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Abstract: The objective of this study was to improve user experience when appreciating visual
artworks with soundscape music chosen by a deep neural network based on weakly supervised
learning. We also propose a multi-faceted approach to measuring ambiguous concepts, such as
the subjective fitness, implicit senses, immersion, and availability. We showed improvements in
appreciation experience, such as the metaphorical and psychological transferability, time distortion,
and cognitive absorption, with in-depth experiments involving 70 participants. Our test results were
similar to those of “Bunker de Lumières: van Gogh”, which is an immersive media artwork directed
by Gianfranco lannuzzi; the fitness scores of our system and “Bunker de Lumières: van Gogh” were
3.68/5 and 3.81/5, respectively. Moreover, the concordance of implicit senses between artworks and
classical music was measured to be 0.88%, and the time distortion and cognitive absorption improved
during the immersion. Finally, the proposed method obtained a subjective satisfaction score of 3.53/5
in the evaluation of its usability. Our proposed method can also help spread soundscape-based
media art by supporting traditional soundscape design. Furthermore, we hope that our proposed
method will help people with visual impairments to appreciate artworks through its application to a
multi-modal media art guide platform.

Keywords: music recommendation system; multimedia data processing; weakly supervised learning;
soundscape music; media art; exhibition environments; user experience

1. Introduction

A soundscape is a contextual acoustic environment perceived by humans. Initially, this
concept was used as a compositional approach in order to provide a sense of space via the
recording and rearrangement of noise, including natural and environmental elements. This
role of the soundscape is used to help an audience imagine its space [1,2]. Recently, the
concept of the soundscape has been used in a variety of fields, such as architecture, art, and
education [3–6]. In particular, some research [7] has proposed art-based spatial design by
presenting the concept of shopping galleries through a combination of shopping spaces
and soundscape music. The concept of the soundscape in art education has also been
explored [8]. Recently, IT technology [9,10] has been used to improve user experience in
map applications through data-based soundscape construction methods.

In this study, we applied the soundscape concept to an art exhibition environment
to improve the artwork appreciation experience. At this point, music is an important
component of soundscape-based exhibition environments because it can interfere with
or help an audience appreciate the experience. In previous studies, soundscapes were
designed by experts by selecting or composing music containing a message that the experts
wanted to convey. However, this approach is expensive in terms of time and effort. In
this study, we investigated the replacement of this traditional approach to soundscape
construction with deep-neural-network-based methods. Our requirement was that the
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soundscape constructed using our method should provide as impactful of an experience
as that of the expert’s choice. If our requirements are met, our approach could spread the
abundance soundscape-based media art at a lower cost than that which was previously
possible.

The purpose of this study was to improve users’ artwork appreciation experience
through auditory cues, such as classical music, in order to provide an abundant media
art exhibition environment. These multi-modal sense-based exhibits [11–14] not only
provide the user with a more impressive, realistic, and immersive experience, but also
have potential cognitive and emotional impacts on the appreciator [15–17]. Thus, we
propose a soundscape-based methodology that uses deep neural networks to identify
music associated with a given visual artwork through multi-modal data processing based
on weakly supervised learning. With a multi-faceted approach, we measure whether our
system can recommend music that can have an impact on the user. This soundscape-based
media art will improve users’ experience of appreciating artworks through metaphorical
and psychological interactions as well as through the direct and material appreciation of
media art. Our method of soundscape design using deep learning can help disseminate
media art exhibitions by reinterpreting them as immersive media. Furthermore, we hope
that our proposed method will help people with visual impairments to appreciate artworks
through its application to a multi-modal media art platform. The contributions of this
study are described below.

Contributions

1. We developed a system for matching classical music and paintings using the con-
cept of the soundscape through an improved deep neural network based on weakly
supervised learning.

2. We propose a multi-faceted approach to measuring ambiguous concepts, such as the
subjective fitness, implicit senses, immersion, and availability; then, an interdisci-
plinary discussion is also provided.

3. We show the improvements in the appreciation experience, such as metaphorical and
psychological transferability, time distortion, and cognitive absorption, with in-depth
experiments involving 70 participants.

2. Related Studies
2.1. Multi-Modal Artwork Platform for People with Visual Impairments

Modern information systems rely on vision, resulting in differences in information
gain between visually impaired people and non-visually impaired people. Technological
developments have improved this situation [18,19], but access to cultural content beyond
daily life remains challenging. In particular, persons with disabilities should have opportu-
nities provided for cultural, physical, and artistic activities based on the 2008 Convention
on the Rights of Persons with Disabilities [20]. Nevertheless, this has not been the case from
the perspective of arts and culture, as pointed out by Kim Hyung-sik, a former member of
the Committee on the Rights of Persons with Disabilities (CRPD) in the United Nations [21].

The blind touch project [22] was launched by ratifying Article 30 (2) of the Convention
on the Rights of Persons with Disabilities, which states that “Parties shall take appropriate
measures to enable persons with disabilities to have the opportunity to develop and utilize
their creative, artistic, and intellectual potential, not only for their own benefit, but also
for the enrichment of society”. This project aimed to improve the artwork appreciation
environment for people with visual impairments [23,24]. The blind touch project had two
main objectives. The first objective was to allow blind people to experience, understand,
and interpret art through various multi-modal senses, such as hearing, touch, temperature,
and texture. The second objective was to develop a framework and technologies that would
allow visually impaired people not only to experience art through their senses, but also to
understand, interpret, and reflect upon it.
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In a blind touch project, Cavazos et al. [25] developed a multi-modal artwork guide
platform (see Table 1) that transformed an existing 2D visual artwork into a 2.5D (relief
form) replica using 3D printing technology, making it accessible through touch, audio
descriptions, and sound in order to provide a high level of user experience. Thus, visually
impaired individuals could enjoy this artwork freely, independently, and comfortably
through touch and sound without the need for a professional commentator. In addition,
gamification concepts [26] were included to awaken various other non-visual senses and
maximize enjoyment of an artwork. For example, vivid visual descriptions and sound
effects were provided to maximize the sense of immersion in appreciating artworks. Such
recreated artworks with multi-modal guides facilitated user-friendly interaction environ-
ments by sensing the event of tactile input on some part of an artwork and providing
the related information. In addition, background music was created to elicit emotions
similar to those of the work, taking into consideration the musical instrument’s timbre,
minor/major mode, tempo, and pitch. In this paper, we aimed to replace the background
music with other classical music recommended by deep neural networks and soundscape
concepts.

Table 1. Interactive multi-modal guideline for appreciating visual artworks and museum objects [25].

Type Description

Sensing technology Capacitive sensor connected to conductive ink-based sensors
embedded under the surface of the model.

Input Double-tap and triple-tap gestures on the surface.

Tactile presentation Tactile bas-relief model

Output Audio descriptions, sound effects, and background music

Objective Improve visual artwork exploration

2.2. Soundscape Construction Using Deep Neural Networks

In this study, we constructed soundscapes based on music that matched well with a
given artwork by using deep neural networks. We considered three technical approaches
to constructing soundscapes. The first is a generative-model-based approach, in which gen-
erative model is used to translate a painting into music based on deep neural networks [27].
This proposed method is characterized by the use of consistent features that allow inter-
conversion between music and painting. However, this method of using consistent and
interchangeable features does not ensure well-matched music. Therefore, in this work, we
did not adopt this method because we felt that it did not produce music that fits paintings
well. Rather, we used the approach of finding music that matches the painting rather than
using a generative models.

The second is an approach based on music recommendation systems. The recom-
mendation systems were divided into user-based, content-based, and hybrid-based meth-
ods [28,29]. We focused on content-based recommendation systems [30] because our
purpose was a recommendation between music and painting, not personalized recommen-
dations. The key to this approach is the vectorization of content because it matches based
on the similarities in vectorized content. Examples of vectorization methods include video
and description summarization [31,32] and image captioning [33–35]. In particular, the au-
thors of [36] matched poetry and images through captioning, the authors of [33] presented
an automatic caption generation method for Impressionist artworks for people with visual
impairments, and the authors of [28] used emotional features in music recommendations.
However, when applying these methods to our research, not only was a capping module
required for the music and images, but a user-based recommendation system was also
needed.

Thus, we selected baseline networks as a third method [10,37–41] for feature matching
by using kernel density estimation based on weakly supervised learning. Our training
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baseline was soundnet [37], in which a kernel mapped an audio sample space to an
image sample space via weakly supervised learning for vectorization. In prior imaginary
soundscape research [10], an application based on soundnet was used to improve users’
experience with Google Maps. This application mapped vectors of images and audio into
the same sample space by using soundnet. Our approach uses a similar framework. This
approach has the limitation of not being able to use audio or image descriptions, but it
has the advantage of being able to focus on natural features. In the following sections, we
describe our audio feature extraction method and knowledge distillation method.

2.3. Audio Feature Extraction

Audio feature extraction is a major component of soundnet frameworks. There are
three major methods. The first deals with audio data as a spectrogram image by using
a short-term Fourier transform [42–45]. The second is an end-to-end method for dealing
with raw audio data by using a shallow and wide raw feature extractor [46,47] rather
than a Fourier transform. The third one uses improved learning techniques, such as data
argumentation [47–49], pre-processing (or post-processing) [50,51], and other learning
methods, such self (or weakly) supervised learning [10,37–41,47,51].

Spectrogram-based audio feature extraction depends on the hyper-parameters of
the short-term Fourier transform. Thus, many state-of-the-art networks [37,47,51] have
been studied by using raw feature extractors; however, we adopted a spectrogram-based
approach because it has advantages in terms of knowledge distillation and its application to
our domain. In particular, we selected the WaveMsNet [45] as our baseline feature extractor.
The WaveMsNet fuses features of time and frequency domains to improve the dependence
of the Fourier transformation on the hyper-parameter window size via multi-scale feature
extraction in the time domain. However, the network still receives the gray channel as the
input. In this paper, we propose a multi-time-scale transform [52,53] to convert audio data
into an RGB image in order to receive RGB input instead of gray input. These techniques
not only improve the receptive field, but also enable direct measurement of feature distance.
In the next sections, we shall address knowledge distillation for mapping audio features
and image features into the same sample space.

2.4. Knowledge Distillation

Knowledge distillation began from mimic model [54], and is a method to learn dif-
ferences among distributions for model compression. This method has therefore been
used in various fields related to distribution learning, such as domain adaptation [55] and
knowledge transfer [56]. This method is also used in soundnet frameworks as a learning
method. There are two main considerations when applying knowledge distillation. The
first is the choice of the knowledge to learn, such as score maps [57], feature maps [58],
attention maps [59], Jacobian matrixes [60], or decision boundaries [61]. The second is how
the distilled knowledge is transferred, such as through mutual learning [62], knowledge
projection [63], or teacher assistance [64].

In this study, we selected two research studies as baseline studies. The first was
that of fitnet [58], which conducted knowledge distillation based on a feature map with
abundant information. A previous fitnet study solved the problem of size mismatch
between feature maps via a regressor, which problem is to transfer of knowledge from wide
features to narrow features Later, an attention study [59] showed that learning without
an additional regressor was possible by changing the learning structure from deep to
shallow. In this paper, we conducted knowledge transfer through direct measurement
of feature distance without an additional regressor by setting the same model structure
for transferring from wide and deep features to wide and deep features. Our learning
method is based on a deep mutual learning strategy [62] with symmetric Kullback–Leibler
divergence. Furthermore, the strategy used by the learning method allows the audio
feature extractors to be configured in the same way as the image feature extractors. We
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chose this learning method because it aims to reduce the difference between the two sample
spaces rather than to increase the accuracy of specific tasks.

3. Proposed Architecture and Learning Method for Constructing a Soundscape

In this section, we deal with the proposed architecture of our application and present
a learning method for constructing a soundscape in four subsections—namely, music–
artwork matching for the soundscape, a training phase, a domain adaptation phase, and a
multi-time-scale transform for audio feature extraction.

3.1. Music–Artwork Matching for the Soundscape

Figure 1 shows the architecture of our service application. In the preprocessing phase,
music is converted into RGB images via a multi-time-scale transform. Multi-time-scale
transform and audio feature extraction are performed, and the resulting data are stored in
a database. Later, when a painting is entered through a service application, the application
matches and recommends the nearest n music pieces that match well with the audio
features stored in the database. The distance is measured by the cross-entropy. A feature
extractor for the audio and images was constructed by using a wide resnet 101 with
double width. For audio with a standard sample rate (44.1 kHz), the extracted features
are stored as a JSON object. The stored JSON object had about 3.48 times more capacity
than the existing audio because of the feature characteristics, such as the high resolution
and multiple channels. We did not use any additional compression methods. Our music
database consisted of 2000 items of classical music stored in the form of key values, and
it took about 2.5 days for the database to be configured without parallel processing. In
addition, a total inspection was conducted via cross-entropy without an additional search
algorithm for the music–painting matching, which took about 3.2 h. Our device settings
were as follows: CPU: Intel® Core™ i7-8700K processor, GPU: 2 RTX 2080 Ti. However,
because we used unoptimized code, the technical issues described above are likely to be
improved in real-world service via optimization. In the next section, we describe how the
deep neural networks were trained.

Figure 1. Our service application architecture, consisting of a preprocessing phase before the service
and an inference phase at runtime. This figure shows a music–artwork matching method for
soundscape construction.

3.2. Training Phase

Figure 2 shows our learning framework, which is similar to the soundnet framework.
However, we additionally used methods such as a pre-trained model with shared features,
an improved audio feature extractor, and improved weakly supervised learning. In the
pre-training phase, a multi-domain convolutional neural network (CNN) was applied for
sharing features. In the original soundnet framework, the feature extractor is based on two
models—namely, the object and scene of the feature extractor for each pre-training phase
and weakly supervised learning phase. However, the data cannot be utilized efficiently.
In soundnet, the object feature extractor is learned in Imagenet, while the scene feature
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extractor is learned in Place365, which results in less data than Imagenet. Thus, it is difficult
to determine if the feature extractor has learned enough. To address this issue, we applied
a multi-domain CNN because the place and object can share features when using this
method. The feature extractor used was the wide resnet101 with double width and with
two classifier headers for the object and scene. The Imagenet and Place365 data were
trained in one model so that the features could be shared. This method also had advantages
in the training phase.

Figure 2. The training phase was divided into a pre-training phase and a training phase. This learning
framework is similar to that of the soundnet framework; however, the pre-trained model with features
shared via a multi-domain CNN, audio feature extraction via multi-time-scale transform, and weakly
supervised learning via mutual learning are advantages of our framework.

In this training phase, we trained our network by using a Flickr video dataset [37]
for cross-modal recognition. The video dataset was viewed as weakly labeled data with
images assigned to the audio. Image features were extracted from a pre-trained model that
was frozen. This frozen model meant that the results of learning were not reflected; they
were used only for feature extraction. Audio data were then converted into RGB images
via the multi-time-scale transform, which allowed feature extraction via the wide resnet
with double width. These extracted features were used as the sources and targets for audio
features and image features, respectively. The deep neural network was trained with a
kernel function to map the source to a target, which meant that learning to extract features
was similar for the audio and image data. Only the audio feature extractor reflected the
learning results because our purpose was to approximate from the source to the target.
Unlike soundnet, in the KL divergence, the source and target were configured as feature
maps, not score maps. This is the same method as that used in the fitnet; however, our
training frameworks conducted direct distribution training without an additional regressor
through use of the same feature extractor structure. Furthermore, because the multi-domain
CNN was applied in the pre-trained model, we also performed inter-distribution learning
on one integrated model through only feature sharing.

3.3. Domain Adaptation

In the training phase, a network was trained to match audio with objects and scenes.
In the domain adaptation phase, we developed a method to train our network to match
music and a painting, which is challenging because of the absence of a related dataset. We
therefore focused on appealing advertisements in our dataset. The purpose of emotionally
appealing advertisements is to transfer emotional feelings to the customer rather than
rational information. A new paradigm of emotionally appealing product advertisements
has recently emerged, where the concept is not to focus on revealing production, but to
convey a brand image and overall atmosphere. These advertisements convey a sense of
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artistry and atmosphere that transcend the boundaries of usability and beauty by using
well-matched colors and atmospheric music. Thus, the video of an advertisement can be
considered as an expert’s well-matched labeling data. In this work, we matched paintings
and music by using the color and the audio atmosphere rather than simply matching audio
to objects or scenes. Therefore, we used advertisements for products. Examples of the
emotionally appealing advertisements used are provided in Figure 3. In this work, data
were collected manually. The collection criteria were as follows: The first was whether
background music was included; the second was whether the advertisements emphasized
color; the third was whether there was conversation. If conversations were frequent, the
advertising was excluded from the collection. If several atmospheric parts existed in
the collected advertisement, the video was divided into several videos according to the
sections where the atmosphere changed. For example, in Figure 3, each row is from the
same advertisement. This advertisement was divided based on the points at which the
atmosphere changed.

Figure 3. Dataset of emotionally appealing advertisements for domain adaption.

Figure 4 shows our domain adaptation method with its key features of mutual learning
through advertisement data with symmetric KL divergence. The purpose of mutual
learning was not to increase the accuracy of the task, but to train the two features to be
the same. Therefore, we used advertising videos to fine-tune the network through mutual
learning with symmetric KL divergence for domain adaptation. This domain adaptation
had two main objectives. First, we wanted our system to learn a method of matching
sounds and images based on considerations of the color and the atmosphere. Second, we
focused on extracting these two features equally, rather than matching the sound to the
space of the image via symmetric KL divergence.

DSymmetricKL(P, Q) = DKL(P ‖ Q) + DKL(Q ‖ P) = ∑x∈χ P(x) ln P(x)
Q(x) + ∑x∈χ Q(x) ln Q(x)

P(x) . (1)

Equation (1) is the symmetric KL divergence for the mutual learning used in this study.
The objective of mutual learning is to train model so that image and audio features can be
extracted equally; the image is indicated by P and the audio by Q. Importantly, unlike in
the training phase, a model freeze was not used in order to reduce the gap between the
distributions of the two features.
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Figure 4. Domain adaptation phase with symmetric KL divergence based on mutual learning.

3.4. Audio Feature Extraction via Multi-Time-Scale Transform

Algorithm 1 is for audio feature extraction via the multi-time-scale transform in order
to extract features from an RGB image rather than a conventional gray image. This method
is an improvement over WaveMsNet [45,46], the Specaugment method [65], and time-wise
multi-inference strategies. In the initialization section, the hyper-parameters of the FFT
were experimentally obtained based on values that are commonly used in ESC-50, and
the hyper-parameters of the MTST were obtained via a greedy search. The ranges of the
greedy searches were as follows: The steps were [50, 100, 150, 200, 250, 300] and x_size
was [224, 401, 501, 601, 701, 801]. M was a method of conversion from raw data into a
mel-spectrogram with the conversion of power to decibels (dB). Audio features were then
extracted in a similar manner, except that we used a multi-time-scale transform. The model
that we used was the wide resnet101 with double width.

Figure 5 shows the key idea of the multi-time-scale transform. The two figures are
the same graph, with the three-dimensional visualization shown on the left and the two-
dimensional visualization on the right. The x-axis shows frequency, the y-axis shows time,
and the z-axis shows power. A heatmap-based RGB image is shown on the left, while the
multi-time-scale transform image is shown on the right. The heatmap-based RGB image
was determined by the power. In other words, even when information from the three
channels was combined, only the gray information was available because the gray infor-
mation quantity was distributed among the three channels according to the power level.
We distributed information into the RGB channel to increase the total information. The
spectrogram was up-scaled to match input shapes via bilinear interpolation, then divided
into three parts based on the time axis using multi-scale inference (see Algorithm 1).

Figure 5. Lighting-chart-based simulation plots to help understand the key idea of the multi-time-
scale transform.
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Algorithm 1 Audio Feature Extraction via the Multi-Time-Scale Transform

Initialization;
[x]←audio_signal, [t]←time, [n_fft]←4096, [hop_length]←441, [n_mels]←224,

[f_min]←20, [f_max]←20000, [top_db]←160, [x_size]←701, [y_size]←224, [step]
←200;

Audio Feature Extraction:
spectrogram = |M(x,n_fft,hop_length,n_mels,f_min,f_max,top_db)|;
imagergb = MTST(spectrogram, size = (x_size, y_size, step), p = 0.5)
features = model(imagergb)

return features;
MTST (spectrogram, size, p):

x_size, y_size, step = size
spectrogram = normalization(spectrogram)
imagegray = bilinear_interpolation(spectrogram, (x_size, y_size))
r=spec_aug(imagegray[; , 0 : max_size− step], p)
g=imagegray[; , step/2 : max_size− step/2]
b=spec_aug(imagegray[; , step : max_size], p)
imagergb = concatenate(r, g, b)
return imagergb

4. Experiments

We performed three main experiments. The first experiment was a quantitative
evaluation in order to determine how effective the multi-time-scale transform was and if
it improved the task of audio feature extraction. In the second experiment, we evaluated
how reasonably music and paintings were matched by our system. In the third experiment,
we evaluated whether the user experience improved while appreciating artworks and the
soundscape music.

Hypothesis 1. “If the soundscape music and painting are well matched, user appreciation of the
experience will increase.”

The above hypothesis is the central focus of this study. However, assessing the
match between the music and painting and the improvement of the user experience is
challenging. We therefore developed strategies for measuring these factors, as described in
the following subsections.

4.1. Audio Feature Extraction via the Multi-Time-Scale Transform

We performed an ablation and benchmark study to determine the effectiveness of
the multi-time-scale transform. This experiment was conducted using the ESC-50 as an
environmental sound classification dataset. The environmental settings were as follows:
Pytorch 1.1 with Python 3.6. The batch size was 32, and a random shuffle was used. The
optimizer used was Adam, and the initial learning rate was 1× 10−4; the scheduler used
the cosine annealing learning rate scheduler. The hyper-parameter T value was 50. The
hyper-parameters of training were obtained via a greedy search. The ranges of the greedy
searches were as follows: The batch sizes were [8, 16, 32], and the initial learning rates were
[1× 10−4, 2× 10−4, . . . , 5× 10−4, 1× 10−5, 2× 10−5 . . . 5× 10−5].

Table 2 shows the results of the ablation study. First, we conducted experiments using
various backbone network settings, such as Mobilenet v2, Efficientnet, VGG, Resnet, and
Densenet, with different widths and depths. However, networks other than Resnet and
Densenet were omitted from Table 2 due to their poor results. We increased the depth of
the network-provided setting and the width by one, two, and four times the depth. The
width showed the best performance when it was doubled, and the depth tended to be
better, but not in all cases. Resnet101 with double width showed the best performance. In
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Table 2, the application of our multi-time-scale transform to resnet resulted in about 2.8%
higher accuracy than that of the baseline network, WaveMsNet.

Table 2. Ablation study of the multi-time-scale transform.

Methods Accuracy

Densenet with spectrogram 73.9%
Resnet with spectrogram 76.3%

WaveMsNet after first phase [45] 70.05%
WaveMsNet after second phase [45] 79.1%

Resnet with multi-time-scale transform 81.9%

Table 3 shows the sound classification results for various methods based on the ESC-50
benchmark. Methods without an asterisk in Table 3 are examples of supervised learning
methods that use backbone and data argumentation methods, while methods with an
asterisk were trained using various methods, such as weakly (or self) supervised learning,
between-class learning, or some other method. Our network showed better performance
than that of baseline, but lower performance than that of the state-of-the-art methods.
AclNet uses raw feature extractors, such as Envnet v2. This is a weakness for mutual
learning; therefore, we did not use these methods. Ensemble-fusing CNN is a state-of-
the-art method, but is not a single-model method. Our model performed as well as the
single-model methods, and had advantages for mutual learning because it is spectrogram-
based. Therefore, in this work, we selected our network as the baseline. However, in our
future research, various augmentations with ensemble-fusing CNNs should be explored
for applications in our work. Our model’s performance was about 12.2% poorer than
that of WEANET. Therefore, work is needed to enhance the performance of our network.
Nevertheless, our network has the advantage of being spectrogram-based and showed
better performance than human performance. The validation results for each fold of our
proposed method can be found in detail in Table 4.

Table 3. ESC-50 dataset benchmark.

Methods Accuracy

EnvNet v2 + S.A. [47] 78.8%
WabeMsNet (our baseline) [45] 79.1%

Resnet with Multi-Time-Scale Transform 81.9%
AclNet [49] 85.65%

Ensemble-fusing CNN [48] 88.65%

Soundnet (our baseline) [37] * 74.2%
EnvNet v2 + S.A. + B.C.L. [47] * 83.9%

WEANET [66] * 94.1%

Human Performance [67] 81.3%

4.2. Relevance of Music–Artwork Matching

Definition. “Well-Matched Soundscape Music–Painting”: In this work, we defined details
factor of “Well-Matched Soundscape Music–Painting” for a measurement of the quality
of a match. Blind touch is intended to provide direct and material interactions that go
beyond metaphorical and psychological interactions between the art and the appreciator.
However, this does not imply the absence of traditional art. Therefore, in this study, we
wanted to measure the metaphorical and psychological relevance of matching between
music and a painting. The metaphorical scale measured how much the same implicit
multi-sensory experience was transferred because blind touch is a multi-sensory-based
media art. The psychological scale was measured through subjective fitness, which is
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an individual’s appreciation, because it is the most representative single scalar value of
individual appreciation.

Table 4. Result of five-fold cross-validation. The F1 score is the weighted F1 score and the MCC is
the Matthews correlation coefficient, which was obtained as the average of the MCC for each class.
This metric tables were written by referring to [68,69].

Fold Accuracy Recall Precision F1 MCC AUC

1 81.2% 81.2% 84.4% 81.1% 81.0% 90.4%

2 81.0% 81.0% 83.5% 80.4% 80.7% 90.3%

3 81.2% 81.2% 82.6% 80.7% 80.9% 90.4%

4 84.8% 84.8% 85.7% 84.2% 83.7% 91.8%

5 81.2% 81.2% 84.0% 81.1% 80.9% 90.4%

Experimental Setting: Twenty-four men and 16 women, all of whom are Korean, were
evaluated in this study. Each group consisted of 10 people divided into four groups with a
balanced gender ratio. The criteria for dividing the groups were as follows. First, the artistic
culture of the subjects was evaluated via a simple test with the music and paintings used in
this experiment. Second, the subjects were allocated to each group based on their test scores,
which we averaged. The average music score was 2.3, the average painting score was 3.4,
and a perfect score was 5. The roles of each group was as follows: Group 1 participated in
subjective fitness experiments. Groups 2 and 3 participated in multi-sensory concordance
experiments. Group 4 participated in multi-sensory concordance inverse measurement
experiments. The groups were designed to avoid duplication of the experiments and to
ensure that prior knowledge did not affect the experimental results. Furthermore, we did
not provide any information other than information related to the experimental progress.
This meant that the subjects did not know that the paintings and music were recommended
via a deep neural network. Figure 6 shows the paintings used in our experiment, and the
music allocated to the paintings by our system is indicated in Table 5.

(a) (b) (c) (d)

Figure 6. Paintings used in the experiments. (a) Starry Night; (b) Starry Night over the Rhône; (c) Café Terrace at Night; (d)
Femme avec parasol dans un jardin. This figure is associated with Table 5.
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Table 5. Music–painting matching scheme. The top three pieces of music selected by our system for each painting are
shown. Rows 1, 2, and 3 correspond to musical choices 1, 2, and 3, respectively.

Painting Music

(a)
Beethoven: Piano Sonata No. 3 in C, Op. 2

Prokofiev: 10 Pieces from Romeo and Juliet, Op. 75, No. 9, Dance of the Girls With Lilies
Grofé: Grand Canyon Suite—4. Sunset

(b)
Edvard Grieg—Peer Gynt—Suite No. 1, Op. 46—III. Anitra’s Dance

Bolero—Maurice Ravel
Ashkenazy: Sibelius—Valse Triste, Op. 44

(c)
Tchaikovsky—The Sleeping Beauty Suite, Op. 66a
Joseph Haydn—Symphony No. 88 in Major, Largo

Verdi: “Nabucco”—Schippers

(d)
Jean Sibelius—Valse Triste, Op. 44, No. 1

Edvard Grieg: “Peer Gynt—Morning Mood”
Tchaikovsky—Swan Lake Op. 20, Act III

4.2.1. Measurements of Subjective Fitness

Experimental Methods: Subjective fitness was measured in group 1, which comprised
five men and five women. First, we input the paintings into our system and extracted
the top three music recommendations. Second, when both the paintings and music were
experienced at the same time, we measured the subjective fitness using a five-point Likert
scale. We changed the paintings in the painting–music pairs to ensure that previous and
subsequent experiments did not affect the current experiments; for example, painting
1–music 1, painting 2–music 1, painting 3–music 1, painting 4–music 1, then painting
1–music 2, painting 2–music 2, etc.

Table 6 shows the results of the subjective fitness experiments. Columns (a), (b), (c),
and (d) are associated with Figure 6, Music pieces 1, 2, and 3 are associated with Table 5,
and Music 4 was used in the soundscape music exhibition [12] “Bunker de Lumières Van
Gogh” held in Jeju, Korea. Therefore, Music 4 can be considered to be a type of ground
truth labeled by experts. F-score is the fitness score, and the P-score is the preference
ratio. The fitness score was measured on a five-point Likert scale, and the P-score was
the proportion of people who scored three or more F-score points. Music 4 used the same
values as in previous studies [70]. Therefore, the system matched the artwork and music
well in terms of subjective fitness. However, the P-score was not stable for Music 2, and
Music 3 had a low F-score and P-score. The average F-score for all music items was 3.24,
and the average P-score for all music items was 75%. The average F-score of Music 1 was
3.68, and the average P-score of Music 1 was 97.5%. This result is similar to that reported in
a previous study, which reported an average F-score of 3.16, an average F-score for Music
1 of 3.74, an average P-score of 87.6%, and an average P-score of Music 1 of 94%. Thus,
our system matched music and artworks well, but did not perform better than previous
systems, despite the improved feature representation. This is likely due to the small size
of the music database. However, the reliability of the system was demonstrated by the
attainment of results similar to those reported in previous studies. In future studies, we
need to assess whether the stability and performance of the system increase in response to
the expansion of the music database.
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Table 6. Results of the subjective fitness experiment. The F-score is the fitness score and the P-score
is the preference ratio. Fitness was measured on a five-point Likert scale, whereas the P-score reflects
the proportion of individuals with three or more points.

Painting Measure Music 1 Music 2 Music 3 Music 4

(a) F-score 3.8 3.2 3.1 3.77
P-score 100% 80% 60% 85%

(b) F-score 3.8 3.6 3.2 -
P-score 100% 80% 70% -

(c) F-score 3.4 3 2.7 3.85
P-score 90% 60% 40% 85%

(d) F-score 3.7 3 2.4 -
P-score 100% 70% 50% -

4.2.2. Measurements of Implicit Multi-Sensory Concordance

Experimental Methods: This experiment was conducted in groups 2 and 3, each consisting
of five men and five women. The members of group 2 first wrote a review after viewing the
four paintings. Group 3 then wrote a review after listening to the 12 music items. At this
time, the subjects were not provided any information about the content of the experiment;
the only guidelines that they received were to use all five senses when assessing the
artworks or music. Fourth, we measured multi-sensory concordance by comparing the
sensory language similarity of the reviews. We mapped words in the review using a
Korean sensory word classification table (Table [71]). Sensory word tables are classified as
gustatory, tactile, and temperature sensations; examples of such words are bitter, sweet,
salty, sour, nutty, astringent, spicy, plain, rough, smooth, soft (texture), soft (material), hard,
moist, sharp, cold, cool, lukewarm, warm, hot, etc.

Table 7 shows the results of the implicit multi-sensory concordance experiments. The
D-score refers to the Euclidean distance and the C-score to cosine similarity. Table 7 shows
that similar sensory trends between the two groups were measured through the C-score.
However, it can be confirmed that the C-score is not proportional to Table 6’s P-score
or F-score because the cosine similarity is advantageous for distance measurements in
high-dimensional positive space, but the size of each dimension is not meaningful. In other
words, only the trends in each dimension can be evaluated, while the size of the difference
is difficult to assess. We used the D-score to overcome this limitation. The C-score in Table 7
indicates the sensory similarity between both the music matched by experts and the music
matched by our system. The D-score was similarly measured. The results show that not
only can media art provide similar multi-sensory appreciation, but our system can also
provide similar results to those provided by experts. However, this result has the limitation
that a criterion was not provided to determine the significance according to magnitude of
the score. Future studies should develop a criterion to determine the significance of the
score’s magnitude.

4.2.3. Inverse Measurements of Implicit Multi-Sensory Concordance for Validation

Experimental Methods: This experiment was conducted in group 4, which comprised
nine men and one woman. The purpose of this experiment was to verify the experiments in
Section 4.2.2. A questionnaire was created based on a multi-sensory word table constructed
in Section 4.2.2. The experiment was conducted in the same order as that described in
Section 4.2.1, but the questionnaire was completed instead of a written review. The ques-
tionnaire evaluated the extent to which the appreciator agreed with the sensory table using
a five-point Likert scale.

Table 8 presents the results of the inverse implicit multi-sensory concordance experi-
ment. The A-score is the agreement scale, which was the average score obtained using the
five-point Likert scale. The C-score is the cosine similarity of the A-scores calculated based
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on an active value (3 or higher). The purpose of this experiment was to measure how much
the appreciator agreed with the implicit multi-sensory data. The A-scores and C-scores
were low because of the failure of the experiment. Several problems were encountered dur-
ing this experiment. The first problem was the mechanical marking phenomenon. When
responding to the questionnaire, subjects gave low scores to senses that were mechanically
opposed to the first high score. This was in contrast to the phenomenon where opposite
senses were expressed together in the free reviews of appreciation. The second problem
was the phenomenon of monotonous responses, which occurred when subjects became
familiar with the experiment. This phenomenon demonstrated the tendency of subjects to
exclude complex senses before appreciation. For example, the subjects gave low scores to
combinations of options, such as the bitter taste of wine and the sour taste of candy, before
even listening to music. Thus, in further studies, the validation of the experimental design
should be improved.

Table 7. Results of the implicit multi-sensory concordance experiments. The D-score is the Euclidean
distance and the C-score is the cosine similarity.

Painting Measure (a) (b) (c) (d)

Music 1 D-score 41.8 46.9 54.8 74.2
C-score 92% 89% 88% 75%

Music 2 D-score 48.9 50.9 52.4 55.7
C-score 89% 87% 87% 87%

Music 3 D-score 57.9 56.6 57.8 60.0
C-score 85% 82% 87% 84%

Music 4 D-score 56.6 - 44.2 -
C-score 85% - 92% -

Table 8. Results of the inverse implicit multi-sensory concordance experiment. The A-score is the
agreement scale and the C-score is the cosine similarity.

Painting Measure (a) (b) (c) (d)

Music 1 A-score 2.09 2.34 2.73 2.68
C-score 8% 10% 14% 27%

Music 2 A-score 2.45 2.55 2.62 1.46
C-score 12% 12% 12% 15%

Music 3 A-score 2.89 2.83 2.89 1.62
C-score 16% 15% 15% 16%

Music 4 A-score 2.82 - 2.21 -
C-score 15% - 8% -

4.3. Improvement of the Appreciation Experience with the Soundscape

Definition. “Improvement of the appreciation experience”: In this work, we defined the
measurable factor of “Improvement of the appreciation experience” as the combination
of appreciation and subjective satisfaction; however, this is an ambiguous concept. To
address this, we proposed an evaluation method for the immersion based on the flow
theory of Csikszentmihalyi. We differentiated flow and cognitive immersion in this study
according to flow theory. Flow was indirectly measured via time distortion phenomena,
and cognitive absorption was measured through a simple test of working memory and
attention concentration. The subjective satisfaction score of the appreciation experience
comprised experiences of the environment and appreciation. The subjective environmental
satisfaction was not related to improvements in the appreciation experience; however, the
environmental score was a useful indicator of if the environmental setting was appropriate.
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Appreciation scores were measured with a questionnaire based on the SSID [72] and WHO-
5 Well-Being indices. The SSID is an evaluation index for soundscapes, and the WHO-5
index is an evaluation index for quality of life. Our questionnaire was prepared based on
the SSID and WHO-5 Well-Being indices.
Experimental Setting: The participants in this experiment included a total of 29 men and 1
woman. They were divided into three groups, with each group consisting of 10 participants.
The roles of each group were as follows: Groups 5 and 6 participated in the immersion
experiments. Group 7 participated in the subjective satisfaction experiments. The criteria
for dividing the groups and other experimental conditions were similar to those described
for the previous experiments.

4.3.1. Measurements of Immersion

Experimental Methods: This experiment was conducted in groups 5 and 6. The purpose
of this experiment was to indirectly measure immersion. Time distortion was measured for
the flow measurement experiments. Group 5 appreciated artworks without listening to
music, and group 6 appreciated artworks while listening to music. Time distortion was
measured as the subjective assessment of time between the two groups, and flow was
evaluated indirectly from the time distortion measurements. Cognitive absorption was
measured with a simple test of working memory and attention concentration. This test
asked questions about the color, location, shape, and texture of an object or scene.

Table 9 presents the measurement results for the immersion experiment. Each row
presents the subjective times that participants felt while appreciating the exhibition. The
ground truth refers to the real length of the piece of music. The p-value is the result of the
t-Test, which was performed under the assumption that the variances were different. The
results of the time distortion experiment indicate that group 5 predicted a time closer to
the ground truth than group 6. In particular, participants in group 6 felt that more time
had elapsed than actually had. Two interesting phenomena were discovered during the
analysis of the interviews. The first was the “sleepy” phenomenon. When music pieces 1
or 4 were played, participants in group 5 did not experience sleepiness, while more than
80% of the participants in group 6 experienced sleepiness. The subjective viewing time was
2 m 36 s on average, while the experimental time was longer than the appropriate viewing
time, ranging from 3 m 37 s to 6 m 52 s. The second phenomenon was the phenomenon
of ambiguous answers. Group 5 answered with specific times, such as 4 m 20 s and 5 m
30 s, while group 6 tended to answer with ambiguous numbers, such as “about 5 minutes”
and “about 10 minutes”. In the experiments on cognitive absorption, the averages of the
answers given by each group in our simple test were used. The perfect score for this
test was 10. As shown in Table 8, groups 5 and 6 had an average score difference of 2.2.
This can be attributed to the sleepy phenomenon. Thus, with the results obtained from
this experiment, it was not possible to accurately confirm whether cognitive absorption
was affected or not. However, music is qualitatively conducive to cognitive absorption.
Examples of answers from participants included the following: “The bouncy rhythm in
the song reminded me of stars”; “The music felt like a young man in the country was
leaving the village, and it helped me remember because there was a real village in the
artwork”; “it wasn’t hard to find the location of the lover because I watched the couple
carefully because of the sentimental music being played.”

Table 9. Results of immersion experiments for assessing time distortion and cognitive absorption. A t-test was performed
with the assumption of different variances.

Painting Music 1 Music 2 Music 3 Music 4 Avg. Answer

Group 5 8 m 18 s 3 m 58 s 3 m 32 s 5 m 13 s 6.4
Group 6 10 m 22 s 4 m 43 s 5 m 18 s 7 m 20 s 4.2

Ground Truth 6 m 52 s 3 m 37 s 4 m 05 s 5 m 33 s -

p-value 0.00137 0.00123 5.51× 10−7 1.03× 10−10 0.00511
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4.3.2. Measurements of Subjective Satisfaction

Experimental Methods: This experiment was conducted in group 7. The purpose of this
experiment was to measure the subjective satisfaction score. The subjects appreciated the
paintings with the top music and filled out a questionnaire that was prepared based on the
SSID and WHO-5 Well-Being indices.

The subjective satisfaction scores, which were based on the environment and the
appreciation experience, are shown in Table 10. The top three questions were about
environmental experience. The environmental satisfaction scores ranged from 3.3 to 3.6,
which are fairly high scores. For the first question, discomfort was associated with 0 points
and comfort with 5 points. Therefore, this experiment was appropriately constructed to
assess the appreciation experience. The subjective satisfaction scores of appreciation ranged
from 3.1 to 4.0. Therefore, soundscape music can aid in appreciation.

Table 10. Questionnaire based on the SSID and WHO-5 Well-Being indices.

Question Avg. Score

Are you feeling uncomfortable with your appreciation? 3.3
Is the volume of the soundscape music appropriate for you? 3.5

Is the sound quality of the soundscape music being played good? 3.6

Did the soundscape music go well with the painting? 3.7
Did music help you to enjoy paintings more? 4.0

Did music help you to be more comfortable when appreciating the paintings? 3.1
Did music help you to take initiative and actively appreciate the paintings? 3.8

Did music make your appreciation of the paintings fresher? 3.3
Did music make your appreciation of the paintings more interesting? 3.3

5. Discussion

In this section, we would like to conduct an interdisciplinary analysis of how this
metaphorical and psychological transfer could have occurred. This interdisciplinary ap-
proach consists of five parts: The first is the consideration of the inter-sensory transition
phenomenon through the concept of synesthesia; the second is an artistic approach based
on the characteristics of the paintings that we used in our experiments; the third is the
consideration of the characteristics of deep neural networks in connection with the concept
of synesthesia and the characteristics of our paintings; the fourth includes the limitations
of this study and the future directions of development; the fifth is the overall blueprint of
our research.

First, we deal with synesthesia by focusing on the transition of senses. References [15–17]
show that media art can give potential cognitive and emotional impacts. We would like to
discuss why this effect could occur. Synesthesia is a blending of the senses in which the
stimulation of one modality simultaneously produces sensations in a different modality.
Synesthesia is known to affect four percent of the population. However, via color–alphabet
experiments with 400 people, studies [73] have shown that people without synesthesia
perceive synesthesia but do not consciously recognize it. In other words, non-synesthesia
implies that synesthesia is being perceived unconsciously. In particular, the study by [74]
dealt with implicit associations between color and sound, particularly showing that various
color properties can be mapped to acoustic properties, such as tone and volume. The study
by [75] showed that the properties of sounds can be associated with colors. The study
by [76] also demonstrated empirical investigations of the associations between auditory
and visual perception. Based on these experimental results, transitions between implicit
senses are possible; for example, value and hue can be mapped onto acoustic properties,
such as pitch and loudness, pitch can be associated with color lightness, loudness can be
mapped onto greater visual saliency, high loudness can be associated with orange/yellow
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rather than blue, and chroma can have a relationship with sound intensity. The following
sections cover the features of our artworks.

Second, the artworks used in our experiments were Impressionistic paintings. Impres-
sionism is a trend in art that focuses on colors, lighting, and textures, and it is characterized
by the ability to describe nature in the changing colors of light and to accurately and
objectively record the visible world using the momentary effects of colors and shades.
In particular, three of our four paintings were by Van Gogh, and he is known as a post-
impressionist. Van Gogh tried to thicken paint through the Impasto technique to express
the maximum texture and create a three-dimensional effect. In addition, Van Gogh did
not describe objects in the same way, but captured his emotion and feeling very strongly
through the touch of his brush. This distorted form, intense color, and simplification of the
form were sought to express emotions. The other painting was “Woman with a Parasol in
a Garden”. Renoir was an early impressionist who understood how to express the effects
of light, and was known to use black to express shadows. Therefore, the paintings we
used are from the early to the late Impressionist period, and they are characterized by their
good representation of colors, light, and texture. Therefore, we selected our paintings in
consideration of these features. The characteristics of the paintings were analyzed and the
possibilities of sensory transitions were addressed.

Third, we discuss how a deep neural network was able to recommend music and
paintings in the above consideration. The study by [77] dealt with the perspectives of
beauty, sentiment, and remembrance of art in deep neural networks. The study by [77]
quantitatively and qualitatively analyzed three subjective aspects of human consciousness:
image features in relation to aesthetics, sentiment, and memorability. This study indicated
that the CNN considered features of various aspects, such as color, intensity, harmony of
colors, object emphasis, pattern, art style, semantics, genre, and content. This study also
addressed how deep neural networks judge and remember emotional and artistic values
by exploring predicted aesthetic and emotional memory scores in the context of art history.
In particular, these experiments also showed that aesthetic and emotional scores and color
correlations are consistent with common assumptions. These experimental results show
that deep neural networks consider factors that can cause sensory transference. Therefore,
these features make our sensory transition possible.

Fourth, we address the limitations of our experiment and the directions of future
study. There is a limitation in that no global solution was shown. The limitations can be
seen from three perspectives: The first is that our research only dealt with Impressionist
paintings from an artistic point of view. Therefore, further study is needed as to whether
such studies can be applied to different artistic styles beyond Impressionism. The second is
the problem of generalization; this study is not representative of the general population
because the experiments were conducted on people in their 20s in Korea. In addition,
research should be conducted on whether the experimental results are universal or if they
are due to social learning. If the results obtained are due to social learning, extended
studies should also be carried out from various perspectives, including culture, age, and
local areas. Future research will therefore need to extend these local solutions into a global
solution. The third is the effectiveness of media art, which can have potential cognitive
and emotional impacts. However, our research focused on the potential cognitive impacts
of the experiments. Therefore, we measured emotional impact with the F-score, the most
representative and implicit single scalar value. These representative features of F-score
can be influenced by various factors, such as emotions and environments, as well as by
potential cognitive factors. Therefore, more detailed measurements should be studied in
the future.

Fifth, our experiment was intended to enhance the experience of appreciation of media
art through the effect of visual and auditory transitions. The transitions of these senses can
be expected not only in vision and hearing, but also between various other senses, such
as vision and smell or vision and touch. In this study, we aimed to create a platform that
guides blind people through sensory transition they appreciate media art. Finally, we hope
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that this multi-sensory experience will be harmonized and become abundant in media art.
Furthermore, we hope that our proposed method will be applied to multi-modal media art
platforms to help visually impaired people appreciate artworks.

6. Conclusions

This study described the construction of a soundscape-based exhibition environment
using deep neural networks. The baseline was improved by different perspectives, such
as modeling methods, learning methods, and domain adaptation methods. In addition,
the soundscape music selected by our system was output via hyper-orientated speakers to
improve the appreciation experience. To measure the improvements in user experience, we
devised a soundscape music evaluation method and an appreciation experience evaluation
method and conducted extensive experiments with 70 subjects. However, our research
suffered from three major limitations. First, this was not state-of-the-art performance
from the perspective of the deep neural network. In particular, models with low accuracy
from the feature extraction perspective were selected for mutual learning. Therefore, the
development of models with improved audio feature representation is required. Second,
our current database comprised only 2000 music items. In addition, these 2000 music pieces
were limited from the genre perspective. A wide spectrum of databases containing music
from various cultures and times should be used in future studies. Third, we conducted
experiments using 70 individuals, but each experiment was conducted on a group of
only 10 people. Therefore, our experimental results cannot be generalized. Large-scale
experiments need to be conducted to generalize these experimental results. This study
shows the results of a pilot test with sighted test participants. We hope that the results
of this study help people with visual impairments to appreciate art and that they help
promote the cultural enjoyment rights of people with visual impairments.
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