, collision estimate, markov 

estimate, compression estimate, t-tuple estimate, longest repeated substring estimate, 

multi most common in window prediction estimate, lag prediction estimate, multiMMC 

prediction estimate and LZ78Y prediction estimate. 

All the tests are performed using a sequential dataset of at least 1,000,000 sample 

values extracted from noise source (raw data). 
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3.2.2. Entropy Estimation after Restart 

Many entropy sources generate correlated sequences after restart, thus allowing an 

attacker who has access to the entropy source to predict the sequences generated by it 

with a higher probability than the entropy estimate suggests. For this reason, it is neces-

sary to perform a re-evaluation of the entropy rate, using acquired data after the source is 

restarted. The restart dataset is composed from 1000 consecutive samples collected di-

rectly from the noise source after 1000 restarts obtaining a Mi,j matrix. Using these data, 

two datasets are constructed by concatenating the row and the columns of the matrix M. 

Further, these two data sets are used for entropy re-estimation, using methodology de-

scribed above for the IID and non-IID data, respectively. First, a sanity check is performed 

for these two datasets. This test checks the frequency of the most common value, and, if 

this frequency is significantly greater than the expected value, given the initial entropy 

estimate, the test fails. This means that the entropy source is not suitable for entropy gen-

eration. Second, these two data sets are used for entropy re-estimation using the method-

ology described above, for the IID and non-IID data, respectively. 

3.2.3. Entropy Estimation after Conditioning Component 

In some cases, a conditioning component is used to reduce bias or to increase the 

entropy rate of the entropy source output. To estimate the output entropy, the following 

formulas are used [20]: 

���� = �(���, ����, ��, ���)

� = −����(max(�, �))

� = 2������� + ��

� = � ∗ ��

�� = 2����;    �� =
1 − ��

2��� − 1

� = 2����� + �2�(2�����) ln(2)

� = min (����, ��)

 (2)

where: 

nin = input length; 

nout = output length; 

nw = narrowest interval width; 

Hin = initial (raw source) entropy estimate. 

3.2.4. Health Tests 

Entropy sources that use physical phenomena to generate random data can be af-

fected by various operating conditions or hardware failures. To detect and act against fail-

ures of the noise source, a couple of health tests are required. In [20], two health tests are 

required. The first one, repetition count test, is made to detect rapidly when the source 

output the same value for a specific period. The number of identically outputs that cause 

the health test to fail is calculated by Formula (3), and it depends on the estimated entropy 

of the source and false positive probability. A reasonable value for this probability is α = 

2−20. 

C = 1 + �
−log�α

H
� (3)

The second health test is the adaptive proportion test, and it is designed to detect 

substantial decreases in the value of entropy caused by various external factors. This test 

detects if, within a certain range, the source outputs the same sample much more fre-

quently than expected. The windows size is selected at 1024 for binary sources and 512 for 

the others. The number of repetitions for a sample in the given interval is calculated to 

satisfy the following Equation (4), using the formula from (5). 
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Pr(B ≥ C) ≤ α (4)

where B represents the number of repetitions in given interval and is α = 2−20. 

C = 1 + CRITBINOM(W, 2��, 1 − α) (5)

4. Architecture and Entropy Source Analysis and Validation Approach 

4.1. Entropy Source Construction 

The entropy source that we propose in this paper takes into account the NIST recom-

mendations in [20]. According to them, an entropy source is composed of several manda-

tory elements, and some optional ones. Figure 1 shows the model of the entropy source 

that we implemented. 

 

Figure 1. Entropy source model [20]. 

The main component and the root of security is the noise source. The noise source is 

responsible for the level of randomness of the data at the output of the entropy source. 

The analysis of this component requires a lot of attention because, if it no longer generates 

random sequences, there is no other component to compensate for the lack of entropy. 

The data extracted from the output of this component in digitized form is called raw data. 

Health tests represent a very important and mandatory component for the entropy 

source, because they have the ability to detect in real time any deviation from normal 

operation within its defined parameters. 

Most entropy sources cannot provide unbiased data, or the required level of entropy. 

In these cases, a deterministic function, named the conditional component, can be used. 

Our solution uses a SHA256 function as conditional component, which is one of the cryp-

tographic functions recommended by NIST in [20]. Because of that, is not necessary to re-

estimate entropy after the conditional component. The solution proposed and analyzed in 

this paper uses the following built-in sensors on the STM32-B-L475E-IOT01A acquisition 

board: the LSM6DSL sensor that has a built-in accelerometer and a gyroscope, and the 

LIS3MDL sensor that has a built-in magnetometer. In addition to this platform, in our 

experiments, we used other types of sensors or acquisition boards to demonstrate that 

certain characteristics of these entropy sources are independent of these factors. 

The validation of the entropy source was performed in a no motion use case for sev-

eral reasons. Firstly, the value of the entropy obtained was the lowest in this case, which 

implies that the use of sensors in other use cases will not decrease the level of security. 
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Secondly, in order to obtain source validation, a large amount of data should be extracted, 

and this use case made this objective achievable. 

4.2. Entropy Source Analysis and Validation 

The analysis and validation of the proposed solution accomplished the NIST recom-

mendations for entropy sources specified in [20]. All the theoretical assumptions were 

validated in the experiments presented in Section 5. The flowchart of the entropy source 

analysis and validation is presented in Figure 2. 

 

Figure 2. Entropy source analysis and validation. 

In the first part, the following elements of the noise source that generates noise were 

identified and analyzed: the physical phenomenon, ADC, and the acquisition platform. 

Subsequently, we analyzed the stability of the entropy source over time, at temperature 

variations and the behavior at restart. The number of errors, reported when performing 

health tests, is another analyzed parameter that indicates the stability of the source over 

time. Further, we analyzed the resistance to different types of side-channel attacks. The 

tests ended with an estimate of the availability of the entropy source, and an analysis of 

the performance and power consumed in the case of the three sensors. 

The proposed entropy source is based on the randomness of the data acquired by 

physical sensors. Three types of motion sensors of different models were used for the ex-

periments performed in this study. For more details about sensors used in experiments, 

see Section 5.1. We chose these sensors because they are widely used in different types of 

applications such as fitness and sports, drones, phones, tablets and cameras, vehicle nav-

igation and many others. 
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Analysis of the noise source was made using the model presented in [28] and in Fig-

ure 3. It consists of a sensor, a digital analog converter and a microcontroller (MCU). The 

sensor reacts to a physical phenomenon that it converts into an analog electrical signal. 

The ADC converts the analog signal from the sensor into a digital signal through the sam-

pling process, with a certain frequency. Finally, the MCU takes over the digital signal from 

ADC, and uses it as raw data for the entropy source input. 

 

Figure 3. Noise source model. 

According to the source model presented above, we conducted the noise source anal-

ysis taking into account each component included in noise source model. 

4.2.1. Physical Phenomenon Influence on Entropy 

In this paper, we analyzed three types of motion sensors: accelerometer, gyroscope 

and magnetometer. Separately or together, they are used to detect different types of move-

ment. The same analysis was performed for each sensor with the aim of highlighting the 

random nature of the physical phenomenon detected by the sensors and the influence of 

movement type on entropy rate. 

The physical phenomenon measured by an accelerometer is the accelerating force 

acting on the sensor. The accelerometer can detect two types of acceleration forces: static 

and dynamic. Static forces are those that are applied constantly and are represented by 

frictional or gravitational forces. For this reason, the sensor generates entropy even when 

it is not moved. Dynamic forces are forces that detect the movement of objects. Gyroscopes 

measure the angular velocity of a sensor. They are used to measure the tilt and lateral 

orientation of the object. The operation of the gyroscope is based on the conservation of 

angular momentum, which specifies that an object that rotates around its own axis tends 

to maintain the axis of rotation. Magnetometers are sensors that measure the magnetic 

field or magnetic dipole moment. There are two types of magnetometers: stationary ones, 

used for measuring at fixed points, and mobile ones, used in applications where motion 

detection is desired. Taking into account this aspect, it can be understood why sensors 

with sufficiently high sensitivity can generate entropy. 

4.2.2. Sensor Settings and ADC Influence on Entropy 

Nowadays, the vast majority of sensors have a built-in ADC. Under these conditions, 

it is impossible to analyze separately the influence of the sensor and the ADC in the en-

tropy value. Following the experiments performed, we found that some characteristics of 

the sensor influence the output entropy. The first of them is the measurement range. This 

parameter defines the amplitude of the physical phenomenon that the sensor can meas-

ure. Depending on the application in which the sensor is used, the signals for the internal 

ADC must be scaled. For example, if an accelerometer is used to detect small variations in 

acceleration, the sensor device is configured to its smallest measurement range. In our 

case this value is ±2 g. In this case, if the ADC resolution is on 16 bits, ADC converts the 

acceleration measured by the sensors into numbers from 0 to 65536. However, if the meas-

urement range is set to a higher value, the ADC converts all the small accelerations to the 

minimum value and, in this way, the sensor’s output variety is reduced, resulting a 

smaller value of entropy. In conclusion, a sensor that is not correctly scaled for application 

in which is used can reduce the level of entropy. 

Another characteristic of the sensor that influences the output entropy is the band-

width. Each sensor has a filtering chain that filters the analog signal coming from the me-

chanical parts, before being converted by the ADC. If these filters are activated, the low 
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or high frequencies of the analog signal are cut off (the bandwidth is reduced), thus de-

creasing the level of variation of the output signal, and therefore the level of entropy. 

4.2.3. Acquisition Platform Influence on Entropy 

The acquisition platform, including the communication channels with the sensors, 

the type of microcontroller and other electronic components on the acquisition board, 

could influence the value of the entropy. To determine whether the type of acquisition 

platform influences the value of entropy, in experiment 4, we used different acquisition 

boards with the same sensor. 

4.2.4. Noise Source Stability 

One of the most important features of an entropy source is its stability, which ensures 

that the entropy rate does not change significantly during normal operation. This charac-

teristic is important as the noise source is external and is based on physical phenomena. 

We analyzed the noise source stability performing two experiments. In experiment 5, we 

performed tests to demonstrate the stability of the entropy source by estimating the en-

tropy for a larger number of sequences, and in experiment 6, we considered the case of 

operation at extreme temperatures. 

4.2.5. Attack Resistance 

Sources of entropy must be resistant to any type of attack that could decrease the 

level of entropy. A sensor-based solution is more exposed to all sorts of outside attacks. 

Attacks can be of two types: active and passive. By active attacks is meant that the attacker 

tries to change the external environment of the sensor, in order to decrease the entropy 

level. Passive attacks are those in which the attacker, using an identical acquisition plat-

form, observes the external environment and tries to deduce the random sequence of bits 

generated by the entropy source. The latter can be categorized as a side channel attack. 

In this paper, we have analyzed four types of active attacks that can be performed 

against the source of entropy: temperature, saturation, repetitive movement, and sam-

pling frequency. The entropy value can be influenced by changing the temperature of the 

sensor-operating environment. In Experiment 6, we collected data from sensors at low 

and high temperature. By applying enough motion, the sensors saturation phenomenon 

can appear, with outputs acquiring only maximum values, thus reducing the value of en-

tropy to almost zero. Preventative solutions to these types of attacks are health tests. They 

operate in real time, with minimal resources, and are designed to quickly detect drastic 

decreases of entropy generated by repetitive values output. Another method of attack 

could be to engage the sensors in a repetitive motion, trying to generate repetitive output 

sequences. We tried to simulate this type of attack in Experiment 1, in which we placed 

the sensors on a rotating platform and analyzed the entropy of the data collected under 

these conditions. Another parameter that can be modified, and which could influence the 

entropy, is the sampling frequency. In Experiment 3, we analyzed this possibility. 

As a passive side-channel attack, we chose to analyze the one that is easiest to per-

form. The experiment aims to reproduce the string of random bits using an identical ac-

quisition platform. In Experiment 7, we collected data at the same time from two identical 

acquisition boards, set with the same parameters, placed next to each other in no-motion 

cases. We analyzed the similarity between the two strings using two mathematical tools: 

Pearson correlation coefficient, and Hamming distance, also used in [40–42]. Details about 

how we used these tools are presented in Appendix B. 

 

4.2.6. Restart Tests Analysis 

Many sources of entropy behave differently immediately after starting. For example, 

operating systems such as Linux [21] or Windows [22] use to accumulate entropy different 
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types of events that are not very common when restarting the system. For this reason, it 

is necessary to test the entropy source immediately after restart. According to NIST rec-

ommendations [20], we restarted the entropy source 1000 times, and each time we col-

lected a sequence of 1000 samples. With these data, we construct the restart data, consist-

ing in a matrix with 1000-lines and 1000-columns, where Mi,j represents the ith sample 

from the jth restart. Using this data, we constructed two datasets composed concatenating 

the rows and columns of matrix Mi,j. 

For each row and column from matrix, a sanity check test and entropy estimation are 

performed. The sanity check test verifies the frequency of the most common value in the 

rows and the columns of the matrix M. The frequency must be under a specified value, 

according to the entropy estimate for the test to pass. For each constructed dataset, an 

entropy re-estimation was performed for each sensor analyzed. 

4.2.7. Health Tests Analysis 

Health tests are necessary for the rapid detection of major failures materialized by 

drastically decreasing of entropy rate. Hardware errors or different types of attacks can 

cause these failures. We implemented two types of health tests (repetition count test and 

adaptive proportion test), and we analyzed the number of errors detected with these tests 

for the proposed solution. The repeat count test is applied continuously, and it detects an 

error if the noise source outputs the same value a certain number of times. 

The adaptive proportion test detects when a value repeats with high frequency over 

a period. This test is constructed to detect more subtle failures. The test checks if a gener-

ated sample is identical to the next W-1 samples. W represents window size and is equal 

to 512 in our case, because our source output is not binary. 

5. Experiments and Results 

This chapter describes all the experiments performed to support and validate the 

proposed solution. Evaluation of the entropy source was performed by estimating the en-

tropy level of the noise source under different conditions of sensor use, by analyzing the 

stability of the entropy source and its resistance to different types of attacks. The entropy 

value of the noise source was analyzed considering the model shown in Figure 2. Thus, 

we analyzed the influence of the type of motion in experiment 1, bandwidth and meas-

urement range in experiment 2, sampling frequency in experiment 3, and sensors board 

and acquisition board in experiment 4. The stability of the source was analyzed on a large 

number of samples acquired over a long period of time in experiment 5, and the analysis 

of influence of temperature on entropy value in experiment 6. Side-channel attack re-

sistance was analyzed in experiment 7, and entropy source behavior analysis at restart in 

experiment 8. The availability of the source was analyzed by estimating the number of 

errors reported following the application of health tests in experiment 9. The performance 

analysis and calculation of power consumed are detailed in experiment 10. 

For the experiments, three test platforms containing the three motion sensors (mag-

netometer, accelerometer and gyroscope) from different manufacturers were used. We 

chose to do this for several reasons. Firstly, we showed that the proposed entropy source 

can be made with sensors from different manufacturers. Secondly, we were able to ana-

lyze the level of entropy in the case of several types of movements. Thirdly, we were able 

to analyze the influence of the acquisition board on the entropy value, which is impossible 

to achieve with onboard sensors. Finally, we were able to analyze the influence of band-

width and measurement range settings for different types of sensors. 

Entropy was estimated using the NIST recommendations according to [20] for non-

IID data as follows: 

- A bitstream of 1,000,000 samples. 

- An 8-bit sample representing the least significant bits of raw values extracted from 

the sensors. 
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- A number of 10 estimators were used to evaluate the source entropy and the mini-

mum of all the estimates is taken as the entropy assessment. 

- The NIST recommended software is used as tool for entropy estimation. 

The description and interpretation of the results of the experiments can be found in 

Section 5.2, and the details regarding the configuration of the sensors is presented in Ap-

pendix A. 

5.1. Hardware Platforms Description 

Several acquisition boards and several sensor models of three types were used for 

experimental tests. The test platforms are described below. 

o Platform 1 STM32 

A specialized board for IoT applications was used for data acquisition. The B-L475E-

IOT01A board is developed by STMicroelectronics and uses an ultra-low-power STM32L4 

Series MCUs based on Arm Cortex-M4 core with 1 MB of Flash memory and 128 Kbytes 

of SRAM. The data collected from the sensors were purchased using a laptop and the 

Teraterm application. The following sensors with which the board is equipped were used 

for experiments: 

- 3-axis accelerometer (LSM6DSL) with the following characteristics: measurement 

range between ±2 and ±16 g, sensitivity between 0.061 and 0.488 mg/LSB, ODR be-

tween 1.6 and 6660 Hz, resolution = 16 bits; 

- 3-axis gyroscope (LSM6DSL) with the following characteristics: measurement range 

between ±125 and ±2000 dps, sensitivity between 4.375 and 70 dps/LSB, ODR be-

tween 12.5 and 6660 Hz, resolution = 16 bits; 

- 3-axis magnetometer (LIS3MDL) with the following characteristics: measurement 

range between ±4 and ±16 gauss, sensitivity between 6842 and 1711 LSB/gauss, ODR 

between 0.625 and 80 Hz, resolution = 16 bits; 

o Platform 2 MPU9250 

The second platform used in our experiments uses MPU9250 type sensors and Ar-

duino Uno R3/Atmega 256 as acquisition boards. The Arduino Uno R3 board is equipped 

with an 8 –bit microcontroller (ATMEGA328P-PU) with flash memory reach to 32k bytes. 

The Atmega 256 board is equipped with an 8 –bit microcontroller (ATMEGA256) with 

flash memory to 256k bytes. The data collected from the sensors were purchased using a 

laptop and the Teraterm application. MPU-9250 is a multi-chip module that contains the 

following sensors: 

- 3-axis accelerometer with the following characteristics: measurement range between 

±2 and ±16 g, sensitivity between 0.061 and 0.488 mg/LSB, ODR between 500 and 4000 

Hz, resolution = 16 bits; 

- 3-axis gyroscope with the following characteristics: measurement range between 

±250 and ±2000 dps, sensitivity between 7.63 and 60.97 mdps/LSB, ODR = between 4 

and 8000 Hz, resolution = 16 bits; 

- 3-axis magnetometer with the following characteristics: full scale measurement range 

±48 Gauss, sensitivity =166.66 LSB/gauss, power consumption = 280 uA, resolution = 

14 bits; 

o Platform 3 Mobile phone 

Huawei ANE-LX1 mobile phone was used as the third platform. The data collected 

from the sensors were purchased using the SensorData application downloaded from 

Google Drive. Because with this application we could not change sensor’s parameters, for 

all the experiments we used the default parameters. For the experiments, we used the 

following sensors: 

- 3-axis accelerometer (ST accelerometer-lsm6ds3) with a measurement range of 8 g 

and a resolution of 0.009576807 m/s²; 
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- 3-axis gyroscope with a maxim measurement range of 2000 dps and a resolution of 

1.7453292E-5rad/sec; 

- 3-axis magnetometer (akm mag-akm09918) with a maximum range of 2000.0uT and 

a resolution of 0.0625 uT. 

5.2. Experiment Description 

o Experiment 1: Influence of motion on entropy value 

In this experiment, we analyzed the influence of the physical phenomenon (in this 

case the motion applied to the sensors), on the entropy value. We performed experiments 

on five use cases: car-driving, rotation, running, walking and no moving. In order to high-

light the influence of the motion on the entropy value, we performed experiments on all 

acquisition platforms with the sensors set, as much as possible, with the same parameters. 

The tests for car-driving motion were performed with all platforms. The data was ac-

quired as much as possible when the car was moving, avoiding routes that would not 

involve waiting times at traffic lights or pedestrian crossings. The test for walking and 

running were performed only with platform 3, mobile phone, due to the mobility that this 

platform offers. For walking use case, the phone was held in the pocket and, for running 

use case, it was held in hand to simulate the use of sensors in a bracelet. Rotation use case 

was performed using sensor from platform 2. In this case, the sensors were mounted on a 

servomotor that had a semi-circular rotational motion at an angle of 180 degrees. The no-

motion case tests were performed with platforms 1 and 2. For the third platform, no en-

tropy was gained, because of the sensor settings. 

The results are presented in Figures 4–6. The highest values were obtained for rota-

tion followed by car driving and running. Entropy was also obtained for no-moving case, 

but lower values than other use cases. Of the three sensors used for experiments, the mag-

netometer is the least affected by the type of movement. In the case of MPU9250 and mo-

bile phone platforms, no entropy was obtained because the measurement range is very 

high. For the STM32 platform, the difference between the entropy values obtained in the 

two use cases is relatively small compared to the other two sensors. 

 

Figure 4. Entropy values for STM32 platform for no-moving and car driving use cases. 

 

Figure 5. Entropy values for MPU9250 platform for no-moving, car driving, and rotation use 

cases. 
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Figure 6. Entropy values for mobile phone platform for car-driving, running, and walking use 

cases. 

o Experiment 2: Influence of bandwidth and measurement range on entropy value 

In this experiment, we analyzed the influence of measurement range and bandwidth 

on entropy value. The experiments were performed with the sensors from platform 1 in 

no-motion case. Entropy was estimated for different values of measurement range and 

bandwidth. Different values of bandwidth cannot be set for the magnetometer, so we an-

alyzed the influence of this parameter only for the accelerometer and gyroscope. 

The results are presented in Table 2. Analyzing the data from the table, it can be ob-

served that the entropy decreases directly proportional to the bandwidth and inversely 

proportional to the measurement range. This may be the explanation for the fact that, in 

different papers [27,28], that did not take this into account, diverging results for entropy 

were obtained. 

Table 2. Entropy values for different values of bandwidth and measurement range. 

Accelerometer 

Bandwidth\Measure-

ment Range 
2 g 4 g 8 g 

3330 Hz 0.6438 0.5133 0.4194 

417 Hz 0.4957 0.3831 0.3382 
53 Hz 0.3049 0.2549 0.1904 

Gyroscope 

Bandwidth\Measure-

ment range 
245 dps 500 dps 1000 dps 

1250 Hz 0.3931 0.4337 0.3356 
312 Hz 0.3401 0.2386 0.2118 
22 Hz 0.2094 0.1736 0.1083 

Magnetometer 

Measurement range 4 Gauss  8 Gauss 12 Gauss 

 0.4414 0.4137 0.385 

o Experiment 3: Influence of sampling frequency on entropy value 

In this experiment, we analyzed the influence of sampling frequency on entropy 

value. The experiments were performed with the sensors from platform 1 in no-motion 

case. Entropy was estimated for cases where sensors were set for different values of sam-

pling frequency. In most cases, the sampling frequency is closely related to the bandwidth, 

so we performed the experiments to have the same bandwidth but different sampling 

frequency. Observing the results from Table 3, it can be seen that the entropy value is not 

influenced by the sampling frequency. 
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Table 3. Entropy values different values of sampling frequency. 

Sampling Frequency\Bandwidth  Accelerometer 

6660 Hz/1666 Hz 0.6212 

3330 Hz/1666 Hz 0.6142 

Sampling frequency\Bandwidth Gyroscope 

6660 Hz/173 Hz 0.2278 

3330 Hz/172 Hz 0.2414 

o Experiment 4: Influence of sensors board and acquisition board on entropy value 

In this experiment, we analyzed the influence of acquisition board on entropy value. 

For the experiments, we used two sensors of the same type and different acquisition 

boards: three boards of the same type, Arduino Uno, and one of another type, Atmega256 

equipped with another type of microcontroller. From the results presented in Table 4, it 

can be seen that the acquisition boards do not influence the entropy value. 

Table 4. Sensors’ entropy values using different acquisition boards. 

MPU 9250 Sensors  Accelerometer Gyroscope 

Acquisition boards Sensor 1 Sensor 2 Sensor 1 Sensor 2 

Arduino Uno1 0.4618 0.4626 0.269 0.2708 

Arduino Uno2 0.4660 0.4618 0.2371 0.2400 

Arduino Uno3 0.4681 0.4671 0.2513 0.2586 

Atmega 256 0.4670 0.4571 0.2258 0.2387 

o Experiment 5: Stability of noise source 

In this experiment, we studied the stability of noise source by entropy analysis over 

a long period. For this purpose, we collected data from the sensors on the STM 32 platform 

for 100 sequences for no-motion use case, 10 sequences for car-driving use case. In addi-

tion, from the sensors on the MPU9250 platform, we collected data for 30 sequences in no-

motion use case. Table 5 shows the minimum and maximum values obtained, as well as 

the standard deviation. From Table 5, it can be seen that the entropy values are stable, and 

standard deviations have very small values of order 10−2. 

Table 5. Entropy values statistic for analyzing noise source stability. 

Accelerometer Average Min Max 
Standard De-

viation 

Number of 

Sequences 

STM32 no-motion 0.6499 0.6379 0.6638 0.0058 100 

STM32 car-driving 0.8480 0.8076 0.8878 0.0263 10 

MPU9250 no-motion 0.4732 0.4503 0.5086 0.0139 30 

Gyroscope Average Min Max 
Standard devi-

ation 

Number of 

sequences 

STM32 no-motion 0.4154 0.3427 0.4619 0.0222 100 

STM32 car-driving 0.4295 0.3564 0.5132 0.0475 10 

MPU9250 no-motion 0.2347 0.1840 0.2745 0.0287 30 

Magnetometer Average Min Max 
Standard devi-

ation 

Number of 

sequences 

STM32 no-motion 0.4411 0.4189 0.4658 0.0108 100 

STM32 car-driving 0.5521 0.4964 0.597 0.0268 10 

o Experiment 6: Influence of temperature on entropy value 

In this experiment, we analyzed the stability of noise source in case of operation at 

extreme temperatures. The tests were performed for minimum temperatures around −18 

°C and maximum temperatures around +82 °C. From the results presented in Table 6, it 
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can be seen that, for low temperatures, the entropy values are not different from those 

estimated in the case of operation at usual temperatures (approximately 23 °C) and, in 

case of high temperatures, the values are much higher, due to the noise induced by the 

electronic circuits on the acquisition platform. This theory is validated by the study made 

in paper [43], in which a direct relationship between temperature and MEMs sensors noise 

is presented. 

Table 6. Temperature influence on entropy values. 

Temperature Accelerometer  Gyroscope  Magnetometer  

−18 °C 0.6313 0.4393 0.4500 

+82 °C 0.7596 0.4637 0.6365 

+23 °C 0.6379 0.4153 0.4411 

o Experiment 7: Resistance to side channel of attacks 

In this experiment, we analyzed the possibility to reconstruct the stream generated 

by entropy source, using side channel attacks. The experiments were performed with two 

identical platforms of type 1 in no-motion case. The data were collected at the same time 

from the two identical platforms, set with the same parameters, placed next to each other. 

In this way, we tried to create, as much as possible, similar data acquisition conditions. To 

obtain a better correlation between the two sequences, we introduced a one-second sleep 

between two consecutive output values. The results were analyzed using two mathemat-

ical tools: Pearson correlation coefficient and Hamming distance. For details, see Appen-

dix B. 

In Table 7, the Pearson coefficient values for different entropy values are presented. 

As can be seen from the results, there is no correlation between streams generated by the 

two identical noise sources. 

Table 7. Correlation analysis using Pearson coefficient. 

 Accelerometer 

Measurement range-band-

width-min-entropy 
2 g-3330 Hz-0.64 4 g-417 Hz-0.38 8 g-52 Hz-0.19 

NBs 100 168 337 

x-axis 0.0813 0.0695 0.0520 

y-axis 0.0744 0.0634 0.0509 

z-axis 0.0836 0.0637 0.0649 

 Gyroscope 

Measurement range-band-

width-min-entropy 
500 dps-1250 Hz-0.43 500 dps-312 Hz-0.23 1000 dps-22 Hz-0.10 

NBs 148 269 591 

x-axis 0.0626 0.0582 0.0807 

y-axis 0.0636 0.0607 0.0524 

z-axis 0.0619 0.0593 0.0581 

 Magnetometer 

Measurement range 

min-entropy 
4 Gauss-0.44 8 Gauss-0.41 12 Gauss-0.38 

Nbs 145 155 167 

x-axis 0.0748 0.0812 0.0665 

y-axis 0.0603 0.0616 0.0760 

z-axis 0.0682 0.0672 0.0733 

In Table 8 are presented the Hamming distance values and an average of the devia-

tions (see Formula (3) from Appendix B) for different entropy values. From the results, it 

can be seen that as the entropy value decreases, the probability of guessing the original 

bitstring increases using this method of attack. On the other hand, using the sensors set 

with parameters adapted to the detected signal amplitude, the average deviation is very 

small and, consequently, the probability of guessing the original string is very small too. 
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Table 8. Correlation analysis using Hamming distance. 

 Accelerometer 

Measurement range-band-

width-min-entropy 
2 g-3330 Hz-0.64 4 g-417 Hz-0.38 8 g-52 Hz-0.19 

x-axis 4.05 4.13 4.98 

y-axis 4.01 5.02 3.42 

z-axis 3.95 3.99 3.36 

Deviation average 0.03 0.38 0.73 

 Gyroscope 

Measurement range-band-

width-min-entropy 
500 dps-1250 Hz-0.43  500 dps-312 Hz-0.23  1000 dps-22 Hz -0.10 

x-axis 3.96 3.22 2.44 

y-axis 3.98 3.39 2.28 

z-axis 4.03 2.84 2.66 

Deviation average 0.02 0.84 1.54 

 Magnetometer 

Measurement range-min-en-

tropy 
4 Gauss-0.44 8 Gauss-0.41 12 Gauss-0.38 

x-axis 4.04 3.74 5.10 

y-axis 4.26 3.36 4.10 

z-axis 3.90 3.86 3.77 

Deviation average 0.13 0.34 0.47 

o Experiment 8: Restart tests 

In this experiment, we analyzed the entropy source behavior at restart. To perform 

the test, the acquisition board was restarted 1000 times by interrupting the power supply 

for 15 min to allow the electronic circuits to enter the power-off mode. For the collected 

data, the sanity test-most common value in the rows and columns-was applied. After that, 

the entropy was re-estimated. Sanity test was performed according to NIST recommenda-

tion in [20]. Entropy was estimated for row and column datasets 

After performing the experiment, it was found that the sanity check test was passed 

for each sensor analyzed. As can be seen in Table 9, the re-estimated values of entropy for 

line and row datasets are higher than those of the initial entropy estimation. We can con-

clude that this entropy source model does not behave differently at restart. 

Table 9. Restart datasets entropy estimation. 

Sensor Type Initial Entropy Row Dataset Entropy 
Column Dataset En-

tropy 

Accelerometer 0.63 0.90 0.88 

Gyroscope 0.34 0.47 0.50 

Magnetometer 0.41 0.46 0.43 

o Experiment 9: Health tests 

In this experiment, we estimated the number of entropy source failures when health 

tests are applied. This type of test is important in order to determine if the solution is 

suitable for implementation in real applications. A large number of failures will decrease 

the output speed, putting the source in impossibility to generate the necessary random 

output material. 

In Table 10 the numbers of failures for the two health tests are presented. The calcu-

lations were made to a very large number of collected data (100,000,000 samples). The 

results are calculated for different false positive probability values (α). The C values are 

calculated using NIST recommendations, using Formula (5). In the case of repetition count 

test for α = 2−20, only in the case of the accelerometer, a number of 10 errors were reported. 

This means that the entropy source will generate an error at an interval of 785 days. By 

imposing higher values for false positive probability, health tests will generate errors 

more often, but not at an alarming rate that could significantly affect the operation of the 
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entropy source. In the case of adaptive count test, no failures are obtained, and it can be 

seen that, even for small values of false positive probability, the source of entropy does 

not fall into error. 

Table 10. Health tests results. 

Repetition Count Test 

α C  Accelerometer C  Gyroscope C  Magnetometer 

2−20 4  10  8  0  7  0  

2−15 3  1075  6  2  5  10  

Adaptive Count Test 

α C  Accelerometer C  Gyroscope C  Magnetometer 

2−20 38  0  120  0  89  0  

2−10 30  0  105  0  76  0  

2−5 24  0  94  0  67  0  

o Experiment 10: Performance and power consumption 

In this experiment, we calculated the performance and power consumption for the 

solution proposed. We calculated the performance in Kb/s and the number of bits that can 

be generated using a 1000 mAh battery. The method of estimating the consumed power 

was based on the data acquisition scheme, which includes the consumption of the sensor 

and the consumption of the microcontroller used for the acquisition and for the calcula-

tion of the SHA256 conditioning function. Sensor power consumption was estimated us-

ing the formulas presented in Appendix A. 

Table 11 shows the measurements made for the currents and execution times of the 

various operations and, finally, the throughput and an estimate of the number of bits gen-

erated using a 1000 mAh battery. The current consumed by the sensors is the one esti-

mated by the manufacturer in the datasheet. The MCU current was measured using an 

ammeter connected to the JP5 pin of the acquisition board. Execution times were meas-

ured with the internal timer of the acquisition board. 

As can be seen from Table 11, the highest speed and the highest number of bits gen-

erated with a 1000 mAh battery was obtained for the magnetometer, even if it did not 

have the highest entropy value. MCUs consume much more current than sensors, there-

fore this aspect should be taken into account for optimization. Another important obser-

vation is that the conditional function consumes less current than extracting data from 

sensors, because it has much shorter execution time. 

Table 11. Performance and power analysis. 

 Accelerometer Gyroscope Magnetometer 

IDD_S (mA) 13.81 13.81 13.81 

IDD_MCU_S (mA) 0.16 0.49 0.27 

IDD_MCU_SHA (mA) 14.67 14.67 14.67 

titer (µs) 2560 2560 1540 

tSHA (µs) 160 160 160 

Throughput (Kb/s) 2.88 1.56 3.12 

Nr_bits (Mb)-1000 mAh battery 485.07 303.30 508.30 

5.3. Results Analysis 

The experiments performed in this study had the following purposes: to identify the 

factors that influence the noise source entropy, to analyze entropy source stability, to de-

termine entropy source resistance to side-channel attack and to analyze the performance 

and power consumption for the entropy source under analysis. 

The first four experiments were performed to identify how motion, parameters set-

tings (bandwidth and measurement range), sampling frequency and acquisition board 
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influence the raw data level of entropy. The influence of the movement on the entropy 

was also realized in most of the similar studies. From the results obtained in experiment 

1, presented in Figures 4–6, it can be seen that the intensity of the movement is directly 

proportional to the entropy. For example, repetitive rotational motion obtains the highest 

entropy and the state in which the sensors are not moved the lowest values. Compared to 

other papers in our study we used three different platforms to highlight this aspect. 

From the results presented in Table 2, it can be seen that the value of entropy de-

creases proportionally to bandwidth and increases with measurement range in no-motion 

use case. The influence of these factors is more important as they differ depending on the 

use case. For example, to detect the rotation of the mobile phone, certain filters are acti-

vated, reducing the bandwidth, while for the detection of wider movements a larger meas-

urement range is set. In comparison with similar studies analyzed in Section 2, this is the 

first study that uses this approach. This may also explain why large differences in entropy 

values have been reported in different studies [27,28]. 

In experiment 3, we analyzed the influence of sampling frequencies on entropy. The 

results showed that there is no influence on the value of entropy. In this test case the chal-

lenge was to obtain a different sampling frequency for the same bandwidth. Usually, they 

are correlated and not all sensors allow their differentiated setting. 

In experiment 4, we analyzed the influence of the acquisition platform and the sen-

sors on the entropy value. This issue has been addressed only in [28] but at a theoretical 

level. In the experiment, we used two types of Arduino Uno and Atmega256 boards, 

equipped with different microcontrollers. In the case of the Arduino Uno model, we used 

three different boards. With all these boards we extracted data using two sensors but of 

the same type of MPU9250 sensor. From the results presented in Table 4 it can be seen that 

the constructive differences of the sensors or the type of acquisition platforms do not in-

fluence the entropy value. 

In experiment 5, we performed a long-term analysis on the entropy source values. 

The data were collected for two use cases: car driving and no-motion. As we know, this is 

the first long term analysis of this kind of entropy source. At the same time, we demon-

strate that the proposed entropy source generates the same amount of entropy over time. 

This aspect is also strengthened by the analysis of the effect of temperature on the entropy 

value. 

In experiment 6 we collected data at extreme temperatures between −18 °C and +82 

°C. In addition, the stability of the source was demonstrated in experiments 8 and 9. From 

the analysis of the restart tests presented in Table 9, it can be seen that, after restarting the 

source, the value of entropy does not decrease. Originally interpreting the health tests, we 

found that the probability that the proposed source of entropy would go into error is ex-

tremely low, once every 784 days, and only in the case of the accelerometer. 

In experiment 7, we analyzed the resistance of the proposed solution to the easiest 

and most likely to conduct side channel attack. We collect data from an identical acquisi-

tion platform at the same time. The data were compared using Hamming distance and 

Pearson coefficient. Although this attack was mentioned in [28], this is the first time it was 

experimentally conducted. 

In experiment 10, we analyzed the performance and power consumption of the pro-

posed solution. This kind of analyze was performed before in several papers [28,30,32]. A 

comparison with the results presented in these studies is difficult to achieve because both 

the throughput and power consumption are calculated relatively to full entropy bits gen-

erated and none of the studies presented use our entropy estimation methodology. In 

studies that use min-entropy for entropy estimation, a smaller number of estimators were 

used: four estimators in [27], three estimators in [28], and one estimator in [29]. 

To demonstrate the differences that may occur in entropy estimation, inspired by the 

methods proposed in [44–46], in Table 12 we present the results of statistical tests obtained 

by the 10 estimators used in our work. As can be seen, the estimator used in the most 

researches, i.e., most common value, always shows much higher values than the assessed 
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entropy values. On the other hand, it is necessary to use all 10 estimators because different 

estimators give the assessed entropy value. These aspects may rise doubts on the accuracy 

of the results obtained using other types of entropy estimation methodologies. 

Table 12. Entropy estimation in different cases using 10 estimators. 

Estimator 
Estimated Entropy 

Case 1 

Estimated Entropy 

Case 2 

Estimated Entropy 

Case 3 

Most Common Value 0.82 0.97 0.99 

Collision  0.76 0.86 0.66 

Markov  0.77 0.96 0.91 

Compression  0.12 0.52 0.77 

t-Tuple  0.19 0.79 0.89 

LRS  N/A N/A N/A 

MultiMCW Prediction  0.83 0.98 0.98 

Lag Prediction 0.23 0.29 0.90 

MultiMMC Prediction 0.10 0.93 0.90 

LZ78Y Prediction 0.82 0.97 0.90 

Assessed entropy 0.10 0.29 0.66 

In other papers [30,31–33], the authors chose to evaluate entropy after processing the 

raw data with different algorithms. By doing this, they can obtain overestimated values 

for entropy, depending on the statistical properties of the used algorithms. 

In the following section, we synthetically clarify the value of the entropy estimation 

methodology we used in our experiments. 

6. Conclusions 

In this paper, we propose an approach to analyze and validate a sensor-based source 

of entropy. The used methodology takes into account the latest NIST recommendations 

regarding the evaluation of entropy sources [20]. The theoretical analysis is supported by 

an innovative experimental design that validates the source of entropy submitted for eval-

uation. Moreover, we practically demonstrated that this type of entropy source is resistant 

to side-channel attacks. The fact that the proposed solution uses existing resources, cumu-

lated with an analysis of performance and power consumption on a platform with limited 

resources, qualifies it for use in IoT applications. 

An improperly validated entropy source can create as many security issues as one 

that has not been analyzed at all. On the contrary, it can create a false impression of trust 

that can be exploited by attackers. Our validating methodology aims, by conducting ex-

periments, to remove any doubt regarding the source’s ability to always and constantly 

generate the same amount of entropy, which cannot be influenced or guessed by attackers. 

The first argument that supports this statement is the method to estimate the level of 

entropy generated by the noise source. We demonstrated, in Table 12, that the use of a 

small number of estimators, or only of most common value, can lead to very large over-

estimations of entropy. Looking at the papers we analyzed, this study is the only one that 

uses a complete estimation method that is in accordance with the latest NIST recommen-

dations. 

The second aspect to consider is the one referring to the factors that can modify the 

level of entropy. In our experiments, we tried to identify which these are, and how they 

can influence entropy. This was done for the first time in this study and shows that this 

type of entropy sources is influenced by the way the sensors are used. The performed 

experiments were focused on identifying the influence of sensor characteristics and mode 

of operation on the value of entropy. From the analysis of the results, obtained after esti-

mating the entropy for five different types of motion, it can be deducted that more motion 

applied to the sensors generates higher entropy. This was validated using three different 

types of acquisition platforms, including three different types of sensors, for which the 
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same values of the parameters that influence the entropy were set. Bandwidth and meas-

urement range are other parameters that influence the entropy rate. The bandwidth is 

related to the filtering of the signal extracted by the sensors. Cutting signals of a certain 

frequency reduces the entropy level. The filtering method is specific for each sensor, and 

it must be analyzed separately in each case. The measurement range is usually set accord-

ing to the amplitude of the analyzed motion. Setting this parameter to a much lower or 

higher level than the actual value of the measured signal, can produce output data of sen-

sors of the same value, which causes a substantial decrease in the entropy value. From the 

experiments performed, we did not observe an influence of sampling rate and acquisition 

board on entropy value. Following this analysis, we obtained very good entropy values, 

even if no motion was applied to the sensors. The highest entropy value, specifically 0.63 

per bit, was obtained for the accelerometer. Compared to the values reported in other 

works [27,29], our resulting value is higher, despite the fact that the entropy evaluation 

conditions were more restrictive in our case. 

The second set of experiments was performed to validate the proposed solution. For 

this, we used an original experimental design to demonstrate the noise source stability 

and its resistance to external attacks. Stability tests were performed on a large number of 

data sequences, for two use cases. From the standard deviation values calculated in these 

cases, it can be observed that the entropy values do not vary much. Moreover, from the 

interpretation of the restart tests, it can be deduced that the value of the entropy source 

will not decrease, and the health tests show that the probability of the source entering into 

errors is extremely low. 

Active attacks analysis showed that entropy could not be decreased. Only high tem-

peratures can influence entropy, but only in a positive way. The probability of guessing 

the random output string from the entropy source using an identical acquisition platform 

is very low, as demonstrated by the values of Pearson coefficient and Hamming distance. 

As far as we know, an assessment of such complexity (in terms of situations and the types 

of experiments approached) has not been performed until now on a source of entropy. In 

addition, the correlation is much lower in our case that the one reported in [47], where 

entropy sources in cloud computers are analyzed. 

Finally, a performance and a power consumption analysis were made. The through-

put and the numbers of bits of full entropy extracted from source, powered by a 1000 mAh 

battery, were calculated for all three sensors. The best results were obtained by the mag-

netometer, with a throughput of 3.12 Kb/s and an amount of 508.3 Mb of full entropy. This 

was due to the shorter extraction time of a sample from the sensor compared to the accel-

erometer, which had a higher entropy rate: 0.63 per bit compared to 0.42 of the magne-

tometer. 

Overall, in this paper we demonstrated that using an appropriate approach, high-

lighted by a well-conducted set of experiments, we were able to identify the factors that 

influence a sensor-based entropy source and to validate it in terms of stability and attack 

resistance. The approach and experimental design presented in the paper can provide a 

very good and complete model for the analysis and for the validation of an entropy source 

in order to provide the premises for an implementation in real-life applications. 

As future work, we aim to study the possibility of implementing random number 

generators based on the source model proposed in this paper. 
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Appendix A 

In this Appendix are presented details about the sensor used and data acquisition 

method used in experiments. 

 Experiment 1 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±16 g and bandwidth 104 Hz; 

 gyroscope using: measurement range ±2000 dps and bandwidth 104 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

o Platform 2: 

 accelerometer using: measurement range ±16 g and bandwidth 92 Hz; 

 gyroscope using: measurement range ±2000 dps and bandwidth 92 Hz; 

 magnetometer using: measurement range ±48 Gauss; 

o Platform 3: 

 accelerometer using: measurement range ±8 G; 

 gyroscope using: measurement range ±2000 dps; 

 magnetometer using: measurement range ±48 Gauss. 

- Data acquisition method: 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring; 

 Experiment 2 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2/±4/±8 g and bandwidth 3330/417/53 Hz; 

 gyroscope using: measurement range ±245/±500/±1000 dps and bandwidth 

3330/312/22 Hz; 

 magnetometer using: measurement range ±4/±8/±12 gauss; 

- Data acquisition method: 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring; 

 Experiment 3 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g, sampling frequency 6660 Hz and 3330 

Hz and bandwidth 1666 Hz; 

 gyroscope using: measurement range ±500 dps, sampling frequency 6660 Hz and 

3330 Hz and bandwidth 172 Hz and 173 Hz respectively; 

- Data acquisition method: 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring; 

 Experiment 4 

- Sensors used: 

o Platform 2: 

 accelerometer using: measurement range ±2 g and bandwidth 92 Hz; 

 gyroscope using: measurement range ±500 dps and bandwidth 92 Hz; 

- Data acquisition method: 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring. 
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 Experiment 5 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g and bandwidth 3330 Hz; 

 gyroscope using: measurement range ±500 dps and bandwidth 3330 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

o Platform 2: 

 accelerometer using: measurement range ±2 g and bandwidth 92 Hz; 

 gyroscope using: measurement range ±500 dps and bandwidth 92 Hz; 

- Data acquisition method: 

o 100 sequences for no motion use case and 10 sequences for car-driving with sensors 

from platform 1 STM32; 

o 30 sequences for no motion use case with sensors from platform 2-MPU9250; 

o Each sequence consists of 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring; 

 Experiment 6 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g and bandwidth 3330 Hz; 

 gyroscope using: measurement range ±500 dps and bandwidth 3330 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

- Data acquisition method: 1,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring. 

 Experiment 7 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g/±4 g/±8 g and bandwidth 3330/417/52 

Hz; 

 gyroscope using: measurement range ±500/±1000 dps and bandwidth 3330/417/52 Hz; 

 magnetometer using: measurement range ±4/±8/±12 Gauss; 

- Data acquisition method: 

o Pearson coefficient analysis: 50 samples of length NBs = Nbs/8 bytes for different com-

binations of measurement range-bandwidth. Nbs was calculated using Formula (A2). 

Each byte represents the least significant 8 bits extracted from the sensors data for 

each axis. 

o Hamming distance analysis: 10,000 samples composed of the least significant 8 bits 

extracted from each axe of the sensors data. This dataset was collected at the same 

time from the two identical platforms. 

 Experiment 8 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g and bandwidth 3330 Hz; 

 gyroscope using: measurement range ±500 dps and bandwidth 3330 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

- Data acquisition method: each 1000 samples extracted after 1000 restarts constructing 

a matrix where M[i][j] represents the jth sample from the ith restart. Two datasets are 

constructed using the matrix M: 
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o Row dataset, constructed by concatenating the rows of the matrix M; 

o Column dataset, constructed by concatenating the columns of the matrix M. 

 Experiment 9 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g and bandwidth 3330 Hz; 

 gyroscope using: measurement range ±500 dpsa and bandwidth 3330 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

- Data acquisition method: 100,000,000 samples composed of the least significant 8 bits 

extracted from the sensors data. The samples from the three axes of the sensor were 

concatenated to form the bitstring; 

 Experiment 10 

- Sensors used: 

o Platform 1: 

 accelerometer using: measurement range ±2 g and bandwidth 3330 Hz; 

 gyroscope using: measurement range ±500 dpsa and bandwidth 3330 Hz; 

 magnetometer using: measurement range ±4 Gauss; 

o Formulas used to estimate sensors power consumption 

��� = (����
+ �������

) ×
���

3600

���� = ���������
×

����

3600
���� = ��� + ����

��� = �� ×
2

��

�� = ����� ÷ ���

 (A1)

where: 

- IDE is current consumption mAh needed to extract data from sensors; 

- IDD_S is the sensor’s current consumption (mA) estimated from sensors’ datasheet; 

- IDD_MCU_S is the MCU’s current measured on the MCU while extracting data from sen-

sor (mA); 

- ISHA is current consumption mAh needed to extract data run SHA256 function; 

- IDD_MCU_SHA is the MCU’s current measured on the MCU while running SAH256 func-

tion (mA); 

- ITOT is current consumption mAh needed to extract a full entropy bit from source; 

- tDE is the time required to generate a full entropy bit; 

- tb is the time required to extract a bit from sensor; 

- titer is the time required to extract a set of values corresponding to the three axes (x, y 

and z) 

- Nbe is the number of bits extracted at one iteration = 8-sample size x 3-number of axes; 

- ES is entropy value estimation; 

- tSHA is the time required to run an instance of the SHA256 function. 

Appendix B 

In this appendix, methods used to estimate the resistance of entropy source to side-

channel attacks presented in Experiment 7 are presented. For the analysis, we used two 

mathematical tools: Pearson correlation coefficient and Hamming distance. 

The Pearson correlation coefficient measures the similarity between two strings of 

random numbers. In addition, it is referred to as the bivariate correlation and it measures 

the linear correlation between two variables X and Y. It can take values between +1 and 

−1, representing positive/negative linear correlation. Given two paired data sets {(x1,y1), 
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… (xn,yn)} (in our case the two sequences collected from the two identical platforms), the 

Pearson coefficient can be expressed as follows: 

�� =
∑ (�� − �) ∙ (�� − �)�

���

�∑ (�� − �)��
��� ∙ �∑ (�� − �)��

���

 
(A2)

where n is the sequence size, xi, yi are individual samples and � is the sequence mean. 

In the analysis of the attack, we started from the idea that an attacker tries to guess 

an output of the full entropy source of 256 bits in length, which can be, for example, a 

cryptographic key. According to NIST recommendations for RBG construction [18], to ob-

tain a full entropy source, an amount of entropy that is twice the length of the condition-

ing-function output block is needed. In our case, because we use SHA256, we need an 

amount of 512 bits of entropy. The number of bits needed from the noise source to obtain 

a full entropy source output is related to the entropy estimation of the noise source as 

follow: 

��� = 2 ×
������

��
 (A3)

where ���  is the number of bits needed from the noise source, ������  is the entropy 

source output in bits and �� is the estimated entropy of noise source (in our case the sen-

sors min-entropy values estimated in Experiment 5). 

Taking the above into account, we calculated the Pearson coefficient for the three axes 

of each sensor separately for sequences equal to Nbs. We performed the analysis for several 

values of the entropy of the noise source obtained according to the measurement range 

and bandwidth. Table 8 shows the averages of the values obtained for the Pearson coeffi-

cient for a number of 50 sequences. 

The second statistical tool that we used is Hamming distance (HD) that represents 

the number of bits that an attacker should change to guess the original bitstring. The tests 

were performed for 10.000 samples of 8-bit length. In this case, HD values around 4 ex-

press the fact that the sequences are not correlated. In Table 9, the DH and average devi-

ation (see Formula (3)) values for each axe of each sensor are shown, for several values of 

the entropy of the noise source, obtained according to the measurement range and band-

width. The results are presented as an average of the deviations as in (3) because the pro-

posed entropy source uses concatenated values of the three axes of the sensors. 

������ =
|��� − 4| + ���� − 4� + |��� − 4|

3
 (A4)
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