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Abstract: In recent years, high-performance video recording devices have become ubiquitous, posing
an unprecedented challenge to preserving personal privacy. As a result, privacy-preserving video
systems have been receiving increased attention. In this paper, we present a novel privacy-preserving
video algorithm that uses semantic segmentation to identify regions of interest, which are then
anonymized with an adaptive blurring algorithm. This algorithm addresses two of the most im-
portant shortcomings of existing solutions: it is multi-scale, meaning it can identify and uniformly
anonymize objects of different scales in the same image, and it is class-generic, so it can be used
to anonymize any class of objects of interest. We show experimentally that our algorithm achieves
excellent anonymity while preserving meaning in the visual data processed.

Keywords: privacy-preserving video; video anonymization; computer systems; data privacy

1. Introduction

Video capture devices have become ubiquitous [1]. Modern cities are now densely
covered by advanced surveillance cameras networks [2] and mobile devices with video
capture capabilities are inexpensive and readily available in almost every country in
the world. Even entry-level smartphones have the ability to record videos in Full High
Definition (FHD) resolution (1920 × 1080 pixels) and frame rates up to 30 frames per
second (FPS). In addition, advances in machine learning for visual data understanding
mean that large amounts of recorded video can be processed quickly and easily, and
semantic information extracted automatically. The net result of these advances is that
personal privacy is rapidly shrinking.

Constructing a video anonymization system is a common solution to protect privacy
in systems that deal with visual or audio data [3,4]. The most common approach is to
process a raw video or a set of images by applying multiple privacy filters. These filters
either obfuscate sensitive information or completely replace it with unidentifiable versions
of the that same data [2]. Two general types of algorithms have been developed. The first
are global algorithms that apply a uniform transformation to the whole image, such as
Gaussian blur, superpixelation, downsampling, or wavelet decomposition [5–8]. These
methods are fast and simple to implement but have several downsides. First, because they
are applied uniformly across an image, they do not provide the same level of anonymity to
objects at different distances. For example, if a face is three feet from a camera, it will be
much clearer than a face that is several yards away. In fact, to achieve sufficient anonymity
for very near objects, it may be necessary to blur the image to the point that the most distant
objects become indistinguishable from the background [8]. Second, because they transform
the entire image, they may destroy information required for the task the video is recorded
for. For example, blurring traffic camera data to anonymize faces may reduce license plate
recognition rates.

The second type of algorithm is machine learning based. These algorithms recognize
certain features in images and apply local filters, masks, or transformations [1,9,10]. While
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these algorithms solve some of the problems with global algorithms, they also suffer
from multiple shortcomings. The first is that they are generally specialized to detect and
anonymize a particular aspect of the image, in almost all cases faces. While faces are
definitely an important privacy feature, other aspects of the image may also be sensitive:
license plates, street signs, car make and model, etc. Unfortunately most of these algorithms
do not easily generalize to other classes of objects. For example, face detection and writing
detection models are architecturally very different (see [11] for a good example of a state-
of-the-art text detector). The other major drawback is that these types of algorithms have
problems with multi-scale detection [12]. As a result, while faces in the foreground may
be well recognized, smaller scale faces, such as those in the background, may be missed.
Other related systems can be found in [13–17].

In this paper, we propose a different technique. Rather than developing a detector for
a specific class of objects, we use semantic segmentation, which generates pixel-level class
labels for the entire image, using the DeepLab algorithm [18,19]. This algorithm has several
advantages. First, it can be trained on one or more classes, ranging from text to faces,
allowing the use of a single model to anonymize a wide range of classes, or even multiple
classes at the same time. Second, it is multi-scale, meaning it can correctly classify pixels
belonging to objects for a wide variety of scales. Based on the output from the semantic
segmentation stage, we perform a scale-dependent Gaussian blur on the pixels of interest.
The resulting system gives us an extremely flexible method to effectively anonymize a
wide range of object classes at a wide range of scales, without negatively affecting the
performance in the task for which the video was recorded.

To demonstrate the viability and flexibility of the system, we first show that we can
train DeepLab to label pixels for a wide range of classes and scales. We then consider
two tasks: human action recognition and license plate recognition. For human action
recognition, we anonymize the human subject in the standard UCF101 dataset, and show
that this has only a minimal effect on the action recognition rate. We repeat this at various
scales. We then consider license plate recognition and show that our algorithm allows us to
completely anonymize license plates in the Chinese City Parking Dataset (CCPD).

2. Background and Related Works
2.1. Semantic Image Segmentation

Semantic image segmentation is one of the fundamental topics in the field of computer
vision [18]. The objective of semantic segmentation is to cluster all parts of an image that
belong to the same object [20]. In pixel-level semantic image segmentation, every pixel in
the target image should be classified as belonging to a certain object class and be labeled
accordingly [19]. Generally, this results in an image “mask”, with pixel classes indicated
by the value of the corresponding pixel in the mask (see Figure 1). Different from object
detection, semantic image segmentation does not distinguish different instances of the
same class of objects [21].

Figure 1. An example of semantic image segmentation taken from the Pascal Visual Object Class
dataset. The image on the right is a mask, where each pixel is numbered according to the image class.
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Up until five years ago, traditional image segmentation algorithms heavily relying
on domain knowledge (i.e., that did not apply neural networks) were regarded as the
mainstream approach to computer vision tasks by the scientific community [20]. In these
traditional approaches, a fundamental part of the process was choosing the features. Pixel
colors, histograms of oriented gradients (HOG), scale-invariant feature transformations
(SIFT), bag-of-visual-words (BOV), poselets, and textons were among the most frequently
chosen features [20]. Picking several features for each pixel in high-resolution images leads
to high computational loads in the model training process. Therefore, pre-processing meth-
ods of dimensionality reduction, such as image down-sampling and principal component
analysis (PCA), were often used prior to semantic image segmentation [22].

In recent years, researchers have made numerous attempts to use deep-learning
techniques in training of semantic image segmentation systems. The fundamental idea
is to handle a trained neural network as a convolution and apply it on the input pixel
data, thus efficiently implementing the sliding window process [20]. Published papers
(e.g., [23,24]) show that the use of deep-learning techniques enhance many features of
semantic image segmentation models. Moreover, these new deep-learning based semantic
segmentation models have significant advantages on segmentation accuracy and efficiency
over models trained with traditional approaches [18,24]. Semantic segmentation with deep
neural networks is a well-studied topic. An excellent survey of these methods can be
found in [25]. Some of the more recent methods include: MobileNetv3 [26], SVCNet [27],
CFNet [28], and HFCNet [29].

2.2. DeepLab

In this project, we utilize DeepLab to implement the analyzer component. DeepLab is a
deep-learning based semantic image segmentation model developed by Google, delivering
high performance on most commonly used computer vision testing datasets, such as
PASCAL VOC 2012 and Cityscapes [19].

DeepLab combines networks trained for image classification with the “atrous convo-
lution”, atrous spatial pyramid pooling (ASPP), Deep Convolutional Neural Networks
(DCNN), and fully-connected Conditional Random Fields (CRF). Atrous convolutions en-
able this model to explicitly control the resolution at which feature responses are computed
with DCNNs and allows the model to incorporate a larger context without an increase in
computational requirements. It is also notable that the model has the capacity to provide
robust segmentation features at multiple scales by making use of ASPP [30]. Incoming
convolutional feature layers can be probed by ASPP with multi-sampling-rates filters and
effective fields-of-views. Finally, DeepLab achieves high accuracy in localizing entities by
combining methods from DCNNs and probabilistic graphical models, to which a fully-
connected CRF is applied to eradicate any loss of localization accuracy [23]. Thanks to all
these techniques, DeepLab can produce semantic predictions with a pixel-level accuracy
and detailed segmentation maps along objects’ boundaries. An illustration of the DeepLab
network is shown in Figure 2.

As some of the components of DeepLab are complex compared to other DNNs, we
review how these components work.

• Atrous Convolutions are a type of convolution that introduces a new parameter called
the “dilation rate”. While normal convolutional filters map each filter coefficient onto
adjacent pixels, atrous convolutions allow for spacing between kernel values. For
example, a 3 × 3 kernel with a dilation rate of 2 will convolve each filter weight with
every other pixel (in a checkerboard pattern), effectively turning it into a 5 × 5 filter
while maintaining the 3 × 3 filter computational cost.

• Atrous Spatial Pyramid Pooling (ASPP) uses multiple atrous convolutions, each with
different dilation rates, to capture image information at different scales.

• Fully Connected Conditional Random Fields (CRF) are used to smooth segmentation
maps as a post-processing step. These models have two terms. The first one corre-
sponds to the softmax probability of the pixel class assigned to each pixel. The second
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is a “penalty term” that penalizes pixels that are close together but have different
labels. Labels are assigned by finding the maximal probability label assignments
under this model.

Input

Image
Atrous Conv

Image 
Pooling

3 × 3 Conv
Rate 18

3 × 3 Conv
Rate 12

3 × 3 Conv
Rate 6

1 × 1 Conv

1 × 1 Conv

1 × 1 Conv Concat
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4×

Upsample
Prediction

Encoder

Decoder

Figure 2. A high-level illustration of DeepLabv3+. The general structure is an atrous convolution,
followed by atrous pyramid pooling, with results from both layers concatenated and both used as
inputs to the final layers.

Several upgraded models of DeepLab have been developed and open-sourced by
Google since the its first release. The specific version we chose for this project is DeepLabv3+,
released in February 2018, and the latest at the time of the experiments. DeepLabv3+’s
new features include a new encode–decoder structure, the module Xception, and atrous
separable convolutions. By using the earlier versions of DeepLab for the encoder module
and adding an effective decoder module to refine object boundaries [31], the model can
achieve good performance in capturing sharp object boundaries. Additionally, the use of
the Xception model, which has shown promising image classification and object detection
results [24], allows the new model to be faster and have a better accuracy. The effectiveness
of DeepLabv3+ is demonstrated by its accuracy of 89.0% and 82.1% on PASCAL VOC 2012
and Cityscapes datasets, respectively [18].

2.3. Gaussian Blur Algorithm

Gaussian blur is a convolution filter that can provide anonymity to the applied
images [5]. Due to its simplicity and practicability, it is widely used in many image
processing-related applications, such as Adobe Photoshop [3].

Convolutional filters are one of the most fundamental image processing techniques.
Convolutional filters are usually separately applied to every single pixel in the target
image. In each convolution, the feature values of a pixel and its neighboring pixels are
captured by a fixed-size convolution kernel [5]. According to the position of a pixel in the
convolution kernel, this will be assigned a specific weight. Finally, a new feature value
will be calculated and will overwrite the original value. This is calculated as the weighted
average of the captured feature values. Various visual transformations, such as image
sharpening, embossing, and image obfuscation, can be achieved by applying convolutional
filters with different distributions of weights in the convolution kernel [32].

Gaussian blur is a convolutional filter whose kernel weights follow a normal (Gaus-
sian) distribution [32]. Since the pixel matrix of a 2D image is two-dimensional, a 2D normal
distribution is used in the Gaussian blurring algorithm [5]. Similar to a one-dimensional
normal distribution, if a neighbor pixel is located close to the source pixel in the original
image, the weight of that pixel will be higher than those that are more distant, which means
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it contributes more to the final result of the new feature value of the source pixel. This
schema of distributed weights gives the Gaussian blur algorithm the ability to provide
smooth image obfuscation.

Equation (1), called the “Gaussian function”, shows the density equation of a two-
dimensional normal distribution [5].

G(x, y) =
1

πσ2
x + πσ2

y
e
−(

(x−x0)
2

2σ2
x

+
(y−y0)

2

2σ2
y

)
(1)

In in this equation, (x, y) refers to a coordinate position in the convolution kernel,
(x0; y0) is the coordinate of the kernel’s center, and σx and σy refer to the standard deviations
in the directions of the abscissa and ordinate, respectively [5]. In this case, the coordinates
of the kernel’s center are always (0, 0), while the standard deviations in the two directions
the same and are replaced by σ. Consequently, the previous function can be simplified to
Equation (2):

G(x, y) =
1

πσ2 e−(x2+y2)/2σ2
(2)

Because we are implementing this convolution filter for a discretized image, we need
to discretize the Gaussian filter as well. This is done by approximating the continuous
filter as an R × R matrix of coefficients, where R is odd. These coefficients are the values of
the Gaussian kernel at discrete points around the center. This filter is convolved with the
image, and the current pixel value is replaced by this weighted average of the surrounding
pixels. Because our system handles anonymization at different scales, the value of R will
vary, as well as the value of σ.

3. Design and Implementation
3.1. System Design

Our system has two stages. The first stage, which we call the analyzer, takes the
original image and generates a semantic segmentation label mask. This mask, along with
the original image, is fed into the anonymizer, which adaptively generates a Gaussian
blurring filter based on the size of the region to be blurred. Figure 3 illustrates this
basic architecture.

Figure 3. This system diagram shows the various processing stages of the algorithm. The raw image
is fed into the semantic segmentor, which generates a pixel level label mask. These are both combined
in the anonymization step to generate the final anonymized image.
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3.2. Analyzer

The analyzer component performs several tasks. The first is to convert the input data
into the standard format (standard 24 bit RGB bitmap) for the semantic segmentation com-
ponent. Because our system can handle either video or images, video input is decompressed
and converted to individual frames, which are fed into the semantic segmenter. These
frames will be recombined into the output video at the end of the anonymization process.

The second task of the analyzer is to generate the pixel label mask image (see Figure 4).
This is done using the semantic segmentation algorithm available in DeepLabv3+, the
newest version of DeepLab developed and open-sourced by Google. The output mask
image is the same dimension as the input image, with each pixel set to the identified class
value or zero if the pixel was not identified as belonging to any of the known classes. This
mask, along with the original image, is then passed to the anonymizer.

Figure 4. Examples of the image masks from DeepLabv3+. These images come from the Pascal Visual
Objects Category dataset. Each color denotes a different class label, with black being background.

Because our implementation follows the guidance provided by Google’s official docu-
mentation, the model training process strictly follows the training protocols used in [18,33].
In this section, only some fundamentally important methods and parameter settings are
listed. The complete versions of the training protocol can be found in [18,33]. A “poly”
learning rate policy was employed in the training. The initial learning rate is set to 0.007.
More details of the “poly” learning rate policy can be found in [19,34]. The output stride
was set to 16.

As DeepLabv3+ uses large-rate atrous convolutions, we must choose a large crop size.
If our chosen crop size is too small, DeepLabv3+ can be affected [18,33]. Therefore, a large
crop size (513 × 513) is used by the model for training. With the purpose to enrich the
training dataset, we apply data augmentation by flipping and scaling the input images.
The scaling factor is in the range of 0.5–2.0 and the flipping can be to the right or to the left.
In addition, the choices of the scaling factor and the flipping direction are randomized [33].

Our implemented DeepLabv3+ system is trained with the augmented PASCAL VOC
dataset. In the original PASCAL VOC dataset, made of 1464 training samples, 1449 val-
idation samples and 1456 testing samples, images are annotated with their content at
pixel-level. For the training phase, extra annotations provided by Dr.Sleep [35] are used
for augmentation. As a result, there are 10,582 augmented training images in the dataset
used [18].

The trained DeepLabv3+ model in our proposed system has the ability to perform
semantic image segmentation by classifying pixels into 21 different classes of object (one
of which is the background class). Each pixel of the output image contains a value that
represents one class of objects [35]. For example, for each pixel classified into the class
“Person” in a segmented image, the output image contains the RGB value (192, 128, 128).

The mean of the intersection-over-union of pixels across the 21 classes (mIOU) is the
performance measure. For this implementation, the trained model can achieve a 77.31%
mIOU accuracy on the Pascal VOC 2012 validation dataset [18].

3.3. Anonymizer

The anonymization algorithm used by the anonymizer is the Gaussian Blur, which
replaces the feature value of a source pixel with the weighted average (following a normal
distribution) of its neighboring pixels [5]. We implemented the anonymizer with Python.
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The core idea behind our implementation is same as that of general Gaussian Blur [5]
and the pixel features we chose are the RGB values, which means that the Gaussian kernel
needs to apply a convolution to the same pixel three times to get its new R, G, and B values.
Different levels of object obfuscation can be achieved by choosing varying convolution
kernels. These are defined by two modifiable parameters: the radius (r) and sigma (s)
for the distribution of weights [5]. However, it is important to note that a large radius
value generates a larger kernel, which requires more pixels when calculating the weighted
averages. This means that the difference between the replacement values of two adjacent
pixels are narrowed, and the relative visual effect is an image that looks more blurred.
The value of the sigma parameter for the two-dimensional Gaussian can also be increased,
resulting in a flatter peak and increasing the blurring effect [5]. Figure 5 shows how
tweaking these two parameters affects the blurring effect.

Figure 5. Different visual effects with different parameters of Gaussian kernel.

When applying the convolution filter, there are two issues that must be considered.
The first is how to handle pixels on edges. Handling edges is important because if we
simply apply the filter naively using pixels that are external to the object, the edges of
the object become mixed with the background and no longer are clearly differentiated.
This can have a negative impact on object detectors and action recognition classifiers. To
solve this problem, we used a symmetry strategy to fill in the missing values. In the final
implementation, for every kernel value not included in the object, a replacement value is
taken from another pixel in the object. The position of the alternative pixel is chosen by
symmetry on either the x or y axis, relative to the position of the source pixel.

The second problem is selecting the correct filter radius and sigma. Since we can
detect objects of the same class at different scales, there is no single radius that works for
all filters. A filter radius suitable for small-scale objects will not adequately anonymize
large scale objects, while a filter radius for large-scale objects smooths small-scale objects
too much and results in excessive artifacts when dealing with edge pixels. To solve this,
we compute a bounding box for each object, and set the filter radius to 1/4 of the average
length of the two sides, rounded to the nearest odd number. Given this filter width, we set
sigma equal to 10 times the radius, a value that we experimentally determined.

4. Evaluation

To evaluate our system, we look at several different features. First, to show that it can
be used to anonymize very different classes of objects, we consider two different datasets:
UCF101, a human action recognition dataset, and the Chinese City Parking Dataset (CCPD),
a dataset of license plate photos. We then consider two different use cases. The first is
the case where we want to anonymize objects in the scene without negatively impacting
machine learning of other features of the video, a key capability for any anonymization
system. For this case, we use the UCF101 dataset and demonstrate that we can anonymize
the human figures in the dataset with minimal impact on action recognition classification
rates. For the second use case, we want to completely anonymize an object so that it
cannot be recognized by a machine learning algorithm. In this latter case, we show that we
can anonymize the license plates in the CCPD dataset to the degree that they cannot be
recognized even when the machine learning algorithm is trained with blurred data. Finally,
we consider the performance on scaled objects by repeating the UCF101 experiments with
multiple scaled versions of the original data.
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To compare the performance of our system against a standard benchmark, we ran
identical experiments with a global Gaussian blur algorithm. To maintain the equivalent
level of privacy with our adaptive algorithm, we chose set the filter radius and σ for
the Gaussian blur to the maximum of all calculated radii and σ on the dataset being
anonymized for the adaptive algorithm.

4.1. Datasets

UCF101 is an action recognition dataset composed of 13,320 realistic human action
videos, collected from YouTube and classified into 101 action categories. The UCF101
dataset features a wide range of different actions and camera motions that are often present,
as well as a variety of different objects, objects of different sizes, various viewpoints,
illumination conditions, etc. [36].

CCPD (Chinese City Parking Dataset) is an open-source dataset for license plate
detection and recognition [37]. It includes over 200,000 images of parked cars in a variety of
lighting and weather conditions, with bounding boxes around their license plates. For the
purpose of testing the system, 20,000 images from CCPD were chosen as our test dataset.
We refer to CCPD* as the subset of 20,000 samples chosen. The remaining images were used
to train DeepLabv3+ to label license plates, a class that was not included in the original
model. Examples of the CCPD dataset can be seen in Figure 6.

Figure 6. Sample images from the CCPD dataset. These license plates were collected in mainland
China and are uniform nationally. Each is dark blue with white letters consisting of a province code
character, city letter, and a unique ID number for the automobile consisting of letters and numbers.

4.2. Experiments
4.2.1. UCF101 Action Recognition

The first set of tests are designed to check whether the utility of original video data
is maintained after being processed by the anonymizer. These tests are conducted using
the blurred UCF101 dataset. The ’utility’ of visual data refers to the amount of useful
information that can be extracted from it. Concretely, preserving utility in the anonymized
videos from UCF101 means the blurred videos can still be used for some task, such as
action recognition.

For this test, we used a deep-learning based action recognition model called temporal
segment network (TSN) to perform action recognition on the blurred UCF101 dataset. More
details of its working principles can be found in [38]. In previously published experiments,
TSN achieved a 93.5% action recognition accuracy on the original UCF101 dataset in the
“RGB + Flow” mode (where “RGB” refers to the RGB video stream and “Flow” refers to
how the input was processed, in a stream manner). In our testing, we trained the TSN



Electronics 2021, 10, 1172 9 of 13

model with the blurred UCF101 training dataset and measured the action recognition
accuracy on the same dataset by following established guidelines [38].

The results for this experiment can be seen in Table 1. The base accuracy of TSN on
this dataset was 93.5%. After training with anonymized training data, the recognition rate
fell to 88.9 %. While some accuracy was lost, the algorithm was still reasonably accurate.
Anonymized data specific algorithms (e.g., [7]) could potentially perform identically to the
original algorithm.

Table 1. TSN performance comparison comparing our multi-scale algorithm vs. a single-scale global
Gaussian blur.

Dataset Accuracy

Multi-Scale Single-Scale

Original UCF101 93.5% 93.5%
Blurred UCF101 88.9% 40%

1/2 Blurred UCF101 88.9% 36.2%
1/4 Blurred UCF101 88.9% 31.1%
1/8 Blurred UCF101 88.9% 28.6%

To demonstrate the ability of our system to handle multi-scale data, we performed a
second round of experiments with the UCF101 dataset. The test was performed by first
downsizing the original UFC101 videos to 1/2, 1/4, and 1/8 of their original size. Each
frame of these downsized videos was then placed in the center of a black image the same
size as the original image. This created a set of videos the same dimensions as the original
videos, but with human actors a fraction of their original size. We then performed the same
anonymization and classification tasks from the previous experiment. The results, included
in Table 1, show that the scale of the objects has no effect on the anonymization process.
All human figures were detected and anonymized, and the recognition rate remained
similar to the full sized test, with only small, gradual deterioration, likely due to the loss of
information from the down-scaling process.

In comparison, the global Gaussian blur algorithm seriously deteriorated the perfor-
mance of the classifier, with results ranging from 40% to 28.6%. This is primarily due to the
need to maintain equivalent privacy, which results in selecting parameters that correspond
to the worst (most highly blurred) case for the adaptive algorithm.

The failure cases primarily occurred in instances where numerous objects of the same
class overlapped, which resulted in a degenerate filter that resulted in an a video that was
too blurred to recognize the action taking place. Examples of this can be seen in Figure 7.
The first of these examples is correctly labeled “Marching Band” and the second should be
labeled “Military Parade”. However, as can be seen from the masks, the labeled human
figures overlap to such a degree that the entire image is treated as a single large instance of
the human class.

Figure 7. Examples of failure cases from the the UCF101 dataset. The first example is labeled
“Marching Band” and the second is labeled “Military Parade”. In both cases, the clutter of same-label
objects results in a degenerative blurring filter.

4.2.2. CCPD*

For the CCPD* dataset, we consider the case where the objects being anonymized
are sensitive in nature, and we specifically want to prevent a machine learning algorithm
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from recognizing them. Different from the previous scenario, in this case, the successful
outcome of the anonymization system is to be checked with a machine-learning license
plate recognition system. We implemented this test with an open-source license plates
detection and recognition model [39], which is used to detect the existence of a license
plate in each of the images in the CCPD* and to detect the license plate number. This code
implements the algorithm discussed in [40], which has a reported recognition accuracy of
98.4%. For this experiment, DeepLabv3+ was retrained to label license plates using the
remaining 180,000 license plate images from CCPD.

The results of this experiment can be seen in Table 2. We split the results into two
parts: detection and recognition. The detection and recognition model [40] used was able
to detect 100% of the license plates in the CCPD* dataset and recognize the license plate
number 97.8% of the time. After training, DeepLabv3+ was able to detect 98.3% of the
license plates in CCPD*. After anonymization, the detection rate for our model dropped to
10.7% with a recognition rate of 2.8%. The model used to recognize the license plates is
a joint detection/recognition model, so blurring the text of the license plate reduces both
detection and recognition of the license plate digits.

Table 2. Detection and Recognition rates on the 20,000 image CCPD* dataset. Base detection and
recognition rates are the performance of the classifier from Zhang and Huang [40]. The DeepLabv3+
detection rate is the percent of the test set where a license plate was detected. Post-anonymization
detection and recognition rates are the rates for the classifier from Zhang and Huang [40] on the test
dataset after anonymization.

Task Accuracy

Base Detection Rate 100%
Base Recognition Rate 97.8%

DeepLabv3+ Detection Rate 98.3%
Post-anonymization Detection Rate 10.7%
Post-anonymized Recogntion Rate 2.8%

The failure cases in the CCPD dataset primarily revolved around two cases: inability
to detect the rectangular shape of the license plate and failures due to apparent changes
in the color of the plate, both of which resulted in DeepLabv3+ failing to detect the plate.
Examples of this can be seen in Figure 8. In the first example, the low light conditions
rendered the outline of the indiscernible. In the second example, the lighting significantly
modifies the color of the plate. This dataset was collected in mainland China, where license
plates are uniformly dark blue. We theorize that the absence of this blue color resulted in
this license plate not being detected.
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Figure 8. Examples of failure cases from the the CCPD dataset. In the first example, the low light
leaves no clear outline of the plate. In the second example, the plate can be seen, but the lighting
conditions render the color unrecognizable. In both cases, DeepLabv3+ fails to detect the plate.

5. Conclusions and Future Work

In this paper, we describe a flexible anonymization algorithm based on semantic
segmentation with DeepLabv3+ and adaptive Gaussian blurring. This system addresses
several issues with existing video anonymization systems, namely the lack of flexibility
in object class recognition and the inability handle multi-scale objects. We then show that
this system worked for several practical use cases, and at a variety of scales. This flexibility
and adaptability means that our algorithm can be used in many practical situations where
video anonymization is needed.

While this system is extremely practical, there are several areas where future work can
be done. One such area would be to explore different anonymization layers, which may be
more suitable for some specific applications. We also feel it would be useful to consider
different use cases, and particularly cases where changes to the machine learning algorithm
for the vision task could be modified in tandem with the anonymization algorithm to
provide both anonymization and higher accuracy for the vision task.

Another issue that needs to be addressed is that the current algorithm estimates the
size of objects simply by their bounding box. In cases where objects in the images are
distorted by camera perspective, or take up significant depth in the image, the resulting
filter may over blur all or part of the object. While, with knowledge of the object class, we
could attempt to estimate orientation or similar information, this is further complicated by
occlusion. Additionally, depth of field effects can result in initial blurring, which will again
result in over-blurring of the object. As we can see from the global Gaussian results, this
can seriously decrease the accuracy rate of the machine learning algorithm.

Additionally, further evaluation of this algorithm would be useful. While we show
that it works well for anonymized action recognition and anonymizing license plates, there
are many other privacy crucial cases that could be considered. We also believe that it
would be interesting to explore different parameter and hyperparameter choices for the
DeepLabv3+ model, to determine their effect on the final anonymization.



Electronics 2021, 10, 1172 12 of 13

Author Contributions: All authors designed the project and drafted the manuscript, collected the
data, wrote the code and performed the analysis. All participated in finalizing and approved the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data sets used in this work are cited and publicly available.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Ren, Z.; Lee, Y.J.; Ryoo, M.S. Learning to anonymize faces for privacy preserving action detection. In Proceedings of the 2018

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
2. Dufaux, F.; Ebrahimi, T. A framework for the validation of privacy protection solutions in video surveillance. In Proceedings of

the 2010 IEEE International Conference on Multimedia and Expo, Singapore, 19–23 July 2010; pp. 66–71. [CrossRef]
3. Padilla-López, J.R.; Chaaraoui, A.A.; Flórez-Revuelta, F. Visual privacy protection methods: A survey. Expert Syst. Appl. 2015, 42,

4177–4195. [CrossRef]
4. Olade, I; Champion, C.; Liang, H.; Fleming, C. The Smart2 Speaker Blocker: An Open-Source Privacy Filter for Connected Home

Speakers. arXiv 2020, arXiv:1901.04879v3.
5. Gedraite, E.; Hadad, M. Investigation on the effect of a Gaussian Blur in image filtering and segmentation. In Proceedings of the

ELMAR-2011, Zadar, Croatia, 14–16 September 2011; pp. 393–396.
6. Thomas, R.E.; Banu, S.K.; Tripathy, B.K. Image anonymization using clustering with pixelization. Int. J. Eng. Technol. 2018, 7,

990–993. [CrossRef]
7. Ryoo, M.S.; Rothrock, B.; Fleming, C.; Yang, H.J. Privacy-preserving human activity recognition from extreme low resolution. In

Proceedings of the 2017 AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
8. Yu, C.; Fleming, C.; Liang, H.N. Scale Invariant Privacy Preserving Video via Wavelet Decomposition. Int. J. Des. Anal. Tools

Integr. Circuits Syst. 2018, 7, 56–58.
9. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. Towards open-set identity preserving face synthesis. In Proceedings of the 2018 IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6713–6722.
10. Li, T.; Lin, L. Anonymousnet: Natural face de-identification with measurable privacy. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019.
11. He, W.; Zhang, X.Y.; Yin, F.; Luo, Z.; Ogier, J.M.; Liu, C.L. Realtime multi-scale scene text detection with scale-based region

proposal network. Pattern Recognit. 2020, 98, 107026. [CrossRef]
12. Hao, Z.; Liu, Y.; Qin, H.; Yan, J.; Li, X.; Hu, X. Scale-aware face detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6186–6195.
13. Matthews, C.E.; Kuncheva, L.I.; Yousefi, P. Classification and comparison of on-line video summarisation methods. Mach. Vis.

Appl. 2019, 30, 507–518. [CrossRef]
14. Fan, J.; Luo, H.; Hacid, M.S.; Bertino, E. A novel approach for privacy-preserving video sharing. In Proceedings of the 14th

ACM International Conference on Information and Knowledge Management, Bremen, Germany, 31 October–5 November 2005;
pp. 609–616.

15. Yousefi, P.; Kuncheva, L.I. Selective keyframe summarisation for egocentric videos based on semantic concept search. In
Proceedings of the 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), Sophia Antipolis,
France, 12–14 December 2018; pp. 19–24.

16. Wu, Z.; Wang, Z.; Wang, Z.; Jin, H. Towards privacy-preserving visual recognition via adversarial training: A pilot study. In
Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 606–624.

17. Fleming, C.; Peterson, P.; Kline, E.; Reiher, P. Data Tethers: Preventing information leakage by enforcing environmental data
access policies. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15
June 2012; pp. 835–840.

18. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018.

19. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
[PubMed]

20. Thoma, M. A Survey of Semantic Segmentation. arXiv 2016, arXiv:1602.06541.
21. Learned-Miller, E.; Huang, G.B.; Roychowdhury, A.; Li, H.; Gang, H. Labeled faces in the wild: A survey. In Advances in Face

Detection and Facial Image Analysis; Springer: Berlin/Heidelberg, Germany, 2016.
22. Hammer, B.; Biehl, M.; Bunte, K.; Mokbel, B. A general framework for dimensionality reduction for large data sets. In Proceedings

of the 2011 International Conference on Advances in Self-Organizing Maps, Espoo, Finland, 13–15 June 2011.

http://dx.doi.org/10.1109/ICME.2010.5583552
http://dx.doi.org/10.1016/j.eswa.2015.01.041
http://dx.doi.org/10.14419/ijet.v7i2.33.15548
http://dx.doi.org/10.1016/j.patcog.2019.107026
http://dx.doi.org/10.1007/s00138-019-01007-x
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186


Electronics 2021, 10, 1172 13 of 13

23. Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in Neural
Information Processing Systems 24; Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2011; pp. 109–117.

24. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

25. Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321.
[CrossRef]

26. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October
2019; pp. 1314–1324.

27. Ding, H.; Jiang, X.; Shuai, B.; Liu, A.Q.; Wang, G. Semantic correlation promoted shape-variant context for segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 8885–8894.

28. Zhang, H.; Zhang, H.; Wang, C.; Xie, J. Co-occurrent features in semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 548–557.

29. Yang, T.; Wu, Y.; Zhao, J.; Guan, L. Semantic segmentation via highly fused convolutional network with multiple soft cost
functions. Cogn. Syst. Res. 2019, 53, 20–30. [CrossRef]

30. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In
Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York,
NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178. [CrossRef]

31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

32. Erdélyi, Á.; Winkler, T.; Rinner, B. Privacy protection vs. utility in visual data. Multimed. Tools Appl. 2018, 77, 2285–2312.
[CrossRef]

33. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

34. Wei, L.; Rabinovich, A.; Berg, A.C. ParseNet: Looking Wider to See Better. arXiv 2015, arXiv:1506.04579v2.
35. Dr.Sleep. DeepLab-ResNet-TensorFlow. Available online: https://github.com/DrSleep/tensorflow-deeplab-resnet (accessed on

11 May 2019).
36. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. arXiv 2012,

arXiv:1212.0402.
37. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H. Towards end-to-end license plate detection and recognition: A large dataset and

baseline. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 255–271.

38. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Val Gool, L. Temporal segment networks: Towards good practices for deep
action recognition. In Proceedings of the 2016 European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands,
8–16 October 2016.

39. ShadowN1ght. License Plate Detection and Recognition Model (Implemented on Tensorflow). Available online: https:
//blog.csdn.net/shadown1ght/article/details/78571187 (accessed on 8 May 2019).

40. Zhang, Y.; Huang, C. A robust chinese license plate detection and recognition systemin natural scenes. In Proceedings of the 2019
IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 137–142. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2019.11.118
http://dx.doi.org/10.1016/j.cogsys.2018.04.004
http://dx.doi.org/10.1109/CVPR.2006.68
http://dx.doi.org/10.1007/s11042-016-4337-7
https://github.com/DrSleep/tensorflow-deeplab-resnet
https://blog.csdn.net/shadown1ght/article/details/78571187
https://blog.csdn.net/shadown1ght/article/details/78571187
http://dx.doi.org/10.1109/SIPROCESS.2019.8868545

	Introduction
	Background and Related Works
	Semantic Image Segmentation
	DeepLab
	Gaussian Blur Algorithm

	Design and Implementation
	System Design
	Analyzer
	Anonymizer

	Evaluation
	Datasets
	Experiments
	UCF101 Action Recognition
	CCPD*


	Conclusions and Future Work
	References

