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Abstract: Emotions are an integral part of human interactions and are significant factors in determin-
ing user satisfaction or customer opinion. speech emotion recognition (SER) modules also play an
important role in the development of human—-computer interaction (HCI) applications. A tremendous
number of SER systems have been developed over the last decades. Attention-based deep neural
networks (DNNs) have been shown as suitable tools for mining information that is unevenly time
distributed in multimedia content. The attention mechanism has been recently incorporated in DNN
architectures to emphasise also emotional salient information. This paper provides a review of the
recent development in SER and also examines the impact of various attention mechanisms on SER
performance. Overall comparison of the system accuracies is performed on a widely used IEMOCAP
benchmark database.

Keywords: speech emotion recognition; deep learning; attention mechanism; recurrent neural
network; long short-term memory

1. Introduction

The aim of human—computer interaction (HCI) is not only to create a more effective
and natural communication interface between people and computers, but its focus also lies
on creating the aesthetic design, pleasant user experience, help in human development, on-
line learning improvement, etc. Since emotions form an integral part of human interactions,
they have naturally become an important aspect of the development of HCI-based applica-
tions. Emotions can be technologically captured and assessed in a variety of ways, such
as facial expressions, physiological signals, or speech. With the intention of creating more
natural and intuitive communication between humans and computers, emotions conveyed
through signals should be correctly detected and appropriately processed. Throughout
the last two decades of research focused on automatic emotion recognition, many machine
learning techniques have been developed and constantly improved.

Emotion recognition is used in a wide variety of applications. Anger detection can
serve as a quality measurement for voice portals [1] or call centres. It allows adapting
provided services to the emotional state of customers accordingly. In civil aviation, moni-
toring the stress of aircraft pilots can help reduce the rate of a possible aircraft accident.
Many researchers, who seek to enhance players’ experiences with video games and to
keep them motivated, have been incorporating the emotion recognition module into their
products. Hossain et al. [2] used multimodal emotion recognition for quality improvement
of a cloud-based gaming experience through emotion-aware screen effects. The aim is to
increase players’ engagement by adjusting the game in accordance with their emotions. In
the area of mental health care, a psychiatric counselling service with a chatbot is suggested
in [3]. The basic concept consists of the analysis of input text, voice, and visual clues in
order to assess the subject’s psychiatric disorder and inform about diagnosis and treatment.
Another suggestion for emotion recognition application is a conversational chatbot, where
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speech emotion identification can play a role in better conversation [4]. A real-time SER
application should find an optimal trade-off between less computing power, fast processing
times, and a high degree of accuracy.

In this review, we focus on works dealing with the processing of acoustic clues from
speech to recognise the speaker’s emotions. The task of speech emotion recognition (SER) is
traditionally divided into two main parts: feature extraction and classification, as depicted
in Figure 1. During the feature extraction stage, a speech signal is converted to numerical
values using various front-end signal processing techniques. Extracted feature vectors have
a compact form and ideally should capture essential information from the signal. In the
back-end, an appropriate classifier is selected according to the task to be performed.

Front-End Back-End

I
— Emotional
SPee‘:h Pre-processing Feature extraction L I ML Classifier praring
signal | | - function state

Figure 1. Block scheme of general speech emotion recognition system.

Examples of widely used acoustic features are mel-frequency cepstral coefficients
(MFCCs), linear prediction cepstral coefficients (LPCC), short-time energy, fundamental
frequency (F0), formants [5,6], etc. Traditional classification techniques include proba-
bilistic models such as the Gaussian mixture model (GMM) [6-8], hidden Markov model
(HMM) [9], and support vector machine (SVM [10-12]. Over the years of research, also var-
ious artificial neural network architectures have been utilised, from the simplest multilayer
perceptron (MLP) [8] through extreme learning machine (ELM) [13], convolutional neural
networks (CNNs) [14,15], to deep architectures of residual neural networks (ResNets) [16]
and recurrent neural networks (RNNs) [17,18]. In particular, long short-term memory
(LSTM) and gated recurrent units (GRU)-based neural networks (NNs), as state-of-the-art
solutions in time-sequence modelling, have been widely utilised in speech signal modelling.
In addition, various end-to-end architectures have been proposed to learn jointly both
extraction of features and classification [15,19,20].

Besides LSTM and GRU networks, the introduction of an attention mechanism (AM)
in deep learning may be considered as another milestone in sequential data processing. The
purpose of AM is, as with human visual attention, to select relevant information and filter
out irrelevant ones. The attention mechanism, first introduced for a machine translation
task [21], has become an essential component of neural architectures. Incorporating AM
into encoder—decoder-based neural architectures significantly boosted the performance of
machine translation even for long sequences [21,22]. Motivated by the success of attention
on machine translation, many researchers have considered it as an essential component
of neural architectures for a remarkably large number of applications including natural
language processing (NLP) and speech processing. Since emotional salient information is
unevenly distributed across speech utterances, an integration of AM into NN architecture
is also of interest among the SER research community.

Although several review articles have been devoted to automatic speech emotion
recognition [23-29], to the best of the authors” knowledge, a comprehensive overview
of SER solutions containing attention mechanisms is lacking. Motivated by this finding,
in this article, we provide a review of the recent development in the speech emotion
recognition field with a focus on the impact of AM in deep learning-based solutions on
SER performance.

The paper is organised as follows: Firstly, the scope and methodology of the survey
are discussed in Section 2. In Section 3, we address some of the key issues in deep
learning-based SER development. Section 4 provides a theoretical background of the most
commonly used neural architectures incorporating AM. Then, we review recently proposed
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SER systems incorporating different types of AM. Finally, we compare the accuracy of
the selected systems on the IEMOCAP benchmark database in Section 5. The section is
concluded by a short discussion on the impact of AM on SER system performance.

2. Scope and Methodology

The paper is divided into two main parts: the first part discusses a general concept of
SER and related works, including a description of the novel and deep features, and transfer
learning and generalisation techniques, and the focus of the second part is on DNN models
incorporating attention mechanism. We used Scopus and Web of Science (WoS) citation
databases to search for relevant publications. A number of published papers by year of
publication is given in Table 1. This is a general amount of works when searching by the
keywords: speech, emotion, recognition, attention. Due to the excessive amount of research
work dealing with this topic, only selected papers from the last 4 to 5 years of intensive
research are reported in our study. In this review, the speech-related works were mainly
taken into consideration; papers dealing with other physiological signals such as EEG,
heart rate variability, as well as a fusion of multiple modalities were excluded.

Table 1. Number of publications during the initial search for speech emotion recognition and
attention speech emotion recognition.

Scopus WoS
Y
ear General SER Attention SER General SER Attention SER

2016 519 34 344 30
2017 631 42 348 24
2018 829 82 446 54
2019 979 125 415 63
2020 886 133 325 59

For an additional overview of research work dealing with SER from previous and
latest years, we refer a reader to reviews and surveys listed in Table 2. Note, our review
does not cover all the topics related to SER such as detailed descriptions of speech features,
classifiers, and emotional models, which are addressed more closely in other survey papers.
We assume a reader’s knowledge in probabilistic and machine learning-based approaches
in data classifiers as well as in the basic DNN architectures. To the best of the authors’
knowledge, none of the other reviews or surveys (listed in Table 2) deal with attention
mechanism in more detail; hence, we consider it to be our main contribution.

Table 2. A brief summary of reviews and surveys related to SER.

References Description of the Content

A comprehensive survey discusses acoustic features, classification methods
(both traditional and artificial neural networks (ANNs)), and
multimodal approaches.

The authors pointed out that some of the existing databases were not sufficient
for automatic SER and the development of benchmark emotional speech
databases is necessary.

Survey from 2000 to 2011 describing various features (considering non-linguistic
and linguistic information) and feature selection methods, and providing a
comparison of classification performance of traditional classifiers, ANNs, and
their combinations. The major shortcoming for direct comparison of SER
systems is considered to be a lack of uniformity in the way the methods are
evaluated and assessed.

[23]; 2011

[24]; 2015
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Table 2. Cont.

References Description of the Content

The review provides a thorough description of emotion datasets and speech
[25]; 2018 features (excitation source, prosodic and vocal tract features) from 2000 to 2017.
It also discusses the classification of emotions in general.

A review article, which traces 20 years of progress in SER. The author discusses
the techniques of representation of emotional speech (considering audio and
textual features) and the ongoing trends. Benchmark results of the SER
challenges are also provided.

The survey covers existing emotion detection research efforts, emotion models,

[27]; 2018 datasets, detection techniques, their features, limitations, and some possible
future directions. Emotion analysis from text is also thoroughly described.
Review of the deep learning techniques for SER: RNN, recursive neural network,

[26]; 2018

[28]; 2019 deep belief network (DBN), CNN, and auto encoder (AE).
A review discusses current methodologies in SER. It covers a wide area of SER
topics such as emotional models, databases, features, pre-processing methods,
[29]; 2020 supporting modalities, and classifiers. The authors address challenges in SER:

the need for natural datasets with a sufficient amount of data; they also pointed
out that unsatisfactory results are still being achieved with
cross-language scenarios.

Evaluation Metrics

In this section, common metrics of accuracy evaluation are listed. For a multiclass
classification task, accuracy is assessed per class firstly and then the average accuracy is
determined. This is denoted as unweighted accuracy hereafter. If the class accuracies
are weighted according to the number of per-class instances, then the evaluation metric
may not reflect the unbalanced nature of data (which is very common with databases of
emotional speech). Therefore, the unweighted accuracy is often a better indicator of the
system’s accuracy. The common evaluation metrics for the SER tasks are as follows:

e  Precision is the ratio of all correctly positively classified samples (true positive—TP)
to all positive classified samples (TP and false positive—FP). For K-class evaluation,
the precision is computed as follows:

EK TPk
k=1 TP, +FPy

K

e  Recall is the ratio of all correctly positively classified samples (TP) to the number
of all samples in a tested subgroup (TP and false negative FN). Recall indicates a
class-specific recognition accuracy. Similarly, as in the case of precision, the recall for
a multiclass classification problem is computed as the average of recalls for individ-
ual classes.

)

precision =

yK TPy
k=1 TP +FNy

K

e Inthe literature, the multiclass recall is referred to as unweighted average recall (UAR),
which is recommended metric for SER. UAR corresponds to unweighted accuracy
(UA), computed similarly as the average over individual class accuracies.

e  Weighted accuracy is often given as weighted average recall (WAR), which is com-
puted as the class-specific recalls weighted by the number of per-class instances sy
according to (3). This metric is also interchangeable with weighted accuracy (WA; or
accuracy), which is defined as correct predictions over a total number of predictions.
Note that evaluation metrics were not clearly defined in previous works. Thus, we
unified them as described above.

recall =

@
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e  Fl score is defined as the harmonic mean of the precision and recall.
recision - recall
F1=27F @)

precision + recall

Note, all of the above-mentioned classification metrics are in the range of [0, 1] (x100 %).

A regression problem is often encountered when dealing with a continuous emotional
scale. The appropriate metric for the regression is the correlation coefficient determined in
two ways:

e  Pearson’s correlation coefficient (PCC; p) measures the correlation between the true
and predicted values (x and y, respectively). Given the pairs of values {(xn, yn)}, n =1,
2,...,N, Pearson’s correlation coefficient is computed as follows:

Db (v~ w)
\/Zgllb(n — 1)’ Yot (Yn - Hy)

where n denotes the index of the current pair, and 1« and py are mean values of x, and
Vn, respectively.

, ©)

2

e  Concordance Correlation Coefficient (CCC; p.) examines the relationship between the
true and predicted values from a machine learning model. CCC lies in the range of
[—1, 1], where 0 indicates no correlation and 1 is perfect agreement or concordance.

2p0, 0
Pec = > (6)

03 +03 + (ux—uy>2 I

where L is the mean value and o is standard deviation, and p is Pearson’s correlation coefficient.
A comparison of published SER solutions is difficult due to the different experimental
conditions used. Thus, we tried to do at least an intuitive comparative analysis of the
published DNN-based SER systems performance. We grouped the systems according to the
emotional datasets used for the conduction of experiments. Since the settings of the datasets
differ significantly, we also group the compared works according to emotional labelling
(discrete/continuous SER) and/or the number of classes being recognised and common
cross-validation scenario. For the evaluation, we use the most widely used IEMOCAP
database, on which most of the state-of-the-art systems have been tested. For comparison,
we also listed the performance of the systems tested on EmoDB and RECOLA datasets.

3. Speech Emotion Recognition and Deep Learning

In this section, we review the most relevant issues in today’s SER system development
in general: (1) emotional speech database development, (2) speech features extraction and
DL based emotion modelling, and (3) selected techniques for SER performance improve-
ment, such as data augmentation, transfer learning, and cross-domain recognition (the
attention mechanism is addressed in Sections 4 and 5). A comparison of the state-of-the-art
works (excluding AM) based on common criteria is provided at the end of this Section.

3.1. Databases of Emotional Speech

Since the state-of-the-art SER solutions are exclusively based on data-driven machine
learning techniques, the selection of a suitable speech database is naturally a key task in
building such SER systems. Several criteria have to be taken into account when selecting a
proper dataset, such as the degree of naturalness of emotions, the size of the database, and
the number of available emotions. The databases can be divided into three basic categories:
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Simulated (acted): Professional actors express emotions through scripted scenarios.
Elicited (induced): Emotions are created via artificially induced situations. With this
approach, it is possible to achieve more natural recordings and simultaneously to have
control over the emotional and lexical content of recordings.

e  Spontaneous (natural): Spontaneous audio recordings are being extracted from various
reality shows. The disadvantage of real-world audio samples is that they may be
distorted by background noise and reverberation [30]. Another drawback is that the
natural or spontaneous databases often contain unbalanced emotional categories.

Naturally, speech databases are created in various languages, and they may consist of a
variety of emotional states. However, emotion labelling is not unified. Recognised emotion
can be labelled into several discrete emotional classes, as shown in Table 3. The common
way is labelling to six basic (known as the big six) emotional categories—anger, disgust, fear,
happiness, sadness, surprise, and neutral. If SER is considered a regression problem, the
emotions are mapped to continuous values representing the degree of emotional arousal,
valence, and dominance. Valence is a continuum ranging from unhappiness to happiness,
arousal ranges from sleepiness to excitement, dominance is in a range from submissiveness
to dominance (e.g., control, influence) [31]. In Table 3, the most widely used databases of
emotional speech are listed.

We would like also to draw attention to the following issue related to speech emotion
rating and annotation. It has to be distinguished between emotion perceived (or observed)
and emotion elicited (induced). Unlike in music emotion recognition, or affective analysis
of movies where attention is paid to the listener’s or spectator’s experience, in the case
of speech emotion recognition, the focus is on the speaker and his emotional state. The
way the data is annotated is of much importance, especially in the case of annotation
of spontaneous and induced emotions of the speaker. The emotion in speech is usually
annotated by a listener. Another option is to use the rating provided by the speaker himself
(felt or induced emotions) or obtained by analysis of the speaker’s physiological signals.
Since the experimental studies have shown a considerable discrepancy between emotion
ratings by speaker and observer, correct and unambiguous emotion rating is still an open
issue [32].

Table 3. Comparison of databases of emotional speech.

Num. of Num. of

Database Language Subjects Utterances Discrete Labels Dim. Labels Modality
AESDD [33] 3F/2M 500 A,D,EH,S - A
EmoDB [34] German 5F/5M 500 A,B,D,EH,N,S - A

eNTEl[{%FS‘?CE 05 English o) 5 utt. /emotion A,D,EH,N,S,S, - AV
. 30 F/21 M A, B, Em, He, L], M, N, _
FAU-AIBO [36] German (children) 18 216 O,R.S. A
IEMOCAP [37] English 5F/5M 10,039 A,D,E EF,HN,s,5; Vv A, V, T, MCF
MSP-PODCAST [38] English - 62,140 A,D,EH,S,S5,N,C O v A
Polish DB [39] 4F/4M 240 A,B,EJN,S - A
RAVDESS [40] English 12F/12M 104 A,D,EH,N,S,S; v AV
RECOLA [41] French 46 (27) 1 - - v A,V,ECG, EDA
SAVEE [42] English 4M 480 A,D,EH,S,S, N - AV

Meaning of acronyms are as follows: Num. of subjects: F—female, M—male; Discrete labels: A—anger, B—boredom, C—contempt,
D—disgust, E—excitement, E,—emphatic, F—fear, H—happiness, H.—helplessness, I—irritation, J—joy, M—motherese, N—neutral,
O—other, R—reprimanding, S—sadness, S,—surprise; Dim. Labels: dimensional labels (arousal, valence, dominance); Modality: A—audio,
V—video, T—text, MCF—motion capture of face, ECG—electrocardiogram, EDA—electrodermal activity. 1 Overall, 46 subjects participated
in samples recording; however, only 27 subjects were available for audio-visual emotion recognition challenge (AVEC) [43].

3.2. Acoustic Features

The purpose of SER is to automatically determine the emotional state of the speaker
via a speech signal. Changes in the waveform’s frequency and intensity may be observed
when comparing different emotionally coloured speech signals [9]. The aim of SER is
to capture these variations using different discriminative acoustic features. Acoustic
features (referred to as low-level descriptors (LLDs) are often aggregated by temporal
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feature integration methods (e.g., statistical and spectral moments) in order to obtain
features at a global level [44]. High-dimensional feature vectors can be transformed
into a compact representation using feature selection (FS) techniques. The aim is to find
substantial information from the feature set and discard redundant values simultaneously.
In this way, it is possible to optimise the time complexity of the system while maintaining
similar accuracy.

Over the many years of research, the focus has been placed on the selection of the ideal
set of descriptors for emotional speech. MFCCs originally proposed for speech/speaker
recognition are well established also for the derivation of emotional clues. Prosodic de-
scriptors (such as pitch, intensity, thythm, and duration), as well as voice quality features
(jitter and shimmer), are common indicators of human emotions as well [8]. In addition,
numerous novel features and feature selection techniques have been developed and suc-
cessfully applied to SER [7,44-50]. For instance, Gammatone frequency cepstral coefficients
proposed by Liu [45] yielded a 3.6% average increase in accuracy compared to MFCCs.
Epoch-based features extracted by the zero time windowing also provided emotion-specific
and complementary information to MFCCs [46]. Ntalampiras et al. [44] proposed a mul-
tiresolution feature called perceptual wavelet packet based on critical-band analysis. It
takes into account that not all parts of the spectrum affect human perception in the same
way. In [7], the nonlinear Teager-Kaiser energy operator (TEO) was used in combination
with MFCC for the detection of stressed emotions. Kerkeni et al. [47] proposed modu-
lation spectral features and modulation frequency features—based on empirical mode
decomposition of the input signal and TEO extraction of the instantaneous amplitude and
instantaneous frequency of the AM-FM components. Yogesh et al. [48] extracted nonlinear
bispectral features and bicoherence features from speech and glottal waveforms.

However, despite great research efforts, there is still no single solution for the most
appropriate features. For better comparability of SER systems and their obtained results,
attempts to unify feature extraction have been made. When selecting appropriate audio
features for SER, it is a common practice to use the openSMILE open-source audio fea-
ture extraction toolkit. It contains several feature sets intended for automatic emotion
recognition, some of which were proposed in several emotion-related challenges and
benchmark initiatives.

e  The INTERSPEECH 2009 (IS09) [51] feature set consists of fundamental frequency,
voicing probability, frame energy, zero-crossing rate, and 12 MFCCs and their first-
order derivatives. With statistical functionals applied to LLDs, 384-dimensional feature
vectors can be obtained.

o  The feature set of the INTERSPEECH 2010 (IS10) paralinguistic challenge [52] contains
1582 features, which are obtained in three steps: (1) a total of 38 LLDs are smoothed
by low-pass filtration, (2) their first order regression coefficients are added, and
(3) 21 functionals are applied.

e  The extended Geneva minimalistic acoustic parameter set (eGeMAPS) [53] contains
LLD features, which paralinguistic studies have suggested as most related to emotions.
The eGeMAPS consists of 88 features: the arithmetic mean and variation of 18 LLDs,
8 functionals applied to pitch and loudness, 4 statistics over the unvoiced segments,
6 temporal features, and 26 additional cepstral parameters and dynamic parameters.

e  The INTERSPEECH 2013 computational paralinguistic challenge (ComParE) [54] is
another feature set from the openSMILE extractor, which is mostly used to recognise
emotions. ComParE consists of 6373 features based on extraction of 64 LLDs (prosodic,
cepstral, spectral, sound quality), adding their time derivates (delta features), and
applying statistical functions.

3.3. Data-Driven Features

Apart from speech parameterisation from handcrafted features, another popular
approach is to let a neural network (NN) to perform feature extraction. A typical example
is the utilisation of CNN to learn from 2D speech spectrograms, log-mel spectrograms, or
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even from the raw speech signals [19,55]. CNN is usually supplemented by fully connected
(FC) layers and softmax for classification [56]. Architecture, which consists of multiple
convolutional layers, is often referred to in literature as deep CNN (DCNN). Huang and
Narayanan [55] examined the ability of CNN to perform task-specific spectral decorrelation
using log-mel filter-bank (MFB, or log-mel spectrogram) as input features. Since MFCCs
are log-mels decorrelated by discrete cosine transform (DCT), the authors demonstrated
that the CNN module was a more effective task-specific decorrelation technique under
both clean and noisy conditions (experiments were conducted on eNTERFACE’05 [35]
database). Aldeneh and Provost [14] experimentally proved that a system based on the
minimum set of 40 MFB features and CNN architecture can achieve similar results as
SVM trained on a large feature set (1560). Compared to a complex system based on deep
feature extraction derived from 1582-dimensional features and an SVM classifier [10], the
proposed 40 MFB-CNN provides a more effective and end-to-end solution. Fayek et al. [15]
proposed various end-to-end NN architectures to model intra-utterance dynamics. CNN
had better discriminative performance than DNN and LSTM architectures, all trained
with MFB input features. Vrysis et al. [57] conducted a thorough comparison between
standard features, temporal feature integration tactics, and 1D and 2D DCNN architectures.
The designed convolutional algorithms delivered excellent performance, surpassing the
traditional feature-based approaches. The best 2D DCNN architecture achieved higher
accuracy than 1D DCNN with the comparable number of parameters. Moreover, 1D DCNN
was four times slower on execution. Hajarolasvadi and Demirel [58] proposed 3D CNN
model for speech emotion recognition. The utterances in form of overlapping frames
were processed in two ways—=88 dimensional features and spectrogram were extracted for
each frame. The representation of 3D spectrogram was based on the selection of k most
discriminant frames with k-means clustering algorithm applied to the extracted features.
Using this approach, it is possible to capture both spectral and temporal information. The
proposed architecture was able to outperformed pretrained 2D CNN model transferred
to SER task. Mustageem and Kwon [59] proposed plain CNN architecture called deep
stride CNN, which used strides for downsampling of input feature maps instead of the
pooling layer. The authors dealt with proper pre-processing in form of noise reduction
through novel adaptive thresholding and decreasing of computational complexity by
utilising simplified CNN structure. This stride CNN improved accuracy by 7.85% and
4.5% on IEMOCAP and RAVDESS datasets, respectively and significantly outperformed
state-of-the-art systems.

3.4. Temporal Variations Modelling

Emotional content in speech varies through time; therefore, it is appropriate to leverage
the techniques which are effective for temporal modelling, such as stochastic HMM or
neural networks with recurrent units (e.g., LSTM or GRU).

Tzinis and Potamianos [17] studied the effects of variable sequence lengths for LSTM-
based recognition (see Section 4 for RNN-LSTM description). Recognition on sequences
concatenated at frame-level yielded better results on phoneme length (90 ms). The best
results were achieved over statistically aggregated segments at the word level (3 s)—64.16%
WA and 60.02% UA (IEMOCAP). In this case, extraction of higher-level statistical functions
from multiple LLDs over speech segments led to a more salient representation of underlying
emotional dynamics. The proposed solution yielded comparable results to a more complex
system based on deep feature extraction and SVM classifiers [10,60].

Recurrent layers are often used in combination with CNN (referred to as CRNN) for
the exploitation of temporal information from emotional speech [61]. In this way, both
local and global characteristics are modelled. Zhao et al. [62] compared the performance
of 1D and 2D-CNN LSTM architectures with raw speech and log-mel spectrograms as
input, respectively. Moreover, 2D-CNN LSTM performed better in the modelling of local
and global representations than its 1D counterpart. The 2D-CNN LSTM outperformed
traditional approaches such as DBN and CNN. Luo et al. [63] proposed a two-channel
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system with joint learning of handcrafted HSFs/DNN and log-mel spectrogram/CRNN
learned features. In this way, it is possible to obtain different kinds of information from
emotional speech. The authors also designed another jointly learned architecture—multi-
CRNN with one CRNN channel learning from a longer time scale of spectrogram segment
and a second CRNN channel for deeper layer-based feature extraction. Their CRNN
baseline consisted of CNN-LSTM with a concatenation of three pooling layers (average,
minimum, and maximum). Jointly learned SER systems extracted more robust features
than the plain CRNN system and HSF-CRNN outperformed multi-CRNN. Satt et al. [64]
proposed CNN-BiLSTM architecture with spectrogram as input and worked with two
different frequency resolutions. The results indicated that lower resolution yields lower
accuracy by 1-3%. The combination of CNN and BiLSTM achieved better results in
comparison with the stand-alone CNN model. Moreover, unweighted accuracy was
improved by the proposed two-step classification, where special emphasis was put on
a neutral class. Ma et al. [65] dealt with the accuracy loss introduced by the speech
segmentation process, i.e., division of longer utterances into segments of the same length.
They proposed a similar approach to Satt et al. [64] (a combination of CNN and BiGRU),
except that spectrogram of the whole sentence, was used as input. They introduced
padding values and dealt with the appropriate processing of valid and padded sequences.
Moreover, different weights were assigned to the loss so that the length of the sentence
does not affect the bias of the model. There was a significant performance improvement
over segmentation methods with fixed-length inputs. Compared to [64], the proposed
model using variable-length input spectrograms achieved absolute improvements of 2.65%
and 4.82%, in WA and UA.

A significant part of the works on SER prefers to model emotions on continuous scale
(usually in the activation-valence emotional plane). Several works on continuous SER have
also proven that CNN-based data-driven features outperform traditional hand-engineered
features [19,66,67]. For example, authors of [19,67] proposed end-to-end continuous SER
systems, in which 1D CNN was applied on the raw waveform and temporal dependencies
were then modelled by the Bi-LSTM layers. Khorram et al. [66] proposed two architectures
for continuous emotions recognition—dilated CNN with a varying dilation factor for
different layers and downsampling/upsampling CNN—with different ways of modelling
long-term dependencies. AlBadawy and Kim [68] further improved the accuracy of valence
with joint modelling of the discrete and continuous emotion labels. Table 4 summarises the
top performances of the continuous SER systems tested on the RECOLA dataset.

Table 4. Comparison of continuous SER on RECOLA datasets: A-V = activation-valence, p.—concordance correlation coefficient.

References Audio Parametrization Classification Method Reported Accuracy (pc)
Trigeorgis et al. [19]; 2016 Raw signal end-to-end CNN-BiLSTM 0.686 A 0261V
(6 s long sequences)
Khorram et al. [66]; 2018 MFB Down/Up CNN 0.681 A 0.502 V
Tzirakis et al. [67]; 2018 Raw signal end-to-end CNN-LSTM 0.787 A 0,440 V

AlBadawy and Kim [68]; 2018

(20 s long sequences)
MFB Deep BLSTM 0.697 A 0.555V

3.5. Transfer Learning

The methods based on leveraging pretrained neural networks can often obtain better
results than traditional techniques [11,12]. As a result of some studies, pretrained neural
networks also outperform randomly initialised networks [69]. The use of transfer learning
is especially appropriate for SER, due to the lack of large speech emotion corpora. The
deep spectrum features proposed in [12], which were derived from feeding spectrograms
through the pretrained network designed for the image classification task, AlexNet [70],
is reported to match and even outperform some of the conventional feature extraction
techniques. Zhang et al. [11] proposed the use of the AlexNet DCNN pretrained model
to learn from three-channel log-mel spectrograms extracted from emotional speech (the
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additional two channels contained first and second-time derivates of the spectra, known
as delta features). The authors also proposed discriminant temporal pyramid matching
(DTPM) pooling strategy to aggregate segment-level features (obtained from the DCNN
block) to the discriminative utterance-level representations. According to the results
obtained with four different databases, AlexNet fine-tuned on emotional speech performed
better in comparison with the simplified DCNN model and at the same time, DTPM based
pooling outperformed the conventional average pooling method. Xi et al. [16] conducted
several experiments with the utilisation of a pretrained model for speaker verification tasks.
The authors proposed a residual adapter which is the residual CNN ResNet20 trained on
the VoxCeleb2 speaker dataset with adapter modules trained on IEMOCAP emotion data.
The residual adapter outperformed ResNet20 trained on emotional data only. This proved
the inadequacy of using a small dataset for training with the ResNet architecture.

3.6. Generalisation Techniques

The lack of sufficient size of datasets and their imbalanced nature are problems often
encountered in SER. With the increase in complexity and size of DNNSs, the need for a large
dataset is essential for their good performance. One of the solutions is to extend the dataset
by various deformation techniques. This approach is limited by the possibility of losing
the emotional content by inappropriate deformation of speech samples. The insufficient
amount of data can also be addressed by utilising data from other emotional databases.
However, there arises a problem of mismatched conditions between training and testing
data or in other words problem of mismatched domains.

3.6.1. Data Augmentation

Audio datasets can be effectively expanded (or augmented) using various deformation
techniques such as pitch and/or time shifting, the addition of background noise, and
volume control [71]. The addition of various noise levels can expand the dataset up to
several times [72]. In this subsection, data augmentation techniques applied specifically for
the SER task are briefly listed.

In [14], the augmentation based on speed perturbation resulted in an improvement of
2.3% and 2.8% on IEMOCAP and MSP-IMPROYV datasets, respectively. Etienne et al. [73]
applied several augmentation techniques on highly unbalanced samples from the IEMO-
CAP database: vocal tract length perturbation based on rescaling of the spectrograms
along the frequency axis, oversampling of classes (happiness and anger), and the use of
a higher frequency range. Compared to baseline, the application of all three techniques
increased the UA by about 4% (absolute improvement). Vryzas et al. [74] pointed out the
fact that changes in the timing and tempo characteristics could result in an undesired loss
of emotional clues. They used pitch alterations with constant tempo based on sub-band
sinusoidal modelling synthesis for augmentation of data. Although augmentation has not
increased the accuracy of the proposed CNN system (for the AESDD dataset [33]), it can
improve its robustness and generalisation.

The popular approach of data augmentation is the use of generative adversarial net-
works (GANSs) for generating new in-distribution samples. GAN consists of two networks,
which are trained together: generator for generating new samples and discriminator for
deciding the authenticity of samples (generated vs. true sample) [75]. Sahu et al. [76]
employed vanilla and conditional GAN networks (trained on the [IEMOCAP dataset) for
generating synthetic feature vectors. The proposed augmentation made slight improve-
ments in SVM’s performance when real data were appended with synthetic data. The
authors pointed out that a larger amount of data is needed to have a successful GAN
framework. Chatziagapi et al. [77] leveraged GAN for spectrogram generation to address
the data imbalance. Compared to standard augmentation techniques, authors achieved
10% and 5% relative performance improvement on IEMOCAP and FEEL-25k, respectively.

Fuetal. [78] designed an adversarial autoencoder (AAEC) emotional classifier, through
which the dataset was expanded in order to improve the robustness and generalisation of



Electronics 2021, 10, 1163

11 of 29

the classifier. The proposed model generated most of the new samples almost within the
real distribution.

3.6.2. Cross-Domain Recognition

In the domain adaptation approach, there is an effort to generalise the model for effec-
tive emotion recognition across different domains. The performance of a speech emotion
recognition system tuned for one emotional speech database can deteriorate significantly
for different databases, even if the same language is considered. One may encounter
mismatched domain conditions such as different environments, speakers, languages, or
various phonation modes. All these conditions worsen the accuracy of the SER system in
a cross-domain scenario. Therefore, a tremendous effort has been made to improve the
generalisation of the classifier.

Deng et al. [79] proposed unsupervised domain adaptation based on autoencoder. The
idea was to train the model on a whispered speech from the GeWEC emotion corpus, while
normal speech data were used for testing. Inspired by Universum learning, the authors
enhanced the model by integration of the margin-based loss, which adds information
from unlabelled data (from another database) to the training process. The results showed
that the proposed method outperformed other domain adaptation methods. Abdelwahab
and Busso [80] discussed the negative impact of mismatched data distributions between
training and testing dataset (target and source domain) on the emotion recognition task.
To compensate for the differences between the two domains, the authors used domain
adversarial neural network (DANN) [81], which is an adversarial multitask training tech-
nique for performing emotion classification tasks and the domain classification. DANN
effectively reduced the gap in the feature space between the source and target domains.
Zheng et al. [82] presented a novel multiscale discrepancy adversarial (MSDA) network
for conducting multiple timescales domain adaptation for cross-corpus SER. The MSDA
is characterised by three levels of discriminators, which are fed with global, local, and
hybrid levels of features from the labelled source domain and unlabelled target domain.
MSDA integrates multiple timescales of deep speech features to train a set of hierarchi-
cal domain discriminators and an emotion classifier simultaneously in an adversarial
training network. The proposed method achieved the best performance over all other
baseline methods. Noh et al. [83] proposed a multipath and group-loss-based network
(MPGLN), which supports supervised domain adaptation from multiple environments.
It is an ensemble learning model based on a temporal feature generator using BiLSTM,
a transferred feature extractor from the pretrained VGG-like audio classification model,
and simultaneous minimisation of multiple losses. The proposed MPGLN was evaluated
over five multidomain SER datasets and efficiently supported multidomain adaptation
and reinforced model generalisation.

Language dependency and emotion recognition with consideration of different lan-
guages are common issues that may be encountered in SER. One of the solutions would
be to identify language firstly and then to perform language-dependent emotion recogni-
tion [5]. Another solution would be to share different language databases and to process
them jointly. This is denoted as a multilingual scenario. In the case of a cross-lingual sce-
nario, one dataset is used for training and the other one for testing. Tamulevi¢ius et al. [72]
put together a cross-linguistic speech emotion dataset with the size of more than 10.000 emo-
tional utterances. It consists of six emotion datasets of different languages. Moreover,
augmentation of data was performed with the addition of white noise and application of
Wiener filtering (expansion of dataset up to nine times). For the representations of speech
emotion, authors chose several two-dimensional acoustic feature spaces (cochleagrams,
spectrograms, mel-cepstrograms, and fractal dimension-based features), and they used
CNN for classification. The results showed the superiority of cochleagrams over the other
utilised feature spaces and confirmed that emotions are language dependent. With the
increase of different language datasets in the training partition, the results obtained by
testing with remaining datasets slightly increased.
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3.7. DNN Systems Comparison

In this subsection, we tried to do at least a coarse comparison of the performance of
related works discussed above (remark, it is not possible to make an exact comparison
due to different test conditions, even if the same dataset was used). Note this summary
does not contain works incorporating attention mechanisms. The attention mechanism is
discussed in Section 4.

We focused on finding common criteria and the selection of datasets for comparative
analysis. From literature review, we selected the two most widely used databases—EmoDB
and IEMOCAP—and sorted out the related works in terms of the number of emotions used
for classification and cross-validation scheme. The resulted comparison of the SER systems
on EmoDB and IEMOCAP is in Tables 5 and 6 respectively.

For the EmoDB dataset, we considered research works that used all emotion classes
and the leave-one speaker-out (LOSO) method of cross-validation—speaker-independent
scenario. The human evaluation of emotions from EmoDB showing the average recognition
rate of 84.3% was surpassed by most of the works under comparison.

As seen in Table 5, the system incorporating handcrafted features with proper temporal
feature integration method yielded state-of-the-art results (>90% WA) in [44]. Thus, the
aggregation of different descriptors carries significant emotional information. However,
the disadvantage is that the high dimensional feature sets often cause an increase in
computational complexity. The low accuracy of pretrained AlexNet in [84] was caused by
the reduction of bandwidth and p-law companding for the purpose of the development of
a real-time SER system (7% reduction in accuracy). Table 5 shows that end-to-end CRNN
architecture [62], outperformed other works under comparison.

Table 5. Comparison of SER systems based on classification using a complete EmoDB dataset.

References

Ntalampiras et al. [44]; 2012
Huang et al. [85]; 2014
Yogesh et al. [48]; 2017

Zhang et al. [11]; 2018
Zhao et al. [62]; 2019
Lech et al. [84]; 2020

Audio Parametrisation Applied Techniques Reported Accuracy
Log-likelihood fusion level with . . .\ o
optimally integrated feature sets Simple logistic recognition 93.4% WA

semi-CNN o
Spectrogram with SYM 85.2% WA

BSFs, BCFs, IS10 (1632 features) o
FS: PSOBBO ELM 90.31% WA

3D Log-mels (static, A, AA) . o
DCNN-DTPM linear SVM 87.31% WA
Log-mel spectrograms 2D CNN LSTM 95.89% WA

. AlexNet o
Spectrograms converted into RGB 82% WA

(real-time SER)

In the case of IEMOCAP, the expansion of highly underrepresented class Happiness,
by merging it together with Excitement, naturally yields better results, especially in UA
measure. This effect can be seen in the first part of Table 6. (Emotions: A, E + H, N,
S). The common procedure for dataset partition is to employ a leave-one session-out
cross-validation (fivefold). A common approach is to use data from one speaker for
validation and data from the remaining speakers for testing. IEMOCAP contains both
scripted and improvised scenarios. Scripted recordings are often not incorporated into SER
systems, due to possible correlation with lingual content (systems working with improvised
data are marked with an asterisk in Table 6). Note that the SER system trained on the
improvised dataset outperformed the system applied on the scripted dataset [86,87]. The
degree of naturalness of emotional speech has a significant impact on recognition accuracy.
Learning on improvised data only can result in better performance than the combination
of improvised and scripted data. This means that better accuracies can often be achieved
with smaller data set.
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Table 6. Comparison of SER systems for EMOCAP dataset. Meaning of acronyms: A—anger, E—excitement, H—happiness,

N—neutral, S—sadness.

References Audio Parametrisation Applied Techniques Weighted Unweighted
Accuracy Accuracy
Emotions: A,E+H, N, S
LSTM-RNN 61.71% WA 58.05% UA
Fayek et al. [15]; 2017 MFB DNN 62.55% WA 58.78% UA
CNN 64.78% WA 60.89% UA
40 MFB
Aldeneh and Provost [14]; 2017 CNN - 61.8% UA
Speed data augment.
Xia and Liu [10]; 1582 features from 1S10 o o
2017 DBN with MTL SVM 60.9% WA 62.4% UA
ConvLSTM-RNN o
Kurpukdee et al. [60]; 2017 phoneme-based feature extractor SVM 65.13% WA -
1582-dimensional openSMILE
Sahu et al. [76]; 2018 feature space SVM - 60.29% UA
Augment. with GAN
Luo et al. [63]; 2018 6373 HSFs features DNN/CRNN 60.35% WA 63.98% UA
Log-mel spec.
Mel-scaled
Chatziagapi et al. [77]; 2019 Spectrograms CNN(VGG19) - 53.6% UA
Augment. with GAN
Emotions: A, H, N, S
Lee and Tashev [13]; 2015 Segment-level features + DNN ELM 52.13% WA * 57.91% UA *
Tzinis and Potamianos [17]; 2017 Statls“‘:aslef;f:;fs over3s LSTM 64.16% WA 60.02% UA
Satt et al. [64]; 2017 STFT spectrograms CNN-BiLSTM 68.8% WA * 59.4% UA *
Ma et al. [65]; 2018 Variable length spectrograms CNN-BiGRU 71.45% WA * 64.22% UA *
Yenigalla et al. [4]; Phoneme embedding and
2 CNN channels 73.9% WA * 68.5% UA *
2018 spectrogram
Wau et al. [88]; 2019 Spectrograms CNN-GRU-SeqCap 72.73% WA 59.71% UA
. . . Residual Adapter o " o “
Xi et al. [16]; 2019 Magnitude spectrograms on VoxCeleb? 72.73% WA 67.58% UA
Mustageem and Kwon [59]; 2019 Noise reduction Spectrograms DSCNN 84% WA 82% UA

* Improvised data only.

For the IEMOCAP database, with the fivefold cross-validation technique and four
emotions for classification (anger, sadness, happiness, and neutral), DNN-ELM [13], based
on deep feature extraction and ELM classifier, yielded an accuracy of about 52.13% in WA
and 57.91% in UA. These results were considered as a baseline for further evaluation. These
results were surpassed by the RNN architecture with the proper extraction of higher-level
statistical functionals from multiple LLDs over speech segments. The results of 64.16% WA
and 60.02% UA were obtained even on a full dataset (improvised and scripted).

Deep features extracted by CNN often surpass the traditional feature-based ap-
proaches [57,89]. A combination of CNN and BiLSTM (CRNN) is effective in the derivation
of both local and global characteristics. CRNN often achieves better results in compari-
son with the stand-alone CNN models [62,64]. Ma et al. [65] emphasised the importance
of using the whole sentences for classification because the segmentation of utterances
caused the degradation of accuracy. The proposed CRNN architecture with variable-length
spectrograms as input features increased the baseline results by 19% and 6% in WA and
UA, respectively. Compared to hybrid models, the CRNN end-to-end approach is more
effective for implementation.

There is also discussion about the performance of 1D and 2D convolutions. In our
study, 2D DCNN outperformed 1D DCNN with a similar number of parameters [57].
Moreover, 1D DCNN was four times slower on execution. In the case of CRNN, 2D-
CNN-LSTM outperformed its 1D counterpart in [62]. Yenigalla et al. [4] used phoneme



Electronics 2021, 10, 1163

14 of 29

embeddings in addition to spectrograms as input to a model consisting of two separate
CNN channels. This two-channel solution further improved results obtained by CRNN
proposed by Ma et al. [65] (from 71.45% WA* to 73.9% WA* and from 64.22% UA* to 68.5%
UA¥). The approach based on transfer learning utilising a pretrained model from a speaker
verification task yielded similarly high-performance [16]. The authors further proved the
benefits of applying domain-agnostic parameters for SER and the inadequacy of using a
small dataset for training with the ResNet architecture. According to Table 6, the deep
stride CNN architecture [59] achieved the highest accuracy for both WA and UA. The
proposed stride CNN increases the accuracy by using salient features extraction from raw
spectrograms and reducing computational complexity. However, the experiments were
conducted with an 80/20% split of the dataset, which differs from the LOSO model with
an additional validation data partition.

4. Speech Emotion Recognition with Attention Mechanism

Before discussing the attention mechanism, we provide the theoretical background of
the LSTM recurrent networks, which were first used as the base architecture for AM.

4.1. LSTM-RNN

Let the input sequence X = (x3, X2, ..., x1), X € RT*d be transformed by RNN
into hidden state vectors representation H = (hy, hy, ..., ht), H € R Here, d and n
denote the dimension of input vectors and the number of hidden units, respectively. A
basic principle of RNN lies in the fact that the previous information from sequence h;_4
contributes to shaping the current outcome h;. Output vector y; of the simple RNN is
obtained as follows:

hi= f (Wx;+Uh;_,), )

yi= 8(Vhy), ®)

where W € R"*d U € R 'V € R™™™ are learnable weights, and f, g are activation functions.

Note that long-term dependencies in a sequence cannot be captured by a simple
RNN unit due to the gradient vanishing problem [90]. Various recurrent units (such as
Long short-term memory (LSTM), gated recurrent unit (GRU)) with different internal
infrastructure were developed to enable capture dependencies over a longer period.

LSTM [91] uses internal gates to overcome the above-mentioned constraints of the
simple recurrent units. The input sequence flows through three types of gates—forget
gate f; (9), input gate i; (10), and output gate o; (13). Another component of LSTM is a
memory cell ¢; (12), whose state is updated at each time step. The process of cell state
update depends on the previous hidden state vector h;_;, current input vector x;, and the
previous cell state ¢;_1 (previous cell state can be also included into gates, and this is called
peephole connection). The inner structure of LSTM is shown in Figure 2. Here, X = (x1,
X, ..., xT) denotes input sequence, where T is the length of the sequence. The individual
operations in LSTM are formalised as follows:

fi= o(Wpe+Ughy 1+ Vier 1+bg), 9)
it= o(Wixe+Uihe1+Vice_1+b;), (10)
zi= tanh(W,x; +Uh;_1+b;), (11)
c=fr o cq+ip 0z, (12)

o= 0(Wox¢+Uohy_1+Voci+by), (13)
hi= o; o tanh(ct). (14)

Here, W, € Roxd U € RV, V€ R™", and by € R%, 1 € {f, §, z, o} are weight matrixes
and bias terms. Tanh and o are the hyperbolic tangent function and sigmoid function. Sign
o denotes the Hadamard product.



Electronics 2021, 10, 1163

15 of 29

LSTM LSTM

h

t

Xt-1

Figure 2. Detail of inner structure of LSTM. The peephole connections are depicted with red lines.

In contrast to LSTM, which incorporates past information into DNN, the ability to
look into the future is added in bidirectional LSTM architecture (BiLSTM). As the name
implies, BILSTM is composed of forward and backward LSTM layers. The calculation
process of layers depends on the way from which direction the input sequence is read.

4.2. Attention Mechanism

Incorporation of the attention mechanism (AM) into DNN-based SER systems was
often motivated by research in the NLP field [18,91,92] and computer vision [92]. We
give a brief explanation of the attention mechanism from the NLP’s point of view due
to the similarity of the tasks. “Language” attention can be traced back to work related
to neural machine translation [21]. Here, the typical encoder—decoder approach was
supplemented by the network’s ability to soft-search for salient information from a sentence
to be translated. The authors used BiIRNN/RNN as encoder/decoder, both with the GRU
inner structure [93]. The machine translation decoding process can be described as the
prediction of the new target word y;, which is dependent on context vector ¢ obtained from
a current sentence and previously predicted words [93].

P(Yt Y <¢s C): g(ht r Y1/ C) (15)

Fixed encoding of sentences, which was considered to be a drawback in performance,
was substituted by a novel attention mechanism. The main idea behind the attention is
to obtain a context vector created as a weighted sum of encoded annotations (18), while
attention weights a are learned by the so-called alignment model (16)—i.e., jointly trained
feedforward neural network.

ekj: vaTtanh(Wahk71+Uahi) (16)
exp(ey.)
g = # (17)
ZT:l eXp<ekT)
T
Cx = Zak]h] (18)
j=1

where v, € RY, W, € R™™ and U, € R™2" gre weight matrices. Assuming two RNNs as
the encoder and decoder, the attention weights are obtained by considering hidden states of
the encoder h; and hidden states of the decoder hy_; of the last predicted word. A context
vector is computed at each time step and the proposed network architecture is trained
jointly. Figure 3 shows a general scheme of the described process incorporating AM.
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context vector ¢y

,,,,,,, I,,,,,,,,,j target word yx

—{ R e ey b

! : RNN
by : Yi-1 k
71 > RNN — h1 = r N y

X = (X1, X2, ..., XT)
Figure 3. Encoder—decoder framework with an attention mechanism.

AM Modifications

As during the last years, numerous AM concepts and variations have been proposed
and implemented, several different taxonomies of AM already exist. Different strategies of
classification of AM can a reader find e.g., in [94,95]. Here, we point out some of the key
works addressing different implementations of AM.

Luong et al. [22] proposed implementing AM globally and locally. Global attention
uses whole information from a source sentence. In this case, the context vector was
computed as the weighted average of all source hidden states, while attention weights
were obtained from the current target hidden state hy and each source hidden state h;. This
approach works on a principle similar to Bahdanau et al. [21], but it differs in simplified
computation. Moreover, various alignment functions were examined (see Table 7). As the
name implies, local attention focuses only on the subset from the source sentence. It is a
computationally more efficient method. Context vector takes into account a preselected
range of source hidden states with an aligned position corresponding to each target word.
Thus, this type of context vector has a fixed length. The aligned position is either at the
current target word at time ¢ or can be learned to be predicted. According to results,
dot alignment worked well for the global attention and general was better for the local
attention. The best performance achieved local attention model with predictive alignments.
The machine translation model with the attention mechanism outperformed conventional
non-attentional models.

Table 7. Computation of different alignment scores.

Dot hEhj
General hEWahj
Concatenation vitanh(W, [hy, h]-])

Lin et al. [96] applied AM on sentiment analysis tasks. This approach allowed the
system to perform a standalone search for significant parts of a sentence and thus reducing
redundant information. Firstly, BILSTM encoded words from source sentences into individ-
ual hidden states H and then the attention weights are computed as an alignment model
from H. Sentence embedding vector was created as a weighted sum of hidden states. It
was not enough to focus only on a certain component of the sentence. Therefore, a concept
of multiple hops of attention was proposed, where more such embeddings for different
parts of the sentence were created. The sentence embeddings in a form of 2D matrices
were then used for sentiment recognition. Moreover, the authors proposed a penalisation
technique to ensure that the summation weights cannot be similar.
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AM is also a powerful tool for fine-grained aspect-level sentiment classification. Based
on the aspect information, the sentiment of the sentence can take on different mean-
ings. Wang et al. [97] firstly proposed an embedding representation of each aspect. Then
attention-based LSTM learns the sentiment of a given sentence and is able to focus on
important parts by considering a given aspect. Aspect embeddings were incorporated as
concatenation to hidden states vectors and attention weights were obtained subsequently.
Embeddings could be additionally appended to word vectors as well. In this way, the
information from the aspect is preserved in a hidden vector. This novel approach for aspect-
level sentiment classification outperformed baseline systems. In [98], the aspect expression
from sentences was formed as a weighted summation of aspect embeddings. The number
of aspects was preselected and the weights were computed so that context information,
as well as aspect expression, were included. An unsupervised objective was applied to
improve the training procedure. Another way how to improve the attention model was
the inclusion of words, which are in vicinity to the target aspect expression. This method
takes advantage of the fact that that context words closer to the target offer complementary
clues in sentiment classification. The application of both methods improved results in
comparison with various LSTM attention systems.

Chorowski et al. [99] divided encoder-decoder-based attention mechanism into three
different categories according to parameters used during the alignment process. Here, the
computation of attention weights vector ay can be based on location in form of previous
attention vector ay_1, current content H, or a combination of both in hybrid AM. Table 8
shows different implementations of AM. Even though hybrid AM seeming to be the best
solution for encoder—decoder based speech recognition [99], the decoder part is omitted in
SER, and therefore, the AM for SER task is simplified.

Table 8. The implementations of the attention mechanisms.

Location-based AM a = Attend(hy_q, ax_1)
Content-based AM ay = Attend(hy_1, H)
Hybrid AM a = Attend(hy_1, a1, H)

4.3. Attention Mechanism in Speech Emotion Recognition

This section provides a description of various implementations of AM for speech
emotion recognition. As for emotional speech, one label is often used to characterise the
whole utterance, although it is clear that the sentence may contain unemotional and silent
intervals as well. Therefore, the searching techniques for important parts of emotional
speech have been developed.

The first attempts to make the model focus on emotionally salient clues were proposed
before the invention of the attention weights. Han et al. considered the speech segments
with the highest energy to contain the most prominent emotional information [100]. Lee
and Tashev [13] proposed the BILSTM-ELM system for SER and the importance of each
frame is decided using the expectation maximisation algorithm. Moreover, to represent
the uncertainty of emotional labels, a speech sample is able to acquire one of two possible
states—given emotion and “zero” emotion. The benefit of this system was leveraging
RNN's ability to model long contextual information from emotional speech and addressing
the uncertainty of emotional labels. The BiLSTM-ELM outperformed the DNN-ELM
system, implemented according to [100], with 12% and 5% absolute improvement in UA
and WA, respectively.

Most of the attention mechanisms in the SER field are based on the previously de-
scribed method of attention weights computation using Equations (16) and (17). However,
various modifications of AM were proposed, e.g., different input features can be used
(feature maps) and simplified computations were developed (the decoder part is omitted
for SER systems).
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4.3.1. Attentive Deep Recurrent Neural Networks

Huang and Narayanan [101] implemented two types of attention weights: content-
based AM (19) inspired by [21,99] and its simplified version (20).

aj= softmax (V;lF 0a(Wahj) ) (19)

a;= softmax (vaThj) (20)

In order to avoid overfitting, the authors proposed separate training of BILSTM and
AM components as well as application of dropout before the summation of hidden vectors.
According to the results, the simplified implementation of the attention weights defined by
(20) yielded better results. The AM-based system outperforms the non-AM system—an
improvement from 57.87% to 59.33% in WA and from 48.54% to 49.96% in UA was observed.
Moreover, the authors experimentally proved that the attention selection distribution was
not just correlated to the frame energy curve.

In [18], Mirsamadi et al. pointed out the fact that only a few words in the labelled
utterance were emotional. They highlighted the importance of considering silence intervals
and emotionless parts of the utterance as well. Here, the attention weights were computed
using the softmax function on the inner product between trainable attention vector u
and RNN output y; at each time step, similarly as (20). In the subsequent step, the
weighted average in time was performed, and the softmax layer was applied for final
emotion classification. This deep RNN architecture with AM is able to focus on emotionally
significant cues and on their temporal variations at the utterance level. The proposed
combination of BiLSTM and the novel mean-pooling approach with local attention revealed
improved performance over many-to-one training and slightly increased results over the
mean-pooling method. With only 32 LLDs, the absolute improvement of 5.7% and 3.1%
(in WA and UA) was achieved over the traditional SVM model, which needed additional
statistical functions for satisfactory results. Tao and Liu [102] discussed the limitation of
the time-dependent RNN model and the proposed advanced LSTM (A-LSTM) for better
temporal context modelling. Unlike LSTM, which uses the previous state to compute a new
one, A-LSTM makes use of multiple states by combining information from preselected
time steps. The weights were learned and applied to the inner states of LSTM. The authors
proposed the DNN-BiLSTM model with the learning of multiple tasks—emotion, speaker,
and gender classification. Moreover, BILSTM was followed by an attention-based weighted
pooling layer. A relative improvement of 5.5% was achieved with A-LSTM, compared
to conventional LSTM. Thus, the time dependency modelling capability of LSTM was
improved. The proposed solution did not outperform Mirsamadis attentive RNN [18].

AM was also introduced into the forgetting gate f; of LSTM cell in [103]. Here, the
updating of the cell state (21) is viewed as a weighted sum of the previous cell state ¢;—1
and the current value for update z;.

ag=f; o Ci—1 + (1 - ft) O Zt (21)

fi= o(W¢ tanh(Vici1)) (22)

The weights for the cell state updating were obtained by training of the self-attention
model (20), with Wy € R™*™ and V¢ € R™*" as trainable parameters. Calculation complexity
of the proposed attention gate was reduced by taking into account only the cell state at
the previous moment c¢;_1. The ComParE frame-level features were used for classification,
while the proposed network had the ability to learn high-level dependencies. The second
AM was utilised in the output gate. It was in form of weights applied in both time and
feature dimensions. Compared to the traditional LSTM, the obtained results showed an
absolute improvement of 2.8%, 13.8%, and 8.5% in UAR for CASIA, eNTERFACE, and
GEMEDP, respectively. Xie et al. [104] proposed a dense LSTM with attention-based skip
connections between the layers. In order to address the variable distribution of significant
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emotional information in speech, attention weights were incorporated into the LSTMs
output in the time dimension. This approach was inspired by the global attention described
in [22]. Assuming that different speech features have different abilities to distinguish emo-
tion categories, weighting on feature dimension was also implemented. Results showed
that attention applied to the output of each layer improved unweighted average recall and
accelerated convergence speed in comparison with the general LSTM approach.

4.3.2. Attentive Deep Convolutional Neural Network

Neumann and Vu [86] performed a comparison of different speech features with
an attentive CNN architecture. It contains an attention layer based on a linear scoring
function. Additionally, the authors applied MTL for both categorical and continuous labels
(activation and valence). The results indicated a small difference in performance between
MFB, MFCC, and eGeMAP features and a slight improvement of accuracy with the MTL
approach. The best results were reported with a combination of MFB features, attentive
CNN with MTL learning. Li et al. [92] used two types of convolution filters for extraction
of time-specific and frequency-specific features from the spectrograms. Feature extraction
was followed by CNN architecture for modelling high-level representation. Inspired by
attention-based low-rank second-order pooling proposed for the task of action classifica-
tion from single RGB images [105], the authors applied this novel pooling method after
the last convolutional layer. It was based on a combination of two attention maps—the
class-specific top-down and class-agnostic bottom-up attention. The authors reported
on the strong emotional representation ability of the proposed architecture. In order to
preserve the information from variable length utterance as a whole without the need for
segmentation, Zhang et al. [69] designed fully convolutional network (FCN) architecture—
adapted AlexNet with removed fully connected layers. The proposed pretrained FCN
architecture takes spectrograms of variable length as input without the need for division of
utterances or padding to the required length [64,65]. Furthermore, the attention mechanism
identifies important parts of spectrograms and ignores nonspeech parts. FCN architec-
ture outperformed the nonattentive CNN-LSTM method proposed in [64] and achieved
comparable results with attention-based convolutional RNN [106]. Thus, the proposed
FCN architecture is able to capture the temporary context without the need for additional
recurrent layers.

4.3.3. Attentive Convolutional-Recurrent Deep Neural Network

In many cases, the extraction of large feature sets is replaced by direct learning of
emotional speech characteristics by deep CNN architectures. Satt et al. [64] segmented
utterances into 3 s intervals firstly. Then, the spectrograms were extracted and were directly
fed to the CNN-LSTM architecture. Harmonic modelling was applied on spectrogram to
eliminate nonspeech parts of the emotional utterance. This step was particularly useful
for the classification of emotion in noisy conditions. Lastly, the attention mechanism was
added to the LSTM layer, which did not improve the achieved results. Zhao et al. [107]
used two streams for feature extraction—fully convolutional network (FCN) with temporal
convolutions and Attention-BiLSTM layers—and concatenated the outputs for further
DNN based classification. The results indicated improvements over attention-BiLSTM
and Att-CNN [86] architectures. Sarma et al. [20] proposed a raw speech waveform-
based end-to-end time delay neural network (TDNN) with LSTM-attention architecture.
Accuracy improvement on the IEMOCAP database, as well as reduction of confusion
among individual categories, was observed with the use of AM. Huang and Narayanan [55]
proposed CLDNN architecture with the convolutional AM. System leveraged task-specific
spectral decorrelation of CNN applied on log-mel features and temporal modelling by
BiLSTM layers. Main modules were frozen during the training of attention weights.
Improved results were achieved with the use of AM under the clean test-set conditions.
Chen et al. [106] discussed the negative impact that the personalised features (containing
speaker’s characteristics, content, etc.) have on the ability of the SER system to generalise
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well. Assuming that the time derivates of the coefficients (delta features) reduce these
undesirable effects, a 3D log-mel spectrogram (consisted of log-mels including delta and
delta—delta features) was proposed for the compensation of the personalised features. The
authors proposed an attention-based convolutional RNN system (ACRNN) for emotion
recognition. When compared with DNN-ELM-based system [100], 3D-ACRNN achieved
significant improvement in recognition accuracy on IEMOCAP and EmoDB databases.
3D-ACRNN also outperformed 2D-ACRN based on standalone log-mels. Li et al. [108]
proposed an end-to-end self-attentional CNN-BiLSTM model. The attention mechanism
based on the same procedure as in [96] concentrates on salient parts of speech. Additionally,
the gender recognition task was added to improve emotion recognition in a multitask
learning manner. As the gender of the speaker affects the emotional speech, these variations
can be taken advantage of. The state-of-the-art results were reported with increased
overall accuracy on the IEMOCAP database. Dangol et al. [109] proposed an emotion
recognition system based on 3D CNN-LSTM with a relation-aware AM that integrates
pairwise relationships between input elements. The 3D spectrogram representations
provided both spectral and temporal information from the speech samples. In order to
increase the accuracy of emotion recognition, the computation process of attention weights
was modified and the synthetic individual evaluation oversampling technique was used to
update the feature maps.

In [110], the authors used prosodic characteristics with a fusion of three classifiers
working at the syllable, utterance, and frame levels. They used a combination of methods
such as the mechanism of attention and the feature selection based on RFE. System perfor-
mance was improved by identification of relevant features, incorporating attention and
score-level fusion. Zheng et al. [111] performed ensemble learning by the integration of
three models/experts, each focusing on different feature extraction and classification tactics.
Expert 1 is a two-channel CNN model that effectively learns time- and frequency-domain
features. Expert 2 is GRU with AM that learns short-term speech characteristics from
the principal component analysis (PCA) processed spectrograms with a further fusion of
mean value features of the spectrograms. Expert 3 performs end-to-end multilevel emotion
recognition using BiLSMT with attention mechanism with a combination of local (CRNN
model learning from speech spectrum) and global features (HSFs). Each expert accessed
emotional speech in a different way and their combination reduced the negative effects of
data imbalance and results in better generalization ability.

For better clarity, the AM-based SER systems are also summarised in Table 9.

Table 9. Comparison of SER systems with an attention mechanism. Meaning of acronyms: A—anger, E—excitement,

F,—frustration, H—happiness, N—neutral, S—sadness; A /V—activation/valence.

References Techniques of Audio Parametrisation Proposed 11\\/[/[;::‘;32::1(3 Learning (]lijrztoatli)jzz)
IEMOCAP
Nara}iﬁ:ﬂﬁf&‘i 2016 28 LLDs: 13 MFCC, FO, A BiLSTM A H,N,S
Mirsamadi et al. [18]; 2017 k0, VOiCZeCFI’{rf’}’;kﬁlféageAenergy BiLSifﬁxzﬁgiiii;fo"n"hng A H,N,S
Neuman1210aln7d Vu [86]; Max. length I\O/If Ft}lgle; 2u6’c)terance: 75s Attentive CNN with MTL AE z _P\I; N, S

13 MFCC, ZCR, energy, entropy of energy, DNN-BiLSTM-MTL

Tao and Liu [102]; 2018 spectral characteristics, . A,H,N,S
12 D chroma, chroma dev., HR, pitch with Advanced LSTM
Zhao et al. [107]; 2018 743 features + PCA Att-BiLSTM-FCN AE+H,N,S
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Table 9. Cont.
. . e Proposed Machine Learning Database
References Techniques of Audio Parametrisation Method (Emotions)
Sarma et al. [20]; 2018 Raw waveform front end TDNN-LSTM-attention A,H,N,S
Attention-based convolutional
Chen et al. [106]; 2018 3D Log-mel spectrograms RNN (ACRNN) A,H,N,S
. . Spectrogram o .
Lietal. [92]; 2018 (2s segments with 1 s overlap) CNN-TEF-Att.pooling A, H,N,S
Xie et al. [104]; 2019 The ComParE frame-level features LSTM with §k1pped AE F,N,S
connections
. Spectrogram Fully convolutional network
Zhang et al. [69]; 2019 (variable utterance length) + attention layer A HN,S
. . Mel spectrogram + A, AA CNN-BiLSTM-MTL:
Lietal. [108]; 2019 (max. length of the utterances: 7.5 s) + Attention mechanism AE+HN,S
Fusion of three separate
) Prosodic and spectral features extracted at DNNs
Alexetal. [110]; 2020 various levels + RFE + Attention at the A E+HN,S
syllable-level
(1) Spectrogram Ensemble model:
) (2) Spectrogram + PCA (1) two-channel CNN
Zheng etal. [111];2020 (3) LLDs and their HSFs; (2) GRU with attention m. AE+HNS
spectrogram and CRNN with attention m. (3) BILSTM with attention m.
Silence/noise removal Relation-aware
Dangol et al. [109]; 2020 3D Loe-mel spectrograms attention-based A,H,N,S
§7IME. Specttog 3D CNN-LSTM
Other databases
Huang and CLDNN with convolutional ,
Narayanan [55]; 2017 MEFB attention mechanism eNTERFACE'05
Attention-based convolutional EmoDB
Chen et al. [106]; 2018 3D Log-mel spectrograms RNN (ACRNN) full data set
. . CASIA, (6)
Xie etal. [103]; 2019 frame—leVerlil;ga(’czli'relij ?;EenSMILE) Lsgnl\fe‘;vflsz i[;ircltloartltgitfo;nd eNTERFACE (6)
P quency GEMEP (12)
. . The ComParE LSTM with skipped
Xie etal. [104]; 2019 frame-level features (openSMILE) connections eNTERFACE (6)
Silence/noise removal Relation-aware EmoDB

Dangol et al. [109]; 2020

3D Log-mel spectrograms

attention-based 3D CNN and
LSTM

SAVEE

5. Impact of Attention Mechanism on SER

We performed a comparison of related works based on the most common settings to
study the impact of AM on speech emotion recognition. We applied the same methodology
as in Section 3.7. Since IEMOCAP is the most commonly used database in the published
works, we chose it for further analysis.

Tables 10 and 11 show the comparison of SER systems on IEMOCAP for two kinds
of classes of emotions: (1) anger, happiness, neutral and sad and (2) an extension of the
‘excitement’ class. As previously explained, it is not possible to make an exact comparison
of the systems due to different test conditions, even if the same dataset was used. Thus, the
reported accuracies listed in Tables 10 and 11 provide only coarse information in terms of
their performance comparison.
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Table 10. Comparison of system accuracies on IEMOCAP database for four emotions. Meaning of acronyms: AM—attention

mechanism, A—anger, H—happiness, N—neutral, S—sadness.

References AM Description of System Emotions WA UA
Recurrent architectures
28 LLDs o o
[101]; 2016 Vv BIiLSTM A ,H,N,S 59.33% 49.96%
32 LLDs o o
[18]; 2017 v BIiLSTM—with local AM A ,H,N,S 63.5% 58.8%
[17]; 2017 » Statistical features over 3 s segments and AHN,S 64.16% 60.02%
LSTM
LLDs o
[102]; 2018 Vv Advanced LSTM A ,H,N,S 55.3% -
Convolutional architectures
. Spectrograms A HN,S o o
[921; 2018 v CNN-TF-Att.pooling (improvised) 71.75% 68.06%
) Phoneme embedding and spectrogram A,H,N,S o o
[4]; 2018 % Two CNN channels (improvised) 73.9% 68.5%
. Spectrogram and FCN A ,H,N,S o o
[691; 2019 4 + attention layer (improvised) 70.4% 63.9%
. Magnitude spectrograms A,H,N,S o o
[16];2019 % Residual Adapter on VoxCeleb2 (improvised) 72.73% 67.58%
Combination of CNN and RNN
i Spectrograms A,H,N,S o o
[64]; 2017 X CNN-BiLSTM (improvised) 68.8% 59.4%
Raw waveform front end o o
[20]; 2018 v TDNN-LSTM-attention A,H,N,S 70.1% 60.7%
. Spectrograms A ,H,N,S o o
[65]; 2018 X CNN-BIGRU (improvised) 71.45% 64.22%
) 3Dlog-mel spec.; A HS N o
[106]; 2018 v Att—CRNN (improvised) - 64.74%
. Spectrograms o o
[88]; 2019 X CNN-GRU-SeqCap A ,H,N,S 72.73% 59.71%
Hybrid systems
) Segment-level features A,H,N,S o o
[13]; 2015 X DNN-ELM (improvised) 52.13% 57.91%
32 LLDs A ,H,N,S o o
[13]; 2015 X BiL STVM_ELM (improvised) 62.85% 63.89%
DBN-MTL feat. Extract. o o
[10]; 2017 X SVM dlassifier A ,H,N,S 60.9% 62.4%

Table 11. Comparison of system accuracies on IEMOCAP database for additional combination of excitement and happiness.

Meaning of acronyms: AM—attention mechanism, A—anger, E—excitement, H—happiness, N—neutral, S—sadness.

References AM Description of System Emotions WA UA
Convolutional architectures
[86]; 2017 Vv MEFB; Attentive CNN with MTL AE ;E_\I; N5 56.10% -
[14]; 2017 X MFB and CNN A,E+H,N,S - 61.8%
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Table 11. Cont.

References AM Description of System Emotions WA UA
[15]; 2017 x Log-mel spectrogram AE+HN,S 64.78%  60.89%
ConvNet
Mel-scaled spectrograms
[77]; 2019 X Augment. With GAN A,E+H,N,S - 53.6%
CNN(VGG19)
Combination of CNN and RNN
743 features + PCA o o
[107]; 2018 Vv Att—Bil STM—FCN AE+H,N,S 59.7% 60.1%
[108]; 2019 v Log-mel spectrograms, A, AA; CNN-BiLSTM with MTL AE+H,N,S 81.6% 82.8%
Hybrid systems and ensemble models
[60]; 2017 X ConvLSTM feature extractor SVM 65.13% -
HSFs-DNN o o
[63];2018 X Log-mel spec.-CRNN A,E+H,N,S 60.35%  63.98%
i 1582-dimensional openSMILE feature space o
[76]; 2018 X Augment. With GAN SVM - 60.29%
[111]; 2020 v Ensemble model A,E+H,N,S 75% 75%

The following conclusions, in particular, can be drawn from the works under study:

AM has improved over the last years and a growing trend of AM use can be observed.
Certainly, the performance improvement when using AM is evidenced by many
research studies on SER [18,20,69,92,102-104,107,108,111]. On the other hand, two
works [63,68] did not report improvements when using AM. Learning the attention
weights for emotional representations of speech seems to be a reasonable way to
address the variability of emotional clues across utterance; however, we have to note
that the resulting benefit in terms of accuracy increment is not always so obvious.
As seen from Tables 10 and 11, the properly configured systems without AM may
outperform the systems with AM (although one may argue about the correctness
of such judgment due to different testing conditions among published works). The
reason for ambiguity might be that AM-based SER system performance is subject to
implementation issues as follows:

e  The implementation of appropriate AM can be linked to various factors such
as the derivation of accurate context information from speech utterances. As in
NLP, the better the contextual information obtained from the sequence, the better
the performance of the system. The duration of divided segments significantly
influences the accuracy of emotion recognition [20,63,86]. Therefore, appropriate
input sequence lengths must be determined in order to effectively capture the
emotional context.

e Proper representation of emotional speech is also an important part of deriving
contextual information. RNN is suitable for modelling long sequences. Extraction
of higher-level statistical functions from multiple LLDs over speech segments
with a combination of LSTM [18] can be compared to 32 LLDs with BiLSTM
and local AM [18]. Transfer learning is a suitable solution particularly for small
emotional datasets [16]. However, more works should be considered to make
conclusions. End-to-end systems that combined CNN as feature extractor and
RNN for modelling of the long-term contextual dependencies achieved high
performance on IEMOCAP data and on EmoDB [62,106]. Various combinations
of RNN and CNN are able to outperform separate systems [62,107]. The two-
channel CNN taking phoneme embeddings and spectrograms on input seem to
further improve the accuracy [4]. Thus, it can be beneficial to allow the model
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to learn different kinds of features. Moreover, leveraging multitask Learning for
both the discrete and continuous recognition tasks improves the accuracy of SER
systems [10,112]. CRNN architecture together with multitask learning was a part
of the state-of-the-art solution on IEMOCAP proposed in [108]. Here, AM clearly
improved system performance.

e Recurrent networks provide temporal representation for the whole utterance and
better results are obtained with its aggregation by pooling for further recogni-
tion [18,20]. Several works compare different pooling strategies. The attention
pooling is able to outperform global max pooling and global average pooling
(GAP) [18,102,107]. The same was true for the attention pooling strategy for con-
volutional feature maps in [92] (attention-based pooling outperformed GAP). It
can be concluded that learning of the attention weights indeed allows the model
to adapt itself to changes in emotional speech.

6. Conclusions

This study provides a survey on speech emotion recognition systems from very recent
years. The aim of the SER research can be summarised as the search for innovative ways
how to appropriately extract emotional context from speech. We can observe a trend in the
use of deep convolutional architectures that can learn from spectrogram representations
of utterances. Together with recurrent networks, they are considered as a strong base for
SER systems. Throughout the years, more complex SER architectures were developed with
an emphasis on deriving emotionally salient local and global contexts. As can be inferred
from our study, the attention mechanism can improve the performance of the SER systems;
however, its benefit is not always evident. Although AM modules have become a natural
part of today’s SER systems, AM is not an indispensable element for the achievement of
high accuracies or even state-of-the-art results.
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Abbreviations and Acronyms

Abbreviation Meaning

AM Attention Mechanism

BiGRU Bidirectional Gated Recurrent Unit

BiLSTM Bidirectional Long Short-Term Memory
CCC Concordance Correlation Coefficient
CLDNN Convolutional Long Short-Term Memory Deep Neural Network
CNN Convolutional Neural Network

DANN Domain Adversarial Neural Network

DBN Deep Belief Network

DCNN Deep Convolutional Neural Network

DNN Deep Neural Networks

DSCNN Deep Stride Convolutional Neural Network
DTPM Discriminant Temporal Pyramid Matching
ECG Electro-Cardiogram

EDA Electro-Dermal Activity

ELM Extreme Learning Machine

FC Fully Connected layer

FCN Fully Convolutional Network

FS Feature Selection
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GAN Generative Adversarial Network
GeWEC  Geneva Whispered Emotion Corpus
GRU Gated Recurrent Unit

HMM Hidden Markov Model

HSF High-Level Statistical Functions
LSTM Long Short-Term Memory
MFB Log-Mel Filter-Bank

MFCCs  Mel-Frequency Cepstral Coefficients
MTL Multitask Learning

NLP Natural Language Processing
NN Neural Network

PCA Principal Component Analysis
ResNet  Residual Neural Network

RFE Recursive Feature Elimination
RNN Recurrent Neural Network
SER Speech Emotion Recognition
STFT Short Time Fourier Transform
SVM Support Vector Machine

WoS Web of Science
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