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Abstract: Colorectal cancer (CRC) is the third most common type of cancer with the liver being
the most common site for cancer spread. A precise understanding of patient liver anatomy and
pathology, as well as surgical planning based on that, plays a critical role in the treatment pro-
cess. In some cases, surgeons request a 3D reconstruction, which requires a thorough analysis of
the available images to be converted into 3D models of relevant objects through a segmentation
process. Liver vessel segmentation is challenging due to the large variations in size and directions of
the vessel structures as well as difficult contrasting conditions. In recent years, deep learning-based
methods had been outperforming the conventional image analysis methods in the field of medical
imaging. Though Convolutional Neural Networks (CNN) have been proved to be efficient for
the task of medical image segmentation, the way of handling the image data and the preprocessing
techniques play an important role in segmentation. Our work focuses on the combination of different
vesselness enhancement filters and preprocessing methods to enhance the hepatic vessels prior to
segmentation. In the first experiment, the effect of enhancement using individual vesselness filters
was studied. In the second experiment, the effect of gamma correction on vesselness filters was
studied. Lastly, the effect of fused vesselness filters over individual filters was studied. The methods
were evaluated on clinical CT data. The quantitative analysis of the results in terms of different
evaluation metrics from experiments can be summed up as (i) each of the filtered methods shows
an improvement as compared to unenhanced with the best mean DICE score of 0.800 in comparison to
0.740 for unenhanced; (ii) applied gamma correction provides a statistically significant improvement
in the performance of each filter with improvement in mean DICE of around 2%; (iii) both the fused
filtered images and fused segmentation give the best results (mean DICE score of 0.818 and 0.830,
respectively) with the statistically significant improvement compared to the individual filters with
and without Gamma correction. The results have further been verified by qualitative analysis and
hence show the importance of our proposed fused filter and segmentation approaches.

Keywords: hepatic vessels; enhancement; Frangi; Hessian; Meijering; Sato; gamma correction; CT

1. Introduction

Colorectal cancer is the third most common type of cancer with≈1.9 million new cases
and ≈935 thousand deaths yearly [1]. At the time of diagnosis, approximately a quarter
of the patients already have cancer spread into the liver in the form of metastasis [2,3].
Detection, definition and mapping of these metastases require medical imaging.
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Medical image segmentation is the process of locating and extracting the anatomical
structures of interest or pathologies from medical images such as computed tomography,
magnetic resonance imaging, ultrasound, etc. Extraction of hepatic vessels and their
relationship with tumors play an important role in liver surgery treatment and planning [4].
In addition, liver vessel extraction aids in visualization, liver segment approximation, multi-
modal registration, where vessels act as landmarks, computer-aided diagnosis and surgery
[4,5]. The manual delineation of hepatic vessels is often time-consuming, error-prone
and highly user dependent. Image-related challenges, such as high signal-to-noise ratio,
low image resolution, inhomogeneous background, varying contrast between the vessels
and liver parenchyma, imaging artifacts and varying vessel thickness [6] make hepatic
vessel segmentation challenging. In recent years, deep learning-based methods have
become widely used for various medical image analysis tasks. Though deep learning-based
segmentation is proven to be efficient, the way of data handling and the enhancement
of images that go into the deep learning model has a major influence on the precise
segmentation. Especially for complex structures such as vessels, enhancement techniques
are proven to be effective prior to segmentation and visualization [7–9]. In particular,
Hessian-based vessel enhancement filters are most popularly used compared to other
techniques [10–14].

In this work, the impact of four different multi-scale vesselness filters, including Hes-
sian, Sato, Frangi and Meijering, were studied experimentally. The effect of enhancement
has been evaluated based on 3D U-net, a widely used deep-learning based segmentation
model in the medical imaging domain. To review the impact of enhancement on segmen-
tation, we compared the segmentation results with and without vesselness enhancement.
We also compared the performance of different multi-scale vesselness filter. Secondly, we
studied the effect of gamma filtering on vesselness enhanced images. Finally, we proposed
to fuse the outcome from the filtered and gamma corrected images in two different designs,
and the effect of fusing the outcome is compared over the individual vesselness filter. We
evaluated the methods on the clinical dataset.

2. Related Work

In Frangi et al. [10], the vesselness measure is obtained based on all eigenvalues
of the Hessian, a multi-scale second order local structure of the image. Yang et al. [12]
improved the multi-scale enhancement technique inspired by Frangi et al. [10] to enhance
the vessel structures for retinal vessel segmentation. Kumar et al. [15] developed a mod-
ified multi-vesselness filter based on the Hessian matrix for the center line extraction of
blood vessels. In Drechsler et al. [13], the enhancement method is based on the Lapla-
cian for the tubular structures. Jerman et al. [14] implemented a enhancement filter
based on the ratio of multi-scale Hessian eigenvalues to accurately enhance the borders
between the vessel structures and the background. In Lamy et al. [16], seven different
Hessian based vesselness filters were compared and benchmarked on the IRCAD and
VasucSynth datasets. The enhancement methods were evaluated using level-set-based
segmentation. Zeng et al. [17] proposed a Hessian-based multi-feature method to segment
the liver vessel structures prior to segmentation based on the extreme learning machine.
Manh Luu et al. [18] evaluated five different diffusion filters for enhancing the liver vessels
in 3D CTA images. In Phellan and Forkert [19], different vessel enhancement algorithms
were applied to time-of-flight MRA images for cerebrovascular segmentation and then
compared.

In Shahid and Taj [7], a combination of adaptive histogram equalization, morphologi-
cal top-hat filter, high boost filtering and Frangi filter were employed for the purpose of
retinal vessel enhancement prior to deep learning-based segmentation. In Soomro et al. [8],
morphological operators and the contrast limited adaptive histogram equalization (CLAHE)
technique were used to enhance and segment the retinal vessels. In Blaiech et al. [9],
to study the effect of enhancement, CLAHE, Frangi and ranking the orientation response
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of path operators(RORPO) were used to enhance the coronary artery for the purpose
of segmentation.

Gamma correction is widely used in the medical image enhancement process. In Karup-
panagounder and Palanisamy [20], a gamma correction-based technique is used to enhance
medical MRI and CT images. In Tiwari and Gupta [21], a combination of gamma correction
and homomorphic filtering was used to enhance knee MRI images. In Dash and Senapati [22]
and Zhitao et al. [23], the combination of gamma correction with other enhancement tech-
niques was used to enhance the retinal blood vessels from the ophthalmic images.

In the field of medical image segmentation, 3D U-net [24] based architectures are
widely used for various volumetric segmentation tasks [25].

Inspired from the literary works, in this paper, we also studied the effect of the combi-
nation of Hessian-based vesselness filters and gamma-correction technique for the hepatic
vessel enhancement. We also proposed fusing the outcome from the vesselness filtered and
gamma-corrected images to improve the effect of enhancement for the purpose of deep
learning-based hepatic vessel segmentation.

This paper consists of seven sections. The Section 1 gives an introduction to the paper
and the motivation behind it. The Section 2 describes the background and related work.
The various methods and the datasets used in the paper are presented in Section 3. The ex-
periments comparing different methods are presented in Section 4 and their corresponding
results are presented in Section 5. Section 6 summarizes the discussion of the results
and Section 7 presents the conclusion and suggests future work.

3. Materials and Methods

In this section, the dataset, experimental setup, methodology and different evaluation
techniques used in the experiments are explained.

3.1. Dataset

This study utilizes a dataset derived from Oslo University hospital OSLO-COMET
(Oslo Randomized Laparoscopic Versus Open Liver Resection for Colorectal Metastases
Trial). (ClinicalTrials.gov: NCT01516710) with necessary approvals from both local and
regional ethical committees. All study participants had colorectal liver metastasis and
were referred for liver resection. The used dataset consists of 57 contrast-enhanced
computed tomography (CT) images from 4 manufacturers and 13 different CT machine
models. These volumes were processed and manually segmented by a medical doctor.
The segmentation process involved a combination of ITK-SNAP [26] and SLICER [27] to an-
notate liver parenchyma and clearly visible vessels. All datasets were scaled to an isotropic
resolution of 1 × 1 × 1 mm. We split the dataset as 70% for training, 20% for validation
and 10% for testing.

3.2. Experimental Setup

The vessel enhancement and gamma-correction filters were implemented using
the scikit-image library [28] in python. For segmentation, the Chainer implementation of
3D U-net [24] was used. In total, 11 models based on different inputs (Unenhanced, Frangi,
Hessian, Meijering, Sato, FrangiGC, HessianGC, MeijeringGC, SatoGC, FilterAdded) were
trained to segment the hepatic vessel structures. The models were trained on a cluster with
multiple V100 GPUs with 32GB video memory. All models were trained using the same
hyper-parameter configurations including softmax-cross-entropy loss, adam optimizer,
ReLU activation function and initial learning rate of 0.0001. The weights were initialized
using He’s initialization method. A patch size of 64 × 64 × 64 was used as an input to
the U-net model.

3.3. Preprocessing

Prior to vessel enhancement, Hounsfield unit (HU) windowing and Gaussian smooth-
ing were used as a preprocessing step.
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3.3.1. HU Windowing

Hounsfield unit(HU) windowing/intensity clipping is the contrast enhancement
technique that highlights the particular structure. By adjusting the attenuation level and
range in the image, the tissue of interest can be highlighted [29]. To enhance the hepatic
vessel structures (Figure 1b), we used a HU range from 80 to 220.

Figure 1. Comparison of different enhancement methods. (a) Original image, (b) HW, (c) Ground
truth, (d) Frangi, (e) Hessian, (f) Meijering, (g) Sato, (h) FrangiGC, (i) HessianGC, (j) MeijeringGC,
(k) SatoGC, (l) FilterAdded.

3.3.2. Gaussian Smoothing

Hessian-based vesselness filters are highly sensitive to noise and sharp edges. To re-
duce the noise, Gaussian smoothing or blurring of σ = 1 was applied prior to vessel
enhancement filtering. Gaussian smoothing is given by,

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

3.4. Vesselness Enhancement

We investigated four different Hessian-based vessel enhancement filter techniques
in our work. They are based on the second-order derivatives of the image intensity
identifying the curvilinear structures in the image. These filtering techniques compute
the Hessian matrix of the image f(X) where X = (x,y,z). The Hessian matrix is defined by

H( f ) =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 =


∂2 f
∂x2

1

∂2 f
∂x1∂x2

∂2 f
∂x1∂x3

∂2 f
∂x2∂x1

∂2 f
∂x2

2

∂2 f
∂x2∂x3

∂2 f
∂x3∂x1

∂2 f
∂x3∂x2

∂2 f
∂x2

3

 (2)

To reduce the effect of noise and to tune the filter to the width of the structures,
the standard deviation σ Gaussian kernel is applied to image I along with the second
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derivative. This makes the filter, a multi-scale framework where the vessel scale depends
on the σ.

λ1, λ2, λ3 are the eigen values and e1, e2, e3 are the corresponding eigenvectors of H( f ).
On sorting λ1 ≤ λ2 ≤ λ3, e1 represents the direction along which the second derivative
is maximum, i.e., the direction of the vessel. The eigenvectors e2 and e3 corresponds to
the cross section directions of the vessel. This is referred to as the tube model [5,10]. Figure
1 shows an example image when different vesselness filtering techniques are applied.

3.4.1. Frangi Vesselness Filter

To discriminate between the different structures, the Frangi vesselness filter [10] used
three eigenvalues. Based on these three eigenvalues, three measures to discriminate blobs
(Rb), distinguish between the plate and line structures (Ra), Hessian norm measure to
reduce the influence of noise (S) were derived.

Rb = |λ1|/
√
|λ2λ3| (3)

Ra = |λ2||λ3| (4)

S =
√

λ2
1 + λ2

2 + λ2
3 (5)

These measures are used in the function,

F =

(
1− exp

(
− R2

a
2α2

))
exp

(
−

R2
b

2β2

)(
1− exp

(
− S2

2c2

))
(6)

The parameters α, β, c are the thresholds that control the function.

3.4.2. Hybrid Hessian or Hessian Vesselness Filter

Ng et al. [30] proposed a modified multi-scale Hessian filter by combining the direc-
tional gradient and Hessian matrix. The directional gradient of the image is computed and
used to calculate the Hessian matrix H at specific scale σ. Each approximation in the H is
the convolution between the directional gradient and Gaussian kernel. To obtain the tex-
ture orientation, the eigenvalues λ1 and λ2 are derived and used to compute the curve
derivation R and similarity measure S. Using R and S, the curvilinear likeliness ε is derived
and given by [30],

E(x, y, σ) =


0 if λ2 < 0

e
− R

2β2
1

[
1− e

− s
2β2

2

]
otherwise

(7)

The final output L of the filter will be the maximum of all scales that approximate
the size of the ridges, given by

L(x, y) = max
σmin6σ6σmax

[E(x, y, σ)] (8)

The parameters β1, β2 control the sensitivity of the filter.

3.4.3. Meijering Vesselness Filter

Meijering et al. [31] proposed a parameter-free vesselness function to detect elongated
structures such as neurites. The method is based on the modified Hessian matrix H′( f ).
The method was initially developed in 2D and later extended to 3D in [32], given by [16],

H′( f ) =

 h11 +
α
2 (h22 + h33)

(
1− α

2
)
h12

(
1− α

2
)
h13(

1− α
2
)
h21 h22 +

α
2 (h11 + h33)

(
1− α

2
)
h23(

1− α
2
)
h31

(
1− α

2
)
h32 h33 +

α
2 (h11 + h33)

 (9)
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In general, α = 1/3. The eigenvalues of H′( f ) with respect to H(f) is expressed as

λ′i = λi + αλj + αλk (10)

for i 6= j 6= k.
The vesselness is defined by,

F =

{
λmax/λmin λmax < 0
0 λmax > 0

(11)

where, λmax = max{λ′1, λ′2, λ′3} which is computed at each voxel and λmin is the minimum
of all λmax of the image.

3.4.4. Sato Vesselness Filter

Sato et al. [33] proposed a line enhancement filter function based on the tube model.
It is given by,

F =


λc exp

(
− λ2

1
2(α1λc)

2

)
λ1 6 0, λc 6= 0

λc exp
(
− λ12

2(α2λc)
2

)
λ1 > 0, λc 6= 0

0 λc = 0

(12)

where α1 < α1, λc = min{−λ2,−λ3}. Sato et al. [33] sorted the eigenvalues λi as λ1 ≥
λ2 ≥ λ3 The parameters α1 and α2 control the assymmetrical strength and formulation.

3.5. Gamma Correction

Gamma correction or gamma (γ) is a non-linear operation used in histogram ad-
justment. The intensity of each pixel in the image scaled to the range [0,1] and raised to
the power of γ and scaled back. It is given by the expression [34],

Vout = AVγ
in (13)

where, A is a constant, Vin is the original image and Vout is the gamma-corrected image.
When γ < 1, the fainter objects becomes more intense while the brighter objects

remain the same. If γ > 1, the medium intensity objects becomes fainter while the brighter
objects remain the same.

3.6. Masking

To reduce the search space of the 3D U-net, the liver region of interest (ROI) is obtained
using the U-net model [35,36]. The liver ROI does not include the inlet of the major liver
vessels. So, the hepatic vessel ground truth labels were added to get the final liver mask
(Figure 2). Hessian-based vesselness filters are very sensitive to gradient change. In order
to avoid the false positives occurring in the liver borders, the liver is masked in the final
step after the application of vessel enhancement filters.

Figure 2. Masking. Liver ROI (left), vessel ground truth (middle), final liver mask (right).
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3.7. Evaluation

In order to evaluate the results from the experiments, both quantitative and qualitative
evaluations were performed. The quantitative evaluation is based on different evaluation
metrics and the qualitative evaluation is based on the visual inspection and comparison
analysis between predicted and ground truth segmentation.

3.7.1. Quantitative Evaluation

In order to evaluate the segmentation performance, we have selected five different
evaluation metrics. These include spatial overlap-based assessment methods such as
DICE, Volume Overlap Error (VOE) and Relative Absolute Volume Difference (RAVD)
and distance-based measures such as Average symmetric surface distance (ASSD) and
maximum symmetric surface distance (MSSD). Below, we briefly describe these metrics.

3.7.2. Dice Coefficient (DICE)

The Dice coefficient (DICE) is the most commonly used metric for validation in medical
image segmentation. It is used to find the overlap between the ground-truth segmentation
Sg and the predicted segmentation Sp using

DICE =
2|Sg ∩ Sp|
|Sg|+ |Sp|

(14)

where |Sg| and the |Sp| are the cardinalities of the two sets.

3.7.3. Volume Overlap Error (VOE)

Volume Overlap Error is defined as

VOE = 1−
VSp ∩VSg

VSp ∪VSg

(15)

where VSp and VSg are the volumes of segmented regions in the predicted segmentation
and ground-truth segmentation, respectively. A value of zero for VOE corresponds to
perfect segmentation.

3.7.4. Relative Absolute Volume Difference (RAVD)

Relative Absolute Volume Difference is another volume-based metric and is defined
as the ratio of the absolute difference between two segmentation volumes (predicted and
ground-truth) and the volume of ground-truth segmentation

RAVD =
|(VSp −VSg)|

VSg

(16)

A value of RAVD closer to 0 generally corresponds to better segmentation, whereas
a higher value suggests poorer segmentation.

3.7.5. Average Symmetric Surface Distance (ASSD)

Average Symmetric Surface Distance is defined as the average of all the distances from
boundary points of the segmented image regions to those in the ground-truth. It is given
by the following equation:

ASSD(A, B) = ∑a∈A[dist(a, b)] + ∑b∈B[dist(b, a)]
NA + NB

(17)
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where A and B represent the predicted and ground-truth surfaces, respectively, NA and NB
are the number of points on each A and B, and dist(a, b) is the directed distance between
mesh points on A and B and is given by

dist(a, b) = min
b∈B
||a− b|| (18)

with ||.|| being the Euclidean distance. A smaller value of ASSD implies better segmenta-
tion results.

3.7.6. Maximum Symmetric Surface Distance (MSSD)

Maximum Symmetric Surface Distance is referred to as the maximum of two directed
distances between the regions in the ground-truth and segmented image. Similar to ASSD,
a smaller value of MSSD implies better segmentation results. For two finite point sets,
MSSD is defined in terms of directed distance dist(a, b) as

MSSD(A, B) = max(max
a∈A

(dist(a, b)), max
b∈B

(dist(b, a))) (19)

3.7.7. Qualitative Visual Evaluation

Qualitative visual inspection and evaluation were performed by the same medical
doctor who made initial ground truth segmentations. To review predictions from the 3D
U-net, 3D Slicer was used to load the original CT images and ground truth segmentations
together with predictions. Firstly, the predictions generated from the different enhancement
methods were visually inspected. The continuity of major vessels and main bifurcations,
which have great clinical importance understanding inflow and outflow in the liver were
mainly focused. Secondly, the under- and over-segmentations by calculating the difference
between ground truth and predictions were created. These segmentations were visually
inspected and used for HU calculation.

4. Experiments

The three experiments conducted in this work are presented in this section. In the
first experiment, the effect of different vesselness filters were compared over unenhanced
images. In the second experiment, the effects of gamma correction on vesselness filters
were studied. In the third experiment, the effect of the fused/combined filter approach
was studied.

4.1. Experiment 1: Comparison of Different Vesselness Filters

The aim of the first part of the experiment is to compare the results of the unenhanced
hepatic vessel segmentation with the segmentation results obtained using different ves-
selness filters. The second part of the experiment is to compare Frangi, Sato, Meijering
and Hessian vesselness filters. For this experiment, a total of five different models were
trained. The first model was trained with the images without any vessel enhancement
filter. Four other models were trained on Frangi, Sato, Meijering and Hessian vesselness
filtered images (Figure 1d–g), respectively. The workflow of the experiment using these
five models is shown in Figure 3.

4.2. Experiment 2: Effect of Gamma Correction on Vesselness Filters

In this experiment, the effect of the gamma correction technique on the four vesselness
filters was studied. The gamma correction was applied on vesselness filtered images and
these images (Figure 1h–k) were used as an input to the four 3D U-net models (Figure 4).
The segmentation results obtained using gamma-corrected images were compared with
the vesselness filtered images without gamma correction.
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Figure 3. Workflow of the unenhanced and different vesselness enhancement approaches.

Figure 4. Workflow of different vesselness enhancement approaches with gamma correction.

4.3. Experiment 3: Fused Vesselness Filters

In experiment 3, we studied the effect of fused/combined vesselness filters on the in-
dividual filters. For this experiment, two different designs were studied. In the first
design, the output from the four different filters followed by gamma correction was added
channel-wise (Figure 1l). The U-net model was trained on the vesselness added image
(FilterAdded (Figure 5)). In the second design, the output or the prediction from the four
models trained using the four vesselness enhanced gamma-corrected images were added
(SegAdded (Figure 6)) and analyzed. In order to reduce false positives, only the pixels
predicted from at least two different filters were considered:

SegAdded = (Fg ∩Hg)∪ (Fg ∩Mg)∪ (Fg ∩ Sg)∪ (Sg ∩Hg)∪ (Sg ∩Mg)∪ (Hg ∩Mg) (20)

where Fg, Hg, Mg and Sg are Frangi-, Hessian-, Meijering- and Sato- gamma corrected
images respectively.
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Figure 5. Workflow of the combined vesselness filter output (FilterAdded).

Figure 6. Workflow of the combined prediction from different vesselness filters (SegAdded).

5. Results

The results from the experiments based on both the technical evaluation and clinical
evaluation are analyzed in this section.

5.1. Quantitative Evaluation

In order to evaluate the quality of segmentation, we used the five evaluation metrics
presented in Section 3.7.1 namely DICE, VOE, RAVD, ASSD and MSSD. Figure 6 shows
the boxplots for each of these metrics for Experiment 1, where the model trained using
unenhanced images is compared to those trained with filtered images without Gamma
correction. From the DICE boxplot in Figure 6a, we can observe that the models trained
on Sato filtered and Meijering filtered give the best median values and overall spread
whereas that based on Frangi gives the worst performance amongst the filtered images.
A similar trend is also observed for VOE (Figure 6d). For ASSD and MSSD (Figure 6b,e),
the median value of the model trained on unfiltered images is the best. This is followed
in order by Meijering, Sato, Hessian and Frangi for ASSD and by Hessian, Sato, Frangi
and Meijering for MSSD. However, in terms of consistency, all the filtered models can be
considered to be superior to the model trained on unenhanced images on the basis of ASSD
and MSSD with Hessian being the best, followed by Sato. Finally, for RAVD (Figure 6c), we
also observe the best median value for unenhanced followed closely by Hessian, Meijering,
Sato and Frangi. In terms of consistency, all models have a similar spread. However, it is
important to note that for each metric unenhanced has an outlier value with a very high
deviation which may be attributed to the lack of robustness of this model. Overall, Sato
and Meijering can be considered to be the best performing model in Experiment 1 with
Hessian as the second-best. This conclusion can also be confirmed on the basis of Table 1
where the mean and standard deviation of different metrics for each model are presented.
From the table, we can see that, amongst the five models compared, Meijering has the best
values for all metrics except ASSD, with Sato being the second-best for DICE and VOE,
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indicating a good overlap between the two volumes. For distance-based metrics, Hessian
gives the best mean values which are closely followed by Sato and Meijering. For RAVD,
unenhanced has the best mean value, although the value of standard deviation is very high
in this case.

Table 1. Mean and standard deviation values for Segmentation metrics with
different filtering.

Filtering DICE ASSD RAVD VOE MSSD

Unenhanced 0.740 ± 0.121 1.982 ± 2.135 0.310 ± 0.380 0.340 ± 0.136 3.132 ± 3.887

Frangi 0.764 ± 0.057 1.285 ± 0.294 0.229 ± 0.136 0.378 ± 0.073 1.683 ± 0.438

Hessian 0.782 ± 0.037 1.186 ± 0.172 0.198 ± 0.113 0.356 ± 0.050 1.481 ± 0.298

Meijering 0.800 ± 0.024 1.213 ± 0.289 0.197 ± 0.085 0.333 ± 0.033 1.624 ± 0.384

Sato 0.796 ± 0.032 1.202 ± 0.246 0.221 ± 0.119 0.338 ± 0.044 1.638 ± 0.491

FrangiGC 0.778 ± 0.045 1.236 ± 0.235 0.215 ± 0.131 0.360 ± 0.059 1.577 ± 0.426

HessianGC 0.802 ± 0.031 1.182 ± 0.254 0.156 ± 0.092 0.330 ± 0.042 1.462 ± 0.325

MeijeringGC 0.814 ± 0.026 1.153 ± 0.216 0.150 ± 0.081 0.313 ± 0.037 1.431 ± 0.288

SatoGC 0.814 ± 0.026 1.022 ± 0.175 0.179 ± 0.085 0.313 ± 0.037 1.294 ± 0.226

SegAdded 0.830 ± 0.026 0.979 ± 0.191 0.150 ± 0.084 0.290 ± 0.039 1.227 ± 0.269

FilterAdded 0.818 ± 0.031 0.995 ± 0.223 0.159 ± 0.076 0.306 ± 0.043 1.206 ± 0.235
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Figure 6. Comparison of segmentation for unenhanced and different filtered images (red + are outliers). (a) DICE; (b) ASSD;
(c) RAVD; (d) VOE; (e) MSSD.

In Experiment 2, we have also included the results of models trained on filtered and
gamma-corrected images. Figure 7 shows the results from this experiment. The left-most
box in each boxplot in the figure is that from the unenhanced whereas the remaining boxes
are presented in pairs to highlight the differences between the models trained on filtered
images with and without gamma correction. In each pair, the boxes in blue represent
results from models without gamma correction whereas those in red correspond to those
with gamma correction. Overall, we can observe that the models trained with gamma-
corrected versions perform much better than their corresponding counterparts with better
median values and similar spreads. From among all the methods compared SatoGC has,
in general, the best values for all the five metrics followed by MeijeringGC. On the other
hand, unenhanced and Frangi give the worst performance from all the methods compared.
This holds true also for comparison between mean and standard deviation values as can be
seen in Table 1.



Electronics 2021, 10, 1165 13 of 23

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Unenhanced Frangi Hessian Meijering Sato

DICE coefficient

D
IC

E
 V

a
lu

e
s

(a)

0

1

2

3

4

5

6

Unenhanced Frangi Hessian Meijering Sato

ASSD

A
S

S
D

 V
a
lu

e
s

(b)

0

0.2

0.4

0.6

0.8

1

1.2

Unenhanced Frangi Hessian Meijering Sato

RAVD

R
A

V
D

 V
a

lu
e

s

(c)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Unenhanced Frangi Hessian Meijering Sato

VOE
V

O
E

 V
a
lu

e
s

(d)

1

2

3

4

5

6

7

8

9

10

11

12

Unenhanced Frangi Hessian Meijering Sato

MSSD

M
S

S
D

 V
a

lu
e

s

(e)

Figure 7. Comparison of segmentation of unenhanced (first red) and filtered images without (blue) and with (red) Gamma
correction. (a) DICE; (b) ASSD; (c) RAVD; (d) VOE; (e) MSSD.

Finally, for Experiment 3, we have compared the results of the two configurations
in Figures 5 and 6 denoted by SegAdded and FilterAdded with unenhanced. These results
are shown in Figure 7. From the results, we can clearly observe that both these meth-
ods outperform unenhanced in terms of median values and overall consistency. Both
have higher DICE values and lower values for all other metrics depicting better perfor-



Electronics 2021, 10, 1165 14 of 23

mance. If we compare the performance of the two methods with each other, FilterAdded is
the better one with the best median values and a smaller spread for all the metrics. To get
an idea of the overall best- and worst-performing methods, we have plotted boxplots of all
the methods from the three experiments in Figure 7. For DICE (Figure 7a), FilterAdded has
the highest median value with a small spreads and hence is the best performing method.
This is followed by SegAdded and SatoGC methods. Among the worst-performing are
the unenhanced and Frangi. For ASSD (Figure 7b), the best three are the same but Frangi
is the worst in terms of median, whereas unenhanced has the lowest consistency despite
a better median value. The same holds true for the MSSD metric (Figure 7e). Similarly,
for RAVD (Figure 7c) and VOE (Figure 7d) the best three are FilterAdded, SegAdded and
SatoGC, respectively, whereas Frangi is the worst for RAVD and unenhanced is the worst
for VOE with a very large spread. Table 1, displays the mean and standard deviation
values from all the filtered and unfiltered models. The values highlighted in bold indicate
the best performance for each metric, whereas those in italic are the worst. From the table,
we can observe that, as expected, most of the conclusions made based on the boxplots
hold true in terms of these values also. In terms of mean and standard deviation values,
SegAdded shows the best performance overall with FilterAdded not very far behind.
To analyze the significance, we also performed paired t-tests to compare different filtering
methods with the two best methods and found improvement using SegAdded to be sta-
tistically significant from all of them for majority of metrics. The same results were also
found for comparison of all filtered methods with FilterAdded, with the only exception
of MeijeringGC and SatoGC, where only values from one of the five metrics were found
to be statistically more significant. Hence, in terms of these quantitative results, it can be
considered safe to conclude that the SegAdded and the FilterAdded methods are the best
whereas the unenhanced and the Frangi give the poorest segmentation results. Figure 8
shows the comparison between both the Frangi and SegAdded which has the worst and
best mean Dice score respectively.
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Figure 7. Comparison of segmentation of filtered images with combination of filters. (a) DICE; (b) ASSD; (c) RAVD; (d)
VOE; (e) MSSD.
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Figure 7. Comparison of all the methods. UE—Unenhanced, SegAd—SegAdded, FilAd—FilterAdded, Fr—Frangi, FrGC—
FrangiGC, He—Hessian, HeGC—HessianGC, Me—Meijering, MeGC—MeijeringGC, Sa—Sato, SaGC—SatoGC. (a) DICE;
(b) ASSD; (c) RAVD; (d) VOE; (e) MSSD.

5.2. Qualitative Evaluation

General inspection of the predictions show that results are good as an initial seg-
mentation of the vessels which can be manually corrected, though different fusions and
disruptions of vessels are present, examples shown in Figure 9. These errors are clearly
seen by visual inspection of the inferences together with calculated territories of over- and
under-segmentation with examples shown in Figure 10. Most of the errors are in the edges
and borders of vessels. This is supported by values in the CT images showing lower
average HU for both over- and under-segmentation, shown in Table 2.
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Figure 8. Liver vessel segmentation overlay on ground truth using Frangi enhanced image which
has the worst Dice score; 2D slice (top-left) and 3D view (top-right), and SegAdded image which has
the best Dice score; 2D slice (bottom-left) and 3D view (bottom-right).

Table 2. Average overall HU for test data evaluation with over- and under-segmentation.

Label Overall Over-segmentation Under-segmentation

Ground truth 151.91 ± 33.30 N/A N/A

Unenchanced 149.60 ± 38.50 119.89 ± 40.32 135.60 ± 31.90

Frangi 157.23 ± 32.16 123.16 ± 26.28 131.86 ± 29.12

Hessian 155.28 ± 33.89 123.25 ± 25.83 133.91 ± 26.31

MeijeringGC 153.08 ± 33.50 124.05 ± 25.90 132.81 ± 27.73

SatoGC 154.57 ± 33.32 125.42 ± 25.17 132.40 ± 26.16

FrangiGC 157.04 ± 32.03 124.71 ± 26.05 131.32 ± 29.05

HessianGC 153.78 ± 33.94 123.96 ± 25.11 133.67 ± 25.95

Meijering 154.77 ± 33.40 124.13 ± 26.36 133.05 ± 27.60

Sato 156.17 ± 33.66 128.31 ± 25.39 129.84 ± 26.40

SegAdded 153.85 ± 33.29 126.06 ± 24.82 131.61 ± 25.96

FilterAdded 154.04 ± 33.59 125.05 ± 25.25 132.41 ± 25.84

Overall, the predictions from the deep learning model had an average HU 124.36 ± 26.95
for over-segmentation and 132.59 ± 27.45 for under-segmentation compared to an average
151.91 ± 33.30 for the ground truth. Both over- and under-segmentation capture HU values
on average lower than ground truth which indicates that most of the errors are in the edges
or additional territories with lower amounts of contrast. In some cases and some slices, pre-
dictions in several filtered images captured vessels which were not segmented in the ground
truth, examples shown in Figure 9.
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Figure 9. Left image—an example of oversegmentation in the borders of the vessels with a vessel
fusion in the bifurcation (red arrow). Middle image—undersegmentation disrupting vessel continuity
(blue arrow). Right image—an example of a segmented vessel which was not detected and segmented
in the ground truth (green arrow).

Figure 10. A slice in the CT images from test data followed by examples of oversegmentation (shown
in red) and undersegmentation (shown in blue) from all image enchanchements tested. (a) Original
image, (b) Unenhanced, (c) Frangi, (d) Hessian, (e) Meijering, (f) Sato, (g) FrangiGC, (h) HessianGC,
(i) MeijeringGC, (j) SatoGC, (k) SegAdded, (l) FilterAdded.

The model trained on unenhanced images generated a visually more “noisy” segmen-
tation with more variations and more extreme errors, shown in Figure 11. Additionally,
the model trained on the unenhanced images had the lowest values of over-segmentation
and the highest values of under-segmentation. This can be a sign that these predictions
include more of the background in the over-segmentation and misses more high-intensity
zones in the under-segmentation.
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Figure 11. A slice in the CT images from test data followed by examples of over-segmentation
(shown in red) from all image enhancements tested. (a) Original image, (b) Unenhanced, (c) Frangi,
(d) Hessian, (e) Meijering, (f) Sato, (g) FrangiGC, (h) HessianGC, (i) MeijeringGC, (j) SatoGC, (k)
SegAdded, (l) FilterAdded.

Overall, visually the SegAdded and the FilterAdded provided a more consistent
segmentation of the liver vessels, compared to the other tested methods, and had sometimes
advantage of capturing finer details.

6. Discussion

In experiment 1, on comparing the effect of Frangi, Hessian, Sato and Meijering
vesselness enhancement filters with the unenhanced images, the model trained on Sato
enhanced images seem to perform the best and the model trained on Frangi enhanced
images has the worst performance. In addition to the quantitative evaluation, from the
Figure 1, we see that the Sato and Meijering enhanced images seem to capture the vessel
information better compared to Hessian and Frangi enhancement. Especially when apply-
ing the Frangi vesselness filter, we noticed there is a huge loss of vessel information due to
which, the model trained on these images has poorer performance than the model trained
on unenhanced images.

In experiment 2, on comparing the effect of gamma correction on Frangi, Hessian,
Sato and Meijering vesselness images, we see that the models trained on gamma-corrected
images perform better than the ones without gamma correction. Due to gamma correction,
the fainter vessel structures in the enhanced images were further enhanced and the models
trained on the gamma-corrected enhanced images seem to capture the vessel structure
better than the images without gamma correction.

In the final experiment, we studied the effect of fusing all four enhancement filters
with gamma correction. In FilterAdded, the FrangiGC, HessianGC, SatoGC and Meijering
GC were fused and the model was trained on the fused image. In SegAdded, four different
models were trained on FrangiGC, HessianGC, SatoGC and MeijeringGC individually
and the segmentation maps from these four models were combined to produce the final
segmentation. On comparing FilterAdded and SegAdded, we observed very similar
performances with FilterAdded, giving better overall median values and SegAdded giving
better mean values. However, the differences between the mean and median metric values
were not found to be significant.

On combining the results from all the experiments, the FilterAdded and SegAdded
from experiment 3 have the best performance followed by SatoGc. The overall improve-
ment in the performance was found to be statistically significant in terms of the majority
of the evaluation metrics for most cases and in terms of at least one metric for Meijer-



Electronics 2021, 10, 1165 20 of 23

ingGC and SatoGC. From the results and the statistical test, we observe that the fused
methods have better potential to capture the vessel structures compared to the individual
enhancement filters.

Qualitative visual inspection of different results from the methods tested indicates high
variability in the vessel edges for all the approaches. Visually, SegAdded and FilterAdded
had more consistent predictions with various differences in fine detail depending on the test
case. In some slices, vessels were predicted and afterward confirmed by the clinician
although defined as oversegmentation because they were not included in the original
ground truth. It is important to mention that manual segmentation is a subjective task and
is highly user dependent. Therefore ground truth segmentation should not be defined as
perfect or complete because there is room for different interpretations and improvements.

Improvement to automatic segmentation might be achieved with the addition of more
quality data to train the deep learning model. This work and method provide a solid
starting point for vessel segmentation, which can be further worked on using manual
correction tools.

7. Conclusions

Automatic segmentation of hepatic vessels is critical for computer-assisted liver
surgery, treatment planning and navigation. For the segmentation of complex structures
such as liver veins, enhancing the vessel structures makes the segmentation tasks less
challenging. In this work, the effects of four different vesselness filters with and without
gamma correction have been studied. Additionally, the effect of fused vesselness enhance-
ment over individual filters has been studied. The quantitative analysis of the results
in terms of different evaluation metrics from experiments shows that each of the filtered
methods improves the segmentation results as compared to those that are unenhanced.
Moreover, it was observed that, by applying gamma correction, a statistically significant
improvement was achieved in the performance of each filter with SatoGC and MeijeringGC
giving better results. Finally, our study showed that both the fused filtered images and
fused segmentation give the best results in terms of all the five evaluation metrics with
a statistically significant improvement compared to the individual filters with and without
Gamma correction. The worst performance was observed for that which was unenhanced
and for a model with Frangi (without gamma correction). In addition to that, qualitative
evaluation of the deep learning-based segmentations showcase current pitfalls and poten-
tial to be used clinically although after extensive manual corrections. To conclude, this
work provides an important contribution towards the improvement of the outcomes of
the challenging hepatic vessel segmentation task, by making intelligent use of the existing
vesselness filters for enhancement in combination with deep learning methods.

In the future, we would like to extend the study to clinical MRI volumes and cross-
modality vessel enhancement studies for multi-label vessel segmentation (portal and
hepatic vein separated).
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CNN Convolutional Neural Networks
CLAHE Contrast Limited Adaptive Histogram Equalization
RORPO Ranking the Orientation Response of Path Operators
CT Computer Tomography
MRI Magnetic Resonance Imaging
MRA Magnetic Resonance Angiography
CTA Computed Tomography Angiography
HU Hounsfield unit
FrangiGC Frangi enhanced image with Gamma Correction
SatoGC Sato enhanced image with Gamma Correction
HessianGC Hessian enhanced image with Gamma Correction
MeijeringGC Meijering enhanced image with Gamma Correction
FilterAdded Filtered images Added
SegAdded Segmentation maps Added
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