
electronics

Article

Fixed-Point Arithmetic Unit with a Scaling Mechanism for
FPGA-Based Embedded Systems

Andrzej Przybył

����������
�������

Citation: Przybył, A. Fixed-Point

Arithmetic Unit with a Scaling

Mechanism for FPGA-Based

Embedded Systems. Electronics 2021,

10, 1164. https://doi.org/10.3390/

electronics10101164

Academic Editor: Alexander Barkalov

Received: 14 April 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology,
42-201 Częstochowa, Poland; andrzej.przybyl@pcz.pl

Abstract: The work describes the new architecture of a fixed-point arithmetic unit. It is based on
the use of integer arithmetic operations for which the information about the scale of the processed
numbers is contained in the binary code of the arithmetic instruction being executed. Therefore,
this approach is different from the typical way of implementing fixed-point operations on standard
processors. The presented solution is also significantly different from the one used in floating-point
arithmetic, as the decision to determine the appropriate scale is made at the stage of compiling the
code and not during its execution. As a result, the real-time processing of real numbers is simplified
and, therefore, faster. The described method provides a better ratio of the processing efficiency to
the complexity of the digital system than other methods. In particular, the advantage of using the
described method in FPGA-based embedded control systems should be indicated. Experimental
tests on an industrial servo-drive confirm the correctness of the described solution.

Keywords: embedded systems; FPGA; fixed-point arithmetic; control systems

1. Introduction

Embedded systems are used in devices that represent a huge market area. These
systems are found in almost all of the household appliances around us, in industrial ma-
chines and robots, in vehicles, in specialized apparatus used by research laboratories, by
the military, factories, hospitals, and in a variety of portable devices, including those for
wireless communication. Designing embedded systems is a complex issue as it requires
many aspects to be considered. One should mention the need to ensure sufficiently high
processing performance, reduce electricity consumption, minimize dimensions, ability to
work in difficult environmental conditions, and minimize the cost of production.

In many applications of embedded systems for the implementation of control, modeling
or identification systems, the processing efficiency requirements are very high. Additionally,
it is necessary to ensure time determinism, i.e., guaranteed reaction time to external events.
In some cases, a hardware solution is available on the commercial market, e.g., in the form of
application-specific integrated circuits (ASICs) dedicated to specific applications. Typically,
ASIC-based solutions provide the required parameters due to embedded hardware signal
processing mechanisms. However, the basic disadvantage of these solutions is that it is not
possible to change the algorithms built into them in any way. As a result, the development
of such systems is impossible.

In many other cases, it is possible to use microcontrollers dedicated to a specific area of
application. It is well known that microcontrollers are well suited to the efficient execution
of control tasks in their assigned application area [1]. In particular, one should mention
the very widespread various digital platforms based on microcontrollers with the ARM
Cortex-M core. Programmed in the bare-metal model or using the real-time operating
system (RTOS), they are currently the most commonly used hardware platforms for the
implementation of various types of control systems [2].

In control systems that require higher computing performance, application processors
based on ARM Cortex-A cores are often used. Typically, digital platforms based on such

Electronics 2021, 10, 1164. https://doi.org/10.3390/electronics10101164 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8052-4415
https://www.mdpi.com/article/10.3390/electronics10101164?type=check_update&version=1
https://doi.org/10.3390/electronics10101164
https://doi.org/10.3390/electronics10101164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10101164
https://www.mdpi.com/journal/electronics

Electronics 2021, 10, 1164 2 of 15

processors are equipped with an operational memory of large capacity and managed
by one of the many available distributions of the popular Linux operating system. This
approach offers several benefits, such as the ability to use available abstraction layers
that support a variety of communication interfaces and storage. In addition, operating
systems, such as Linux, offer access to many libraries that are useful for data processing. As
a result, it is possible to obtain a functional control system relatively quickly, even in the
case of designing advanced algorithms, for example for processing images transmitted
from a camera in real-time [3] or for controlling an electric motor [4]. However, it should be
pointed out that despite their high performance, the application processors and the Linux
operating system do not provide a sufficiently short response time for many demanding
applications [5]. One solution to this problem may be the use of heterogeneous, system-on-
chip (SoC) type platforms, containing both of the above-mentioned types of processors, i.e.,
application processors and microcontrollers [6].

Similarly, systems with digital signal processors (DSPs) are widely used in home and
professional audiovisual equipment [7]. DSPs, in their versions with various specialized
peripherals, are also used for many other signal processing tasks. Such dedicated processors
are used e.g., in military and commercial radar systems [8], and in modern wired and
wireless communication systems [9].

However, there is one important area of the previously analyzed applications where
it is not possible to use commercially available ASIC solutions, while solutions based on
microcontrollers, application processors, and signal processors are not efficient enough. One
of the reasons may be the implementation of novel algorithms [10,11], for which ASICs are
not available. The second reason is the necessity to provide a compact device, e.g., integrating
most of the elements of a complex system in one silicon structure. The latter reason is justified
by many significant advantages of compact systems. For example, when several separate
integrated circuits are used (e.g., application processors, signal processors, microcontrollers,
complex communication interfaces, large capacity RAMs, etc.) it is necessary to provide
a sufficiently efficient and deterministic communication interface between them. For this,
a 16-bit, 32-bit, or even 64-bit parallel data bus is usually required. The necessity to use it
complicates the design and increases the cost of such a system. Compact systems, combining
all the most important elements in one silicon structure, offer greater reliability, lower
electricity consumption, lower cost, and, in many cases, higher efficiency than systems built
of many separate ASICs connected on a complex printed circuit board.

In all the cases analyzed above, it is necessary to use solutions that offer both very
high efficiency and versatility. These features are provided by field-programmable gate
array (FPGA) technology. Although FPGAs usually have a slightly lower allowable clock
frequency compared to ASICs, the effective performance of FPGA-based solutions may in
many practical cases be higher [11,12]. This is because FPGAs offer the ability to flexibly
adjust their hardware structure to implement innovative and non-standard algorithms.

This paper presents the concept of a cooperative superscalar fixed-point processing unit
(FXU). Important features of such a unit (which will be described in detail later in this work)
are the scalable architecture (Figure 1) and the integrated scaling mechanism for fixed-point
operations based on information provided by the software designer (Figure 2). Due to these
features, the described solution offers a better ratio of performance to the complexity of the
digital system than other similar solutions.

To confirm the correctness of the approach proposed in this paper, the results of the
implementation of a certain type of control algorithm on various digital platforms are
presented. In particular, these are selected mechanisms of the vector control algorithm for
electric drives, which are usually used in high-speed numerical machine tools. It should
be noted, however, that the scope of application of the method presented in this paper is
much wider and is not limited to this type of algorithms.

The second section of this work presents an analysis of the methods of implementing
control algorithms on FPGAs. The third section describes a superscalar coprocessor built
based on the fixed-point number processing method proposed in this paper. The experi-

Electronics 2021, 10, 1164 3 of 15

mental research is included in the fourth section, while the conclusions are presented in
the fifth section.

DP-RAM
DATA #1

SHARED MEMORY FXU

FXU
REGISTERS

()R
... ...

...

REGs+
ALU

FX-AU #1

CPU

DP-RAM
DATA #N

DP-RAM
PROGRAM

...

...

VLIW CODE SEQUENCER

VDI

VDO

WE

ADDR

DI

DO FX-AU #P

DTU #1

DTU #N

Figure 1. General idea of the proposed FXU-based processing sub-system.

SCALE #2OPCODE#2

... ADD/
SUB
32b

SCALE
32=>32

32b

...
...

Input data

a)

b)

Output data

32b 32b
32b

32b

32b

SCALE #1 OPCODE#1

...

... MULT
32x16
=>48b

SCALE
48=>32

32b

...
...

Processed signals
Output data

32b 32b
16b

SCALE #1SCALE #2 OPCODE#1OPCODE#2

z
-1

32b

16b
Parameters

...

Figure 2. General concept of the proposed arithmetic units equipped with a programmable scaling
mechanism: (a) the multiplier unit, (b) the addition/subtraction unit.

2. Different Ways of Algorithms Implementation on FPGA

According to what has been noted in Reference [13], papers involving various tech-
niques for implementations of control algorithms in FPGA may be divided into two groups.
The first one applies a conversion from a formal description of a program to a code in
a hardware description language (HDL). Much faster execution of hardware-coded pro-
grams is the basic advantage of this approach. However, any change of control concept
requires a tedious synthesis of the FPGA design. It should be noted that various design
environments facilitate the design of the system based on the FHD method. For example,
Matlab-Simulink software allows for automatic generation of an HDL code based on the
algorithm presented in the form of a [14] block diagram. As a result, the convenience of the
design process is much better than in the case of manual HDL code generation. However,
the design process remains lengthy as a complete synthesis of the FPGA structure must be
performed with each change.

The second approach, according to the classification presented in Reference [13],
assumes that some kind of a programmable controller dedicated to a certain area of appli-
cation is implemented in FPGA. Such a complete controller can be reprogrammed without
the necessity to use any HDL tool. For example, Reference [15] presents a solution where
a general-purpose FPGA-based micro-PLC executes Ladder Diagram (LD) instructions.
A somewhat similar approach is described in Reference [13]. In this case, the so-called hard-
ware function blocks (HFBs) were used to represent the most important parts of algorithms,

Electronics 2021, 10, 1164 4 of 15

e.g., PID controllers and IIR/FIR filters. These HFBs are configured directly in HDL, which
allows for increased processing speed. While the other fragments of a controller code are
implemented as a program for some kind of dedicated soft-core processors.

To understand this issue well, it is necessary to indicate some specificity of control
systems. A typical control algorithm requires, in most cases, the shortest possible processing
time. This is because this value determines the overall system response time, which is a
critical parameter in most control systems. Moreover, in control systems, it is not possible
to process consecutive input data until the end of the current control cycle. For this reason,
it is typically not possible to apply data-level pipelining. However, it is still possible to
apply it at the level of used subordinate components of the implemented algorithm. For
this reason, high throughput is not a critical parameter of typical control systems.

In this paper, the classification of methods for the implementation of control algo-
rithms on FPGAs is slightly modified and extended. Table 1 shows the proposed new
classification. The symbols + placed in the table indicate a positive assessment of a given
method (presented in the column of the table) in relation to the compliance with the feature
presented in a given row of the table. The greater the number of such symbols, the higher
the rating. Similarly, the symbols denote a negative grade.

Table 1. Comparison of the properties of various implementation methods of control algorithms
on FPGAs.

Features FHD SC-HFB SC-SS SC-CPU

Processing performance +++ ++ + -

Design comfort - + ++ +++

Economical use - - ++ +++

A typical and historically first method is fully hardware design (FHD), i.e., a complete
project description in one of the hardware description languages, such as VHDL or Verilog.
Thus, this method complies with the first of the categories presented in Reference [13] and
is used in many practical solutions [11,16]. As mentioned before, this method provides the
highest possible performance for various algorithms implemented on FPGAs [17], but the
design process is tedious and lengthy. Additionally, it should be pointed out that in the
case of some control algorithms their implementation based on this method does not make
sense from an economic point of view. Thus, the universality of such a solution is low.

The SS-CPU method presented in the last column of Table 1 has completely different
properties. It is based on the implementation of a universal soft-core processor in the
FPGA structure and the implementation of the required control algorithm by this processor.
The main advantages of this method are the economical use of hardware resources and
the convenience of the design process resulting from the possibility of using standard
programming languages (typically C or C ++). However, the main disadvantage of the
SC-CPU method is the lowest performance among all the methods presented.

On the other hand, the SC-HFB (soft-core—hardware function blocks) method is based
on the cooperation of a standard soft-core CPU with HFB blocks dedicated to performing
specific functions in the implemented control algorithm. Thus, it is partially consistent with
the second category presented in Reference [13], and in particular, with the HFB-based
solution described there. It should be noted that HFBs are called hardware accelerators in
some publications [18].

According to the data in Table 1, the SC-HFB solution offers high performance for
algorithms that are supported by the HFBs. This is because the HFBs, designed with the
use of HDL, offer the possibility to match the configuration of the hardware resources the
best to the implementation of specific functions. Unfortunately, the consequence of this is
very limited versatility. In a situation where any of the HFBs need modification, the only
way is to carry out the tedious design process using the hardware description language.
Therefore, both the versatility and the convenience of using this method are not very high.

Electronics 2021, 10, 1164 5 of 15

The last method presented in Table 1 is SC-SS (soft-core super-scalar). This method
is not strictly dedicated to specific types of implemented algorithms. It is equipped with
mechanisms dedicated to digital signal processing, similar to those used in digital signal pro-
cessors. These mechanisms can of course be equipped with some dedicated functionalities
supporting the efficient execution of typical algorithms in the field of control, approximation,
or modeling. At the same time, these additional functions are so universal (as opposed to
the functions performed by HFB blocks) that they can be successfully used to accelerate
algorithms from a very wide range of applications.

The most important feature of the SC-SS method is that the superscalar architecture
used in it enables the parallel execution of many simple arithmetic operations, controlled
by the very-long instruction word (VLIW). Examples of solutions that can be classified
to the SC-SS method are presented, for example, in Reference [19–21]. Dedicated signal
processors are also designed based on the super-scalar VLIW architecture, e.g., Refs. [7,22].
To ensure a sufficiently efficient data flow between many computing units of a superscalar
architecture, the parallel operation of several memory blocks is typically used. Thus, it is
again possible to refer to the similarity to the mechanisms used in signal processors, namely
the Harvard architecture.

A somewhat similar architecture is also used in a modern and very efficient, heteroge-
neous computing unit called Xilinx Adaptive Compute Acceleration Platform (ACAP) [23,24].
This solution uses many scalar arithmetic units called AI engine tiles, arranged in a matrix
structure. Each of the elements of such a matrix is equipped not only with an arithmetic
unit but also with a local, multiport block of RAM. AI engine tiles arranged in this way
have direct access to the multiport memories of their immediate neighbors. So, they can
efficiently exchange processed data with each other.

The main advantage of the SC-SS method presented in Table 1 is that it is possible to
change the implemented algorithm without the need to carry out the tedious and time-
consuming process of FPGA structure synthesis. This change requires only the modification
of the machine code instructions executed by the unit with the VLIW architecture. Thus, the
SC-SS method is partially consistent with the second category of classification presented
in Reference [13], and in particular, with the description in Reference [15]. However, as
mentioned earlier, the computing unit designed based on the SC-SS method is much
more universal. It does not assume the execution of a specific code (e.g., ladder diagrams
instructions, as proposed in Reference [15]) but enables the efficient implementation of a
whole range of different algorithms.

The SC-SS method provides slightly more economical management of the FPGA
hardware resources than the FHD and SC-HFB methods. This is because these resources
(e.g., arithmetic units and registers) in the SC-SS method are not statically assigned to
perform specific functions in the implemented algorithm. However, they are dynamically
configured to perform various computational functions at the subsequent stages of the
implemented algorithm, similar to the standard CPU. This configuration is performed based
on information contained in the very long binary code of the currently executed VLIW
instruction. For example, at a given moment, some multiplier acts as a proportional gain of
the error in the controller, and a few cycles later it is used to determine the current value
of the summed terms used in the FIR algorithm or to expand the nonlinear function into a
Taylor series. Similarly, the hardware adder/subtractor module in a given step may be used
to calculate the value of the control error, the input signal of the IIR filters, or the sum term
in the process of accumulation of the neuron activation signal in artificial neural networks.

If both the number of configurable, possibly the simplest, computational units was
quite large, and additionally their interconnectivity relatively flexible, then this method
could be called very-low level programming, according to the concept presented by the au-
thor of the blog [25]. However, in the case of using, at most, a few complex arithmetic units,
the SC-SS method can be compared to the architecture of super-scalar signal processors [7].

Therefore, it should be said that the SC-SS method is highly scalable, as the number of
arithmetic units working in parallel and the manner of their interactions (e.g., communi-

Electronics 2021, 10, 1164 6 of 15

cation using shared registers or separate RAM blocks) can be selected from a wide range.
The choice of the implementation method of the SC-SS unit depends on the specificity of
the envisaged application area.

Summing up, according to the data contained in Table 1, the SC-SS method is slightly
less efficient than the FDH and SC-HFB methods. However, it is more universal than them,
much more convenient to use, and it uses the hardware resources of the FPGA chip more
economically. Therefore, the choice of one of the methods presented in Table 1 depends on
the specifics of a particular application. Therefore, such a choice should be the result of
a compromise between the expected efficiency and economy of a given solution and the
convenience of the design process.

This paper proposes a method of implementing a hardware computing unit based on
the SC-SS method and an innovative real number processing mechanism. This mechanism
allows for high processing efficiency with the low demand for hardware resources. Details
of this solution will be presented in the next sections.

3. Fixed-Point Coprocessor Based on a Scaling Schedule

As already written in the introduction, this paper presents the concept of a super-
scalar fixed-point unit (FXU). Important features of such a unit are the integrated scaling
mechanism for fixed-point operations (Figure 2) and scalable architecture (Figure 1).

The proposed solution can be used to support some arithmetic operations on real
numbers in digital systems built based on FPGAs very efficiently. In such cases, FXU acts
as a cooperating processor, supporting the operation of a universal soft-core processor
implemented in the same FPGA unit.

The characteristic feature of the FXU unit presented in this section is that it is equipped
with a scaling mechanism for fixed-point arithmetic operations. This mechanism is based
on a definition of a fixed-point data format provided by the software designer. Due to this
mechanism, such a unit offers much higher processing performance than a typical soft-core
processor equipped with standard integer multiplication and bit shifting instructions, as
will be shown later in this paper.

The FXU unit is intended to be implemented in the FPGA system as a unit cooperating
with a standard, universal soft-core CPU. As part of such cooperation, the role of the CPU is to
control the startup and configuration process of the system, its management and supervision,
and the operation of the user interface. On the other hand, the role of the FXU is to implement
a certain class of control, modeling, planning, or identification algorithms efficiently.

As mentioned before, the FXU shown in Figure 1 is highly scalable. Both the N value
defining the number of dual-port memory blocks, the R value representing the number
of working registers, and the P value representing the number of arithmetic processing
units are selected by the system designer. The greater the number of such units working
in parallel, the greater the performance, but, unfortunately, the greater the demand for
hardware resources of such a computing system. Adjusting these system parameters to
the requirements of a specific application allows for reaching a compromise between the
obtained performance and the demand for FPGA hardware resources.

The general idea presented in Figure 1 ensures that all fixed-point arithmetic-units
(FX-AUs) and data transfer units (DTUs) have unlimited and simultaneous access to all
FXU registers (R0,1, . . .). However, this approach has the limitation that the complexity of
such a system increases significantly as P + N + R increases. The high complexity of the
digital circuit implemented in the FPGA structure results in a noticeable limitation of its
maximum operating frequency. Experience shows that it is reasonable to use the parameters
of such a system in the following range: R ∈ 〈16 . . . 32〉, P ∈ 〈1 . . . 8〉 and N ∈ 〈1 . . . 4〉.

Somewhat similar solutions for the possibility of simultaneous access to two memory
blocks (N = 2) are used, for example, in signal processors with the Harvard architecture [7].
In the case of the described FXU, the DTUs are primarily used to manage the data flow
between the working registers of the FXU and the dual-port memories, which are found in
typical FPGAs [26]. However, it should be remembered that the use of more than one block

Electronics 2021, 10, 1164 7 of 15

of RAM requires appropriate (i.e., following the algorithm being executed) assigning the
locations of the processed signals and/or parameters, i.e., placing them in selected memory
blocks. This causes some complication in the process of designing the program code for
such a system, but at the same time allows for greater processing efficiency.

In all the experiments presented in this publication, the work of a super-scalar FXU is
controlled by a low-level human-written code. Most operations are performed in one or, at
most, two clock cycles.

To ensure a low level of complexity of the entire system, the use of an architecture
based on MIPS was proposed [27]. In this architecture, the low-level code must be written
in such a way that executed instructions do not take the result of processing a particular
arithmetic unit until it is ready. This requirement must be taken into account by a dedicated
compiler or programmer who designs the low-level code.

It should be mentioned here that the “manual” code creation for the VLIW type
computing unit (Figure 1), which is presented in this paper, is a much more difficult task
than programming a typical computer system in C or C ++. VLIW code development, on
the other hand, is much easier than the hardware design process in HDL. Therefore, the
solution described in this paper should be considered as a compromise. It facilitates the
process of implementation of algorithms requiring high processing efficiency. Besides, this
solution allows for reasonable management of hardware resources of an FPGA chip.

Based on the cooperation of DTU and FX-AU units, it is possible to efficiently imple-
ment many practical algorithms. For example, it is possible to implement an algorithm for
determining the values of complex nonlinear functions based on a local Taylor series approx-
imation in combination with a look-up table (LUT) method. This method (LUT-Taylor series
expansion, LTSE) is based on the approximation mechanism described in Reference [28].

In the LTSE method, the domain of the approximated function y = f (x) must be
scaled to a range 〈−1 . . . 1). Then, based on the highest few bits of the input digital word,
a single segment, i.e., an appropriate fragment of this domain, is identified. In such a
segment, the local approximation is performed using the Taylor series expansion method.
In the identified segment, the value of the following polynomial is then determined:

y(x) = y0 + C1 · z1 + C2 · z2 + C3 · z3 + . . . , (1)

where: y0 = y(x0) and z = x− x0, while x0 is the middle of a given segment, and C1, C2, . . .
are the parameters of the approximation in this segment.

According to Reference [28], “the evaluation of the function on the reduced argument
is less expensive than on the original input. This is due to the higher-order terms in the
evaluation of the series being shifted out to lower weights than the target precision, thus they
do not need to be computed”. In many practical applications, domains of the approximated
functions are easily predictable; therefore, the LTSE method can be easily applied and is
very effective at the same time. Namely, it is usually possible to obtain the required accuracy
by dividing the domain of the approximated function into just a few segments.

Based on the LTSE method, the following nonlinear functions are implemented in the
experiments described later in the paper: sine, cosine, and the arithmetic reciprocal opera-
tion. In the same way, other nonlinear functions, such as square root, sigmoid, or gaussoid,
can also be approximated. The last two nonlinear functions are used in various types of
computational intelligence algorithms, such as artificial neural networks, radial function
networks, or fuzzy structures [29–31]. Based on the LTSE solution, the approximation time
for such functions (assuming a similar level of precision) is usually a dozen or so clock
cycles. For example, when dividing the domain of the sine function into eight segments
and applying the 5th-order Taylor expansion in each of them, the approximation precision
at the level of 1.1 · 10−3% is obtained. This precision is fully sufficient for applications in
typical control systems. Of course, the precision of the approximation can be improved by
increasing the expansion order or by dividing the domain into a larger number of segments.

In the algorithm presented later in this paper, each segment requires one 32-bit and
six 16-bit parameters describing the approximation. As a result, the implemented LTSE

Electronics 2021, 10, 1164 8 of 15

method requires only 128 bytes of data. Moreover, such an LTSE process takes only twelve
clock cycles, which in the following experiment gives a computation time of 0.15 µs.

The code fragment for a super-scalar FXU implementing the LTSE algorithm is presented
below. In the analyzed experiment, an FXU with two DTU units (N = 2), five FX-AU units
(P = 5), and sixteen working registers (R = 16) are used. The first two FX-AUs perform fixed-
point multiplications (Figure 2a) and two more perform arithmetic addition/subtraction
operations (Figure 2b). The last one, FX-AU, performs basic, universal arithmetic operations
useful in signal processing algorithms [7]. These are operations, such as MIN, MAX, NEG,
and a few simple operations of testing and modifying bit-fields in a binary word.

In the code fragment shown in Listing 1, it can be seen that in most work cycles three
arithmetic operations (two multiplications and one addition) and one or two memory
access operations are performed. However, in other algorithms (e.g., in the case of the
implementation of two PI controllers working in parallel), it is possible to arrange the
code for the VLIW unit in such a way that in most work cycles all AU and DTU units are
used simultaneously.

Listing 1: Fragment of FXU code for LTS algorithm.
1 , , , , M1_A x , M2_A x0 ;
2 , , , , M1_RA R0 , y0 , M2_R R8 ;
3 R0−=R8 (2 , 2) , , , , M1_R, R2 , M2_A C1 ;
4 R1=R0 , , , , , M2_RA R8 , C2 ;
5 , R3=R1*R8 (2 , 2 , 2) , , R1=R1*R0 (2 , 2 , 2) , , M2_RA R8 , C3 ;
6 R2+=R3 (2 , 2) , R3=R1*R8 (2 , 2 , 2) , , R1=R1*R0 (2 , 2 , 2) , , M2_RA R8 , C4 ;
7 R2+=R3 (2 , 2) , R3=R1*R8 (2 , 2 , 2) , , R1=R1*R0 (0 , 2 , 2) , , M2_RA R8 , C5 ;
8 R2+=R3 (2 , 2) , R3=R1*R8 (2 , 0 , 2) , , R1=R1*R0 (− 2 , 0 , 2) , , M2_R R8 ;
9 R2+=R3 (2 , 2) , R3=R1*R8 (2 , − 2 , 2) ;

10 R2+=R3 (2 , 2) ;

In the above code, the numbers given in parentheses are example values of the
i-parameters describing, respectively, the format of the result and components for fixed-
point operations, following the Fxi_n notation. In this notation, the ‘i’ parameter describes
the position of the binary point counting to the right, starting from the left side of the
binary word. In the research described in this publication, 32-bit words (n = 32) were used
to represent the values of the processed signals. It is easy to check that the range of real
numbers encoded in this way is

〈
−2i−1 . . . 2i−1), and the resolution is 2i−n.

In the example code presented above, memory access operations are represented by
instructions M1 and M2 relating to one of the two dual-port memories (dual-port RAM,
DP-RAM) with associated DTUs, respectively. The syntax of individual instructions is not
important and will not be discussed in detail.

This fragment of the code shows the essence of the proposed algorithm for scaling the
processed fixed-point real numbers. This algorithm assumes that there is a pre-planned (by
the system designer) scaling schedule for successive numbers processed by the fixed-point
unit. This scaling schedule is created by the compiler based on information provided by the
designer. This information is provided in the form of i-parameter values for each arithmetic
instruction (which will be explained later in the paper) according to the example code
shown in Listing 1. Based on the appropriate hardware mechanisms, such a schedule is
used for the ongoing configuration of individual FX-AUs. Thus, this approach significantly
simplifies the calculations that have to be performed online. As a result, it is possible to
obtain higher processing efficiency and lower consumption of hardware resources compared
to the implementation of analogous calculations in floating-point arithmetic. Floating-point
arithmetic assumes that the scale of the processed numbers is determined on an ongoing
basis, i.e., during each arithmetic operation. As a consequence, not only the computation
time is extended, but also the consumption of hardware resources of the FPGA, on which
floating-point algorithms are implemented, is higher.

In the above-mentioned example, the scale of numbers processed in subsequent steps
of the algorithm was selected by the designer to obtain the highest processing precision.
However, it is also possible to automate this process to some extent. This is possible, for
example, by using the profiling mechanism described in Reference [32]. The description
of the possibility of automatic implementation of such a method is beyond the scope of
this paper.

Electronics 2021, 10, 1164 9 of 15

The inclusion of information about the scale of the processed fixed-point numbers in
the binary code of the instructions of the executed program is, as mentioned above, one
of the most important features of the real number processing mechanism described here.
Based on this concept, Figure 2 shows a method for multiplication and addition/subtraction
of fixed-point numbers.

Based on the analysis of the requirements of typical algorithms used in control systems
(i.e., PID controllers, IIR/FIR filters, Taylor series expansion) it has been observed that it is
possible to use a relatively low 16-bit precision of the parameters used in such algorithms,
without any noticeable negative impact on the final work result. These parameters are
coefficients of the above-mentioned algorithms. Consequently, it is possible to significantly
optimize the processing unit by using a non-symmetrical structure. Half of the registers
(i.e., R0-R7) are realized as 32-bit words and are used to store signal values with a full reso-
lution. Such registers are marked in blue in Listing 1. While the other half of the registers
(i.e., R8-R15) are realized as 16-bit words and are used to store the above-mentioned param-
eters. One of the registers belonging to this group, i.e., R8 is used in the algorithm presented
in Listing 1. This register is marked in green. The asymmetric structure of processing unit
working registers is a novelty proposed in this paper. It allows for a significant simplification
of the hardware structure of the processing unit while maintaining the requirements of
typical control algorithms.

As mentioned earlier, in the method presented in Figure 2a, each fixed-point multipli-
cation operation requires the knowledge of the value of the parameter i for both components
and for the result. Following the idea already presented in Listing 1, such information may
be included in an instruction using the following syntax: Ro = Ra ∗ Rb(io, ia, ib), where
o, a, b are indexes of FXU registers, while io, ia, ib are values of parameters i that define
their format (scale). On this basis, the compiler will determine the correct scaling result
of multiplying a 32-bit integer by a 16-bit integer. In order to obtain the expected output
format, a 48-bit integer multiplication result will be shifted to the right by the number of
positions expressed by formula (2).

sM = (32− ia) + (16− ib)− (32− io). (2)

The value of sM is placed in the ’SCALE’ field of the binary code of the FXU instruction.
For example, the multiplication instruction for two registers written in the follow-

ing form R0 = R1 ∗ R8(6,2,4) means that the result is represented in the format Fx6_32
(i.e., io = 6), the first argument is represented in the format Fx2_32 (i.e., ia = 2) and the sec-
ond argument in the format Fx4_16 (i.e., ib = 4). In this case, the compiler will automatically
calculate a scale factor of SM = 16 based on the formula (2).

For the sake of clarity, let us consider a numerical example. Suppose the real number
contained in register R1 has the value 0.5. According to the well-known method of a fixed-
point encoding of real numbers, it will be represented by an integer with the value 0.5 · 232−2,
written in hexadecimal notation as 0× 20, 000, 000. Similarly, assume that the real number
contained in register R8 has the value 1.25; therefore, it is represented by an integer with
the value 1.25 · 216−4 = 0× 1400. The result of the multiplication of both integers is the
number 0× 28, 000, 000, 000, which after scaling by the factor SM = 16 (i.e., after shifting
to the right by 16 binary positions) will give the result 0× 2, 800, 000. According to the
expected format of the result (i.e., Fx6_32), this integer represents a valid real number of
0× 2, 800, 000 · 2−(32−6) = 0.625.

In the case of an arithmetic addition or subtraction operation (according to Figure 2b) any
scaling applies only to the second component. With pre-defined requirements (ia ≥ ib) for
this instruction, the format of the result is determined by the format of the first component,
i.e., io = ia. Thus, for example, the addition instruction has the following syntax Ro = Ra
+ Rb (ia, ib). The ’SCALE’ field contained in the binary code of the arithmetic instruction
(Figure 2b) describing, in this case, the number of binary offset positions of the second
component is:

sA = ia − ib. (3)

Electronics 2021, 10, 1164 10 of 15

For instance, the instruction for adding two registers written in the following form
R0 = R1 + R2 (6,4) means that both the result and the first component of addition are
represented in the form Fx6_32 (i.e., ia = 6), while the second component is represented
in the format Fx4_32 (i.e., ib = 4). In this case, the compiler will automatically calculate a
scale factor of SA = 2 based on the formula (3).

As before, let us analyze the numerical example. Suppose the number in register R1
has a real value of 0.5. According to the fixed-point encoding method for real numbers, it
will be represented by an integer with value 0.5 · 232−6 = 0× 2, 000, 000. Similarly, suppose
the real number contained in register R2 has the value 1.25, so it is represented by an integer
value of 1.25 · 232−4 = 0× 14, 000, 000. The latter argument will be scaled by the scale factor
SA = 2, i.e., shifted two binary positions to the right, before performing the addition
operation. In consequence, integers 0× 2, 000, 000 and 0× 5, 000, 000 will be fed to the
ADD/SUB unit inputs. The result of the integer addition is 0× 7, 000, 000 which represents,
according to the Fx6_32 format, a valid real number of 0× 7, 000, 000 · 2−(32−6) = 1.75

A similar analysis could also be performed for other elementary fixed-point arithmetic
operations, such as division or reciprocal. However, according to the idea presented in
this publication, the fixed point arithmetic unit (Figure 2) performs only two types of
arithmetic operations, i.e., multiplication and addition/subtraction. All other operations
are performed through the LTSE mechanism presented in Listing 1. This approach allows
for a significant simplification of the arithmetic units implemented in FPGAs.

It is worth mentioning that in practical applications it is reasonable to significantly limit
the allowed values for the parameters ia, ib, and io. In this way, it is possible to simplify the
design of the digital circuit implemented in FPGAs. In the experiment described later in this
publication, it was assumed that these parameters can only be set to one of sixteen values,
i.e., i ∈ {−8,−6, . . . ,+22}. In this way, it was possible to process numbers from a wide
range, with a resolution that is sufficient for the implementation of typical control systems.

4. Experimental Results

The experiment described in this section concerns the implementation of selected frag-
ments of the vector control algorithm of permanent-magnet synchronous-motor (PMSM)
on the FPGA system [14,33,34]. The experiment shows the benefits of using the proposed
method in practical applications. The test was carried out on a compact servo-drive con-
troller built based on an FPGA chip (Figure 3). Such controllers are used, inter alia, in
high-speed numerical machine tools [35].

Figure 3. Compact electric servo driver used in the described experiment.

Due to the need to achieve the highest possible precision of such machines, the
requirements for servo-drives are very high. For example, in a typical case, it is required to
process the full control algorithm in no more than 50 µs, which allows power electronic
actuators to work with their maximum allowable switching frequency of 20 kHz [33].
Operation with a lower commutation frequency is possible but results in a lower precision

Electronics 2021, 10, 1164 11 of 15

of such a control system. Moreover, by reducing the above-mentioned processing time by
half, the precision of such a control system can be significantly improved. This is because it
is possible to modify the parameters of the generated impulse control signals in the middle
of their cycle, which results in the reduction of the response time of such a control system.

It should be noted here that the use of FPGAs for the implementation of servo-drives
is a very attractive solution. This is because such controllers very often have to handle
fast pulse signals. Such pulse signals are used, inter alia, in non-standard communication
protocols, such as a real-time Ethernet [36], synchronous and asynchronous serial protocols
for communication with incremental or absolute position sensors (e.g., a digital quadrature
or a BISS interface), or in specialized analog-to-digital converters. The FPGA chip can
easily handle very fast impulse signals; therefore, its use allows the implementation of a
complete algorithm in one integrated circuit and keeps the design of the device compact.
Other solutions that could provide similar functionality must be based on the cooperation
of several separate ASIC-type integrated circuits. Nevertheless, such a solution would
not allow the designed device to be compacted. As already presented in the Introduction,
compact devices have several significant advantages over devices built from separate
integrated circuits.

As part of the experimental research, the mentioned control algorithm was implemented
on the controller shown in Figure 3. For comparison purposes, this implementation was
made based on two different methods, i.e., SC-CPU and SC-SS as described in Table 1. In the
first case, the above-mentioned algorithm was implemented in a standard way, in the C
language. The resulting code was then executed by a 32-bit soft-core CPU unit (TSK3000A)
implemented in the FPGA programmable logic. In the second case (based on the SC-SS
method), the same FPGA also includes the super-scalar fixed-point cooperating unit (FXU)
proposed in this paper and shown in Figure 1. The FXU is equipped with a scaling mecha-
nism for fixed-point operations shown in Figure 2. Then, a low-level code was designed
for this unit, implementing the same control algorithm as in the first case, i.e., based on
the SC-CPU method. The obtained results made it possible to compare the processing
efficiency and the demand for hardware resources for both implementation methods.

The digital platform used in the experiment was equipped with an FPGA system from
a low-end family of Xilinx Spartan-6 [26], i.e., XC6SLX45-3 produced with 45nm technology
(Figure 3). The chip has 27,288 6-input combination look-up tables (LUTs), 58 integer
arithmetic units (DSP48E1s), and 116 blocks of 16-bit dual-port RAM (RAMB16WERs).
FPGAs from the low-end series are characterized by relatively low efficiency, but also low
cost and low electricity consumption.

For the SC-CPU method, the maximum allowable operating frequency was slightly
over 50MHz. While the FPGA hardware resource consumption was: 3065 LUTs (11%),
2 DSP48Es (3%), and 20 RAMB16WERs (17%).

When the SC-SS method was used, the maximum allowable frequency of the FXU
operation was over 80MHz and the total consumption of resources (i.e., soft-core CPU +
FXU) was: 3943 LUTs (14%), 7 DSP48E1s (12%), and 22 RAMB16WERs (19%).

For comparison purposes, an analogous experiment (with the implementation of the
FXU unit) was also carried out on a slightly more modern hardware platform, i.e., the Xilinx
Artix-7 XC7A200T-3 FPGA chip made in 28 nm technology. In this case, the maximum
allowable operating frequency was just over 110 MHz.

The project was implemented in the Altium Designer v.14.3 and Xilinx ISE 14.3 design
environments. As mentioned earlier, a universal 32-bit processor called TSK3000A was
used as the soft-core CPU. The CPU was used as the only unit processing the complete
algorithm in the case of implementation using the SC-CPU method. However, in the second
case, i.e., with an implementation based on the SC-SS method, the CPU only managed and
supervised the work of the main computing unit (FXU).

Table 2 contains the results of experimental research on the implementation of the
most important modules of the vector control algorithm (Figure 4) of an electric servo drive
with a PMSM motor [14,33,34].

Electronics 2021, 10, 1164 12 of 15

uq

PI
ua PWMA

VDC

PWMB

PWMC

ub

Inverter

PI

d,q

a,b

a,bd,q

SVM

A,B,C

ud

-

-

id
ia

iB

id

*

iq

a,b

ib

iA

Inverse Park
transformation & SVM

Clarke & Park
transformations Position sensor

Electric current
sensors

Voltage
sensor

PMSM

iq

*

Dual channel
PI controller

Figure 4. Vector algorithm for controlling the PMSM electric motor, implemented as part of the experiment.

Table 2. Obtained performance and memory consumption for the implementation of selected algorithms on soft-core CPU
and soft-core super-scalar FXU.

Servo Code Functional Block SC-CPU SC-SS Speed-Up

Sine&Cosine calculation 1.16 µs, 8192 B 0.30 µs, 128 B 3.87

Clarke & Park 2.30 µs 0.18 µs 12.8

Inverse Park & SVM 5.54 µs , 0 B 0.61 µs, 128 B 9.1

DC-PI 4.72 µs 0.48 µs 9.8

In the experiment with the use of the algorithm implemented by the soft-core CPU, 16-
bit fixed-point arithmetic was used. With carefully selected ranges for the numbers processed
by the CPU, it was possible to obtain an acceptable quality of work of the implemented
algorithm. Nevertheless, managing such software was very troublesome. Each modification
of the program code required detailed analysis to avoid exceeding the range of processed
numbers, and at the same time to ensure the required precision of calculations. The use
of 32-bit arithmetic (floating-point or fixed-point) would greatly facilitate the design of
such software. But its use would entail a significant extension of the computation time and
the required work cycle would not be achieved. However, in the second case (i.e., with
the algorithm implementation on the FXU unit), it was possible to apply precise 32-bit
fixed-point arithmetic to the processed digital signals. This is because the FXU provides a
much higher signal processing performance than the CPU.

The first row of Table 2 shows the results (i.e., the obtained performance and memory
consumption) for the implementation of the algorithm that determines the value of the sine
and cosine functions. These functions are necessary for the operation of the PMSM vector
control algorithm. In the case of implementation on a soft-core CPU, the look-up table (LUT)
method was used. An array of 4096 digital words with a width of 16 bits was used to store
the values of the sine function from the first quadrant. Values for the remaining quarters of
this function were determined based on the first quadrant with appropriate consideration
of symmetry.

It is well known that the LUT method is quite often used in embedded systems software
to store the values of functions whose determination is time-consuming. This is because,
as mentioned earlier, the execution time of the algorithm is a critical parameter for most
embedded systems. Unfortunately, embedded systems (both those based on microcontrollers
and FPGAs) are characterized by a relatively small amount of memory in which data arrays
can be stored. For example, the FPGA XC6SLX45 has only 232 kB of RAM. For this reason,
the LUT method must be used with caution, as too much memory demand leads to the
need to use a chip with more hardware resources. As a consequence, it increases the cost
and energy consumption of the designed solution.

As mentioned in the previous section of this paper, in the solution based on the FXU
the LTSE method was used to determine the values of the sine and cosine functions. As can
be seen, the time of Sine&Cosine evaluation is much shorter than for the implementation

Electronics 2021, 10, 1164 13 of 15

on a standard CPU. In addition, this method only requires 128 bytes of data compared to
the 8192 bytes required by the LUT algorithm implemented on the CPU.

The second row of the table contains the results of implementing the Clarke and
Park transforms. These transforms are used in the PMSM vector drive control algorithms.
The next row of the table contains the results of the implementation of the inverse Park
transformation and space vector modulation (SVM) algorithms. The last row of the table
shows the results for the dual-channel PI-controller (DC-PI), i.e., the controller of the two
spatial vector components of the electric current flowing through the stator winding of the
PMSM motor.

Based on the analysis of the results presented in Table 2, it can be concluded that the
presented algorithm implemented on the soft-core FXU works almost ten times faster than
the same algorithm implemented on the soft-core CPU.

It should be noted that the data presented in the table represent the results obtained
only for the most important parts of the complex servo control system with the PMSM
motor. The remaining blocks are omitted from this list. Tests previously carried out by the
author showed that the processing time of the complete, complex PMSM position control
algorithm by the soft-core CPU was over 65 µs. Therefore, in such a case, it was not possible
to fully use the possibilities offered by power electronic devices. On the other hand, the use
of the soft-core FXU unit presented in this publication enables the implementation of such
an algorithm in less than 20 µs. Consequently, it allows to obtain a higher quality of work
of the analyzed control system and to meet all the other requirements mentioned earlier.

5. Conclusions

The paper presents a new architecture of a computational unit based on fixed-point
arithmetic. The characteristic feature of this unit that distinguishes it from other solutions
is primarily the built-in scaling mechanism for fixed-point arithmetic operations. Other
distinctive features of the proposed method are universal superscalar architecture and
asymmetric structure of working registers. Thanks to such solutions, the designed unit
performs arithmetic operations efficiently.

As part of the experimental research, the described solution was implemented on an
FPGA chip and the consumption of hardware resources was determined in comparison to
the solution based on a standard soft-core CPU. Experimental research was preceded by
an analysis of the existing methods of implementing control algorithms in programmable
FPGA structures. The result of this analysis is the proposed modified and extended
classification of such methods.

As part of the experimental research, the processing efficiency of an exemplary control
algorithm, implemented based on the solution proposed in this publication, was also deter-
mined. From the obtained results, it can be concluded that the proposed method allows
for an almost tenfold increase in the processing efficiency of typical control algorithms
compared to solutions based on standard soft-core processors. Such a significant reduction
of the processing time allows improving the quality of control systems, as their response
time is shortened.

The relatively low demand for hardware resources, as demonstrated in the case of the
implementation of the described solution, enables the implementation of a complete con-
troller in a compact form and based on an FPGA chip from the economical low-end series.

The main contributions of this work can be summarized as follows:

• comparison and classification of various methods for the implementation of control
algorithms on FPGAs,

• the concept of a high-performance, fixed-point arithmetic unit with the integrated
scaling mechanism and the asymmetric structure of working registers, and

• implementation of experimental studies that confirm the usefulness of the developed
method for industrial systems requiring a short response time.

The presented solutions can be used in many different areas, i.e., not only in the imple-
mentation of algorithms known from classical control theory, but also in the implementation

Electronics 2021, 10, 1164 14 of 15

of adaptive fuzzy control systems [37], real-time emulation of objects based on the HIL
methodology [38], or for the implementation of real-time reference trajectory planning
algorithms for machines and robots [39]. The developed solution can also be useful for
many other applications that require a short response time, for example, to detect visual
objects in images delivered in real-time from the camera of mobile or industrial robots [40].

The implementation of the above-mentioned algorithms in the manner presented in
this paper causes that the ratio of the obtained performance to the hardware complexity
is much better than in the case of using other implementation methods. Therefore, the
proposed solution leads, in many cases, to a significant optimization of control systems,
and, consequently, its application is justified.

Funding: The project financed under the program of the Minister of Science and Higher Educa-
tion under the name “Regional Initiative of Excellence” in the years 2019–2022 project number
020/RID/2018/19 the amount of financing 12,000,000 PLN.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NXP Semiconductors. Automotive Math and Motor Control Library Set for NXP MPC560xP Devices. User’s Guide. Document

Number: MPC560XPMCLUG. Rev. 12; Available online: https://www.nxp.com/files-static/microcontrollers/doc/user_guide/
MPC560XPMCLUG.pdf?&fasp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&
WT_ASSET=Documentation&fileExt=.pdf (accessed on 12 April 2021).

2. Walls, C. Embedded Software: The Works; Electronics & Electrical, Newnes (an imprint of Elsevier): Burlington, MA, USA, 2006.
3. Adam, G.K.; Kontaxis, P.A.; Doulos, L.T.; Madias, E.N.D.; Bouroussis, C.A.; Topalis, F.V. Embedded Microcontroller with a CCD

Camera as a Digital Lighting Control System. Electronics 2019, 8, 1033. [CrossRef]
4. Adam, G.K.; Petrellis, N.; Kontaxis, P.A.; Stylianos, T. COTS-Based Real-Time System Development: An Effective Application in

Pump Motor Control. Computers 2020, 9, 97. [CrossRef]
5. Fernandes, J. Debugging Real-Time Issues in Linux. 2016. Available online: http://www.joelfernandes.org/resources/elce2016-

debug-rt.pdf (accessed on 12 April 2021).
6. Kinjal, D. Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applica-

tions. 2017. Available online: https://www.arm.com/-/media/Files/pdf/white-paper/optimizing-arm-cortex-a-and-cortex-m.
pdf?revision=b20dd2ac-4cad-4a1b-9fb7-9b9a105a1c6b (accessed on 12 April 2021).

7. Analog Devices, Inc. One Technology Way. In SHARC Processor Programming Reference, Rev. 2.4; 2013. Available online: https:
//www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-2136x_2137x_214xx_pgr_rev2.4.pdf (accessed
on 12 April 2021).

8. Utyansky, D. Digital Signal Processing For Frequency-Modulated Continuous Wave RADARs. In An Overview of RADAR
Technology Used in ADAS and Design Tradeoffs; White Paper: 2018. Available online: https://www.synopsys.com/dw/doc.php/
wp/Digital_Signal_Processing_for_RADARs.pdf (accessed on 12 April 2021).

9. Demler, M. Microprocessor Report: CEVA PentaG Adds AI to 5G Baseband. 2018. Available online: https://www.ceva-dsp.
com/resource/microprocessor-report-ceva-pentag-adds-ai-5g-baseband/ (accessed on 12 April 2021).

10. Chiang, J.; Zammattio, S. Five Ways to Build Flexibility into Industrial Applications with FPGAs, White Paper WP-01154-2.2.
2011. Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01154-
flexible-industrial.pdf (accessed on 12 April 2021).

11. Monmasson, E.; Cirstea, M. FPGA Design Methodology for Industrial Control Systems—A Review. IEEE Trans. Ind. Electron.
2007, 54, 1824–1842. [CrossRef]

12. Cordtz, J.; Johansen, S.; Nordlund, L. Research Unlimited. Microsoft: FPGA Wins Versus Google TPUs For AI. 2017. Available
online: https://www.deic.dk/sites/default/files/uploads/konf-sem/konference-2017/Presentation%20-%20Deic%202017%2
0v3.1%20-%20presented%20at%20Deic.pdf (accessed on 12 April 2021).

13. Hajduk, Z.; Trybus, B.; Sadolewski, J. Architecture of FPGA Embedded Multiprocessor Programmable Controller. Ind. Electron.
IEEE Trans. 2015, 62, 2952–2961. [CrossRef]

14. Nicola, M.; Nicola, C.I. Sensorless Fractional Order Control of PMSM Based on Synergetic and Sliding Mode Controllers. Electronics
2020, 9, 1494. [CrossRef]

15. Gawali, D.; Sharma, V.K. FPGA Based Micro-PLC Design Approach. In Proceedings of the 2009 International Conference on
Advances in Computing, Control, and Telecommunication Technologies, Trivandrum, India, 28–29 December 2009; pp. 660–663.

16. Dendaluce Jahnke, M.; Cosco, F.; Novickis, R.; Pérez Rastelli, J.; Gomez-Garay, V. Efficient Neural Network Implementations on
Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric
Vehicles. Electronics 2019, 8, 250. [CrossRef]

17. Kopczynski, M.; Grześ, T. Hardware Rough Set Processor Parallel Architecture in FPGA for Finding Core in Big Datasets. J. Artif.
Intell. Soft Comput. Res. 2021, 11, 99–110. [CrossRef]

https://www.nxp.com/files-static/microcontrollers/doc/user_guide/MPC560XPMCLUG.pdf?&fasp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
https://www.nxp.com/files-static/microcontrollers/doc/user_guide/MPC560XPMCLUG.pdf?&fasp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
https://www.nxp.com/files-static/microcontrollers/doc/user_guide/MPC560XPMCLUG.pdf?&fasp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://doi.org/10.3390/electronics8010033
http://dx.doi.org/10.3390/computers9040097
http://www.joelfernandes.org/resources/elce2016-debug-rt.pdf
http://www.joelfernandes.org/resources/elce2016-debug-rt.pdf
https://www.arm.com/-/media/Files/pdf/white-paper/optimizing-arm-cortex-a-and-cortex-m.pdf?revision=b20dd2ac-4cad-4a1b-9fb7-9b9a105a1c6b
https://www.arm.com/-/media/Files/pdf/white-paper/optimizing-arm-cortex-a-and-cortex-m.pdf?revision=b20dd2ac-4cad-4a1b-9fb7-9b9a105a1c6b
https://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-2136x_2137x_214xx_pgr_rev2.4.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-2136x_2137x_214xx_pgr_rev2.4.pdf
https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_Processing_for_RADARs.pdf
https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_Processing_for_RADARs.pdf
https://www.ceva-dsp.com/resource/microprocessor-report-ceva-pentag-adds-ai-5g-baseband/
https://www.ceva-dsp.com/resource/microprocessor-report-ceva-pentag-adds-ai-5g-baseband/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01154-flexible-industrial.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01154-flexible-industrial.pdf
http://dx.doi.org/10.1109/TIE.2007.898281
https://www.deic.dk/sites/default/files/uploads/konf-sem/konference-2017/Presentation%20-%20Deic%202017%20v3.1%20-%20presented%20at%20Deic.pdf
https://www.deic.dk/sites/default/files/uploads/konf-sem/konference-2017/Presentation%20-%20Deic%202017%20v3.1%20-%20presented%20at%20Deic.pdf
http://dx.doi.org/10.1109/TIE.2014.2362888
http://dx.doi.org/10.3390/electronics9091494
http://dx.doi.org/10.3390/electronics8020250
http://dx.doi.org/10.2478/jaiscr-2021-0007

Electronics 2021, 10, 1164 15 of 15

18. Tsai, W.C.; Shih, Y.J.; Huang, N.T. Hardware-Accelerated, Short-Term Processing Voice and Nonvoice Sound Recognitions for
Electric Equipment Control. Electronics 2019, 8, 924. [CrossRef]

19. Parker, S.J.; Chouliaras, V.A. An OpenCL software compilation framework targeting an SoC-FPGA VLIW chip multiprocessor.
J. Syst. Archit. 2016, 68, 17–37. [CrossRef]

20. Anjam, F.; Wong, S.; Nadeem, F. A shared reconfigurable VLIW multiprocessor system. In Proceedings of the 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010;
pp. 1–8.

21. Purnaprajna, M.; Ienne, P. Making wide-issue VLIW processors viable on FPGAs. ACM Trans. Archit. Code Optim. 2012, 8, 33:1–33:16.
[CrossRef]

22. Nurmi, J. Processor Design. System-on-Chip Computing for ASICs and FPGAs; Springer: Berlin/Heidelberg, Germany, 2007; Chapters 3
and 7.

23. Vissers, K. Versal: The Xilinx Adaptive Compute Acceleration Platform (ACAP). In Proceedings of the 2019 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; Association for Computing
Machinery: New York, NY, USA, 2019; p. 83.

24. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx Adaptive Compute Acceleration Platform: Versal TM Architecture.
In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA,
24–26 February 2019; pp. 84–93.

25. Jenner, A. Reenigne Blog, Stuff I Think about, Very Low-Level Programming. Available online: https://www.reenigne.org/blog/
very-low-level-programming/ (accessed on 12 April 2021).

26. Smerdon, M. Spartan-6 FPGAs: Performance, Power, and I/O Optimized for Cost-Sensitive Applications, White Paper: Spartan-6
FPGAs, WP396. Available online: https://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_Perf_Power.
pdf (accessed on 12 April 2021).

27. Hennessy, J.; Jouppi, N.; Przybylski, S.; Rowen, C.; Gross, T.; Baskett, F.; Gill, J. MIPS: A Microprocessor Architecture. SIGMICRO
Newsl. 1982, 13, 17–22. [CrossRef]

28. Istoan, M.; Pasca, B. Fixed-Point Implementations of the Reciprocal, Square Root, and Reciprocal Square Root Functions. 2015.
Available online: https://hal.archives-ouvertes.fr/hal-01229538/document (accessed on 12 April 2021).

29. Przybył, A.; Er, M.J. The Method of Hardware Implementation of Fuzzy Systems on FPGA; LNAI, Part II; Springer: Berlin/Heidelberg,
Germany, 2016; Volume 9692, pp. 284–298.

30. Kluska, J.; Hajduk, Z. Hardware Implementation of P1-TS Fuzzy Rule-Based Systems on FPGA. In Proceedings of the International
Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 9–13 June 2013; Volume 7894, pp. 282–293.

31. Jhang, J.Y.; Tang, K.H.; Huang, C.K.; Lin, C.J.; Young, K.Y. FPGA Implementation of a Functional Neuro-Fuzzy Network for
Nonlinear System Control. Electronics 2018, 7, 145. [CrossRef]

32. Brown, A.; Kelly, P.; Luk, W. Profiling floating point value ranges for reconfigurable implementation. In Proceedings of the
Workshop on Reconfigurable Computing, HiPEAC 2007. 2007. Available online: https://www.researchgate.net/publication/25
0391064_Profiling_floating_point_value_ranges_for_reconfigurable_implementation (accessed on 12 April 2021).

33. Przybył, A.; Szczypta, J. Method of Evolutionary Designing of FPGA-based Controllers. Przegląd Elektrotechniczny 2016, 92,
174–179. [CrossRef]

34. Choi, H.; Yun, H.; Kim, Y. Implementation of Evolutionary Fuzzy PID Speed Controller for PM Synchronous Motor. IEEE Trans.
Ind. Inf. 2015, 11, 540–547. [CrossRef]

35. Rutkowski, L.; Przybyl, A.; Cpalka, K. Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible
Neuro-Fuzzy Approximation. IEEE Trans. Ind. Electron. 2012, 59, 1238–1247. [CrossRef]

36. Przybył, A. Hard real-time communication solution for mechatronic systems. Robot. Comput. Integr. Manuf. 2018, 49, 309–316.
[CrossRef]

37. Wu, T.S.; Karkoub, M.; Yu, W.S.; Chen, H.S. H∞ based on Type-2 Adaptive Fuzzy Tracking Control Design for PMDC Motor with
Dead-Zones. AMCSE J. 2019, 1, 40–47.

38. Dziwiński, P.; Avedyan, E.D. A New Method of the Intelligent Modeling of the Nonlinear Dynamic Objects with Fuzzy Detection
of the Operating Points. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 293–305.

39. Delgado, R.; Choi, B.W. Network-Oriented Real-Time Embedded System Considering Synchronous Joint Space Motion for an
Omnidirectional Mobile Robot. Electronics 2019, 8, 317. [CrossRef]

40. Grycuk, R.; Wojciechowski, A.; Wei, W.; Siwocha, A. Detecting Visual Objects by Edge Crawling. J. Artif. Intell. Soft Comput. Res.
2020, 10, 223–237. [CrossRef]

http://dx.doi.org/10.3390/electronics8090924
http://dx.doi.org/10.1016/j.sysarc.2016.06.003
http://dx.doi.org/10.1145/2086696.2086712
https://www.reenigne.org/blog/very-low-level-programming/
https://www.reenigne.org/blog/very-low-level-programming/
https://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_Perf_Power.pdf
https://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_Perf_Power.pdf
http://dx.doi.org/10.1145/1014194.800930
https://hal.archives-ouvertes.fr/hal-01229538/document
http://dx.doi.org/10.3390/electronics7080145
https://www.researchgate.net/publication/250391064_Profiling_floating_point_value_ranges_for_reconfigurable_implementation
https://www.researchgate.net/publication/250391064_Profiling_floating_point_value_ranges_for_reconfigurable_implementation
http://dx.doi.org/10.15199/48.2016.07.38
http://dx.doi.org/10.1109/TII.2013.2284561
http://dx.doi.org/10.1109/TIE.2011.2161652
http://dx.doi.org/10.1016/j.rcim.2017.08.001
http://dx.doi.org/10.3390/electronics8030317
http://dx.doi.org/10.2478/jaiscr-2020-0015

	Introduction
	Different Ways of Algorithms Implementation on FPGA
	Fixed-Point Coprocessor Based on a Scaling Schedule
	Experimental Results
	Conclusions
	References

