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Abstract: This paper presents electromagnetic encoders useful for chipless-RFID and motion control
applications. The encoders consist in a pair of linear chains of rectangular apertures implemented by
means of 3D printing. One of these chains is periodic and acts as a clock, whereas the other chain
contains an identification (ID) code. With these two aperture chains, the ID code can be synchronously
read, so that the relative velocity between the tag and the reader is irrelevant. Additionally, it is
shown in the paper that by properly designing the reader, it is possible to determine the motion
direction. The sensitive part of the reader is a microstrip line loaded with three complementary
split ring resonators (CSRRs) etched in the ground plane and fed by three harmonic signals. By
encoder motion, the characteristics of the local medium surrounding the CSRRs are modified, and
the harmonic signals are amplitude modulated (AM) at the output port of the line, thereby providing
the clock signal (which gives the encoder velocity), the ID code (providing also the quasi-absolute
position) and the direction of motion. A fabricated prototype encoder is characterized by reading it
with a dedicated reader.

Keywords: chipless-RFID; motion control; electromagnetic encoders; 3D-printing; dielectric permit-
tivity; microstrip technology

1. Introduction

Optical encoders [1–4] are the most genuine and widespread technology for motion
control applications. As the encoder moves across an optical beam generated by an optical
source, typically a laser diode, a chain of apertures made on a (typically) metallic substrate
are detected. When an aperture crosses the optical beam, the encoder is transparent and
an optical detector, placed on the other side of the encoder, can record the optical beam
in the form of a pulse. Thus, as many pulses as apertures are detected by the optical
reader. Obviously, the encoders can be implemented with several chains of apertures,
which can be codified, and therefore can be used to determine the absolute position of the
encoder [5,6]. These absolute encoder systems are able to provide the position regardless
of the previous motion stages of the encoder, contrary to the so-called incremental-type
encoders, where the position is determined from the cumulative number of pulses (i.e.,
through pulse counting).

Electromagnetic encoders [7–16] are an alternative to optical encoders. Both systems
exhibit a similar working principle, but the optical signals are replaced by microwave
signals. In electromagnetic systems, the encoders can be made of chains of apertures,
or also chains of inclusions (metallic or dielectric). However, these encoders should
not be confused with the so-called magnetic encoders, based on magnets or inductive
elements [17–24]. The first reported electromagnetic encoders were implemented by etching
circular chains of metallic inclusions (planar resonators) in the periphery of a dielectric
disc [25] (these encoders indeed appeared as an evolution of previous angular displacement
sensors based on coupling modulation between a microstrip line and a single circular
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resonator axial to the rotor [26–28]). Such rotary encoders were incremental, i.e., only able
to provide the angular position from the cumulative number of peaks in the envelope
function (nevertheless, in one of the implementations [10], the motion direction, clockwise
or counter-clockwise, was detected by adding a non-periodic chain). In order to detect
these inclusions, the sensitive part of the reader consists of a microstrip line structure fed
by at least a harmonic signal. Typically, as many harmonic signals as inclusion chains are
needed for inferring all the relevant information provided by the encoder, e.g., the velocity
and the absolute position. By encoder motion, the harmonic signal/s is/are amplitude
modulated (AM) at the output port of the line, and the relevant information is contained
in the envelope function/s, in the form of peaks or dips (equivalent to the pulses in the
optical encoders).

Recently, all-dielectric electromagnetic encoders, either based on apertures or dielec-
tric inclusions made on a dielectric substrate, were reported [15,29,30]. As compared with
encoders based on metallic inclusions, the main advantage of all-dielectric encoders is
the superior robustness against wearing or friction. This robustness has also been demon-
strated in encoders based on metallic inclusions, but implemented in the form of metallic
patches [14]. Another recent advance concerns the implementation of electromagnetic
encoders with synchronous reading, where at least two inclusion chains are needed, one
acting as the clock, with all the inclusions present at their predefined positions, and the
other one containing the ID code [14–16,31–33]. In [16,32], not only the encoders exhibit
synchronous reading capability, but also the motion direction can be determined.

Electromagnetic encoders can be used in motion control applications, but also in
other applications such as chipless-RFID [34,35]. By eliminating some of the inclusions of
the encoder, an ID code can be obtained. Contrary to most chipless-RFID tags based on
frequency domain, time domain, or exploiting various domains simultaneously [36–64],
the encoder-based tags should be read by proximity, through the near field, and bit to bit,
i.e., sequentially [65–67]. This represents a limitation in certain applications, e.g., when
read distances of at least various cm are required. The number of bits of electromagnetic
encoder-based chipless tags is only limited by tag size [12,68], these representing an advan-
tage over other chipless-RFID approaches. In certain applications, such as secure paper,
authentication of premium products [69], etc., reading by proximity is not necessarily an
issue (indeed, it can even provide certain level of confidence against spying or eavesdrop-
ping). It is important to bear in mind that, although this electromagnetic encoders have
been focused on motion control applications, as well as chipless-RFID, applications such as
motion detector [70], monitoring process in industrial scenarios [71,72], or smart packaging,
for example, can be also of potential application.

In the present paper, the main objective was to present an electromagnetic encoder
system with synchronous reading and motion direction detection capability, based on
3D-printed encoders with aperture chains. This is the first all-dielectric encoder able to
provide such complete functionality. Namely, it is able to provide the encoder velocity,
the motion direction, as well as the (quasi) absolute position, from the codified chain of
apertures (to be discussed later).

2. The Proposed Encoder and Reader, and Working Principle

The general working principle of the proposed all-dielectric electromagnetic encoders
is AM modulation of the harmonic feeding signals caused by encoder motion over the
sensitive part of the reader. Nevertheless, we should give more details, since the proposed
encoder system is able to provide the encoder velocity, the quasi absolute position and the
direction of motion. For that purpose, two chains of apertures are required. One chain
is periodic, i.e., all the apertures are present at predefined positions, and the period is
designated as p. Such chain is designated as clock or velocity chain, as far as it provides
the clock signal, as well as the encoder velocity. In the other chain, the positions of the
apertures are identical, however, not all the apertures are present at those positions. By this
means, an ID code is provided to this second chain, designated as ID chain, or position
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chain. In applications of the encoders as chipless-RFID tags, the ID code can be arbitrary.
The clock chain gives the instants of time to read the ID code from the ID code chain. By
contrast, as position sensor able to determine the quasi-absolute position, the ID code
should not be arbitrary. It should be selected according to the De Bruijn sequence [73]. Let
us explain the reason next.

Let us consider that the total length of the encoder is L. The number of different
discrete positions that must be codified in order to determine the relative position of the
encoder with regard to the reader is thus L/p. Therefore, the number of bits necessary to
unequivocally differentiating the discrete positions of the encoder should satisfy

N ≥ log2(L/p) (1)

Implementing as many aperture chains as number of bits N is not a realistic solution
because it represents a penalty in terms of encoder size. However, if the ID code of
the complete (single) position chain follows the De Bruijn sequence, any sub-set of N
sequential bits is unique (it is different to any other). Therefore, the bit corresponding
to a certain position, plus the N—1 bits of the previous positions univocally determine
the position. However, it is necessary to know the direction of motion, and, moreover,
after a system reset, the encoder must be displaced N positions before an absolute position
can be determined. For this main reason, the designation of these encoders should be
quasi-absolute, rather than absolute.

The photograph of the fabricated 16-bit encoder is depicted in Figure 1. The encoder
was 3D-printed by means of the Ultimaker 3 Extended 3D printer, using dielectric Polylactic
Acid (PLA) as filament. Prior to the implementation of the encoder, and in order to obtain
the dielectric constant of the PLA by means of a Keysight 85072A 10-GHz Split Cylinder
Resonator, a square-shape slab sample (the dimensions are provided by the split cylinder
resonator) was printed. The measured dielectric constant of this dielectric PLA is εr = 3,
although this value can slightly suffer variations depending on the PLA properties [74,75].
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Figure 1. Photograph of the 3D-printed electromagnetic encoder. The total area of the encoder is
30 × 66 mm2, with the following aperture dimensions: d1 = 11.5 mm; d2 = 15.9 mm, w = 2 mm,
s = 2 mm and g = 1.9 mm. The thickness of the encoder is 1.5 mm.

After having measured the dielectric constant, the encoder was fabricated using the
following printer parameters: nozzle size 0.44 mm, printing temperature 200 ◦C, build
plate (or bed plate) temperature 60 ◦C, printing speed 70 mm/s and infill density 100%.
The (rectangular) apertures of both chains, if present, are located at identical positions, as
indicated before. The dimensions of the encoder were optimized, according to electromag-
netic simulations, as it will be later shown. It is also important to emphasize that other
dielectric substrates, even flexible [76], could be used as encoders, but in this case, we took
advantage of the high versatility and faster fabrication process of 3D printing, previously
demonstrated in the RFID devices [77–79].

Concerning the sensitive part of the reader, it consists of a microstrip line loaded with
three complementary split ring resonators (CSRRs) etched in the ground plane, as Figure 2
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illustrates. It has been demonstrated that CSRR-loaded lines are efficient permittivity
sensors, based on the variation experienced by the resonance frequency when a certain
material under test (MUT) is placed on top of the resonator [80–85]. Indeed, the reported
encoders exhibit a significant permittivity contrast between the apertures (with εr = 1) and
the substrate (PLA with εr = 3). Consequently, it is expected that, by encoder motion, the
presence of PLA on top of the sensitive part of the reader (i.e., the absence of the apertures)
shifts down the resonance frequency of the resonant elements. Note that if the quality
factor of the CSRRs is significant, the excursion experienced by the transmission coefficient
at the frequency of resonance of the CSRR covered by the substrate should be high, a
necessary condition to ensure the functionality and robustness of the system.
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Figure 2. Photograph of the top (a) and bottom (b) side of the reader. The reader was implemented on
the Rogers RO4003C substrate with thickness h = 0.81 mm, dielectric constant εr = 3.38 and loss tangent
tanδ = 0.0022. Dimensions are: l1 = 26.6 mm; l2 = 3.8 mm, l3 = 10 mm, w1 = 6.4 mm, w2 = 1.9 mm,
lc = ld = 10.5 mm; lp = 14.5 mm, wr = 2.9 mm. CSRR slots width is c = 0.5 mm, and ring splits are
sd = 0.4 mm, sc = 1.6 mm and sp = 6.2 mm.

Note that the presence of three CSRRs obeys the fact that, in order to obtain the
encoder velocity (and clock signal), the quasi-absolute position, and the motion direction,
three signals are needed. The three CSRRs are tuned to different frequencies, and can be
labeled by sub-indexes, in order to differentiate between the position resonator, CSRRp, the
clock resonator CSRRc, and the motion direction resonator CSRRd.

The electromagnetic simulation of the bare reader is shown in Figure 3, where the
three notches corresponding to the frequencies coherently designated as f p = 4.030 GHz,
f c = 4.300 GHz and f d = 4.570 GHz can be seen. These notches (or dips) reflect the injected
signals at the frequencies of interest. This situation corresponds to the encoder apertures,
which can be assigned the logic state “1”. However, as previously mentioned, the presence
of PLA at certain distance on top of the sensitive part of the reader shifts down the whole
frequency response. Thus, instead of having a notch or dip at the frequencies of interest,
the presence of this dielectric substrate allows the signal to be transmitted (equivalent to
the logic state “0”), as can be observed in the graph of Figure 3.
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Figure 3. Electromagnetic (EM) simulation and measured frequency response of the bare reader, and
the reader loaded with PLA at certain distances (air gap). The EM was obtained by means of the
Keysight Momentum software.

The three harmonic signals necessary for reading purposes are tuned to frequencies f p,
f c and f d, as depicted in Figure 4. Such three harmonic signals can be injected simultane-
ously to the input port of the microstrip line by means of a combiner, and the corresponding
AM signals, with different carrier frequencies, separated at the output port by means of a
triplexer. Then, the envelope function, containing the relevant information, can be inferred
by means of an envelope detector connected to each output port of the triplexer, as done in
several reported prototypes of electromagnetic encoders [11,18].
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Figure 4. Schematic of the proposed reader/encoder system, based on all-dielectric encoders, with synchronous reading
and motion direction detection capability.

According to the explained working principle, it is clear that the position chain will
generate as many dips as apertures in the chain. The instants of time to infer the ID code
of that chain are given by the dips generated in the channel corresponding to the clock
chain. Also, from the time lapse between adjacent dips in the envelope function generated
by the clock chain, the velocity is inferred, provided the period, p, is well known. The
system provides the instantaneous velocity, as far as such velocity does not significantly
change during time intervals corresponding to the lapse between adjacent dips in the
envelope function. Thus, it is also possible to measure the instantaneous acceleration. For
the determination of the motion direction, it is not necessary an additional chain. The
clock/velocity chain is useful for that purpose, provided the CSRRd is conveniently located
with regard to the CSRRc. Particularly, the CSRRd and the CSRRc are located as indicated in
Figure 2, so that the apertures of the clock chain first cross one resonator and, immediately,
the other one. Thus, from the lead or lag between the corresponding envelope functions,
the motion direction can be inferred.
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3. Results

The sensitive part of the reader was measured by means of a vector network analyzer
(model Agilent N5221A). The behavior of this prototype without any dielectric in the
proximity (bare reader) is shown in Figure 3, and it was in good agreement with the
electromagnetic simulation. Later, a dielectric PLA slab was placed on top of the reader,
and it was moved upwards, thus modifying the air gap, until the behavior was the expected
one. The air gap was set to 0.2 mm. This value differs from the nominal air gap considered
in the EM simulation (of 0.5 mm). One reason to explain this effect is the EM software,
which considers that the substrates are infinite, thereby slightly modifying the effective
dielectric constant. Another possible cause can be attributed to the variation of the dielectric
constant of the PLA, as explained before, due to fabrication tolerances. In any case, it is
important to bear in mind that the higher the air gap, the lower is the dynamic range at the
operation frequencies, that is to say that the lower is the difference between the two logic
states. On the other hand, if the air gap is reduced, the dynamic range can be improved
but, due to the fact that the frequency behavior is shifted down, the frequency notches can
affect the vicinity frequency responses (overlap).

In order to read the encoder of Figure 1 with the reader of Figure 2, using the ar-
rangement of Figure 4, the setup depicted in Figure 5 was used. The displacement of the
encoder over the reader was achieved by means of a linear displacement system (model
STM 23Q-3AN). It is necessary to generate three harmonic signals (tuned to f p = 4.030 GHz,
f c = 4.300 GHz and f d = 4.570 GHz) to synchronous reading the ID code of the encoder,
as well as to determine the encoder direction. However, as a proof of concept, instead of
injecting simultaneously three signals generated by means of VCOs, the abovementioned
vector network analyzer was used to independently generate such signals. As mentioned
before, at the output port of the sensitive part of the reader, the signal was AM modulated
by the encoder motion. Thus, a Schottky diode (model Avago HSMS- 2860) was used
to obtain the envelop function. Since the diode input impedance was different from the
output impedance of the sensitive part of the reader, a circulator (model ATM ATc4-8) was
added between these devices to prevent undesired reflections. Finally, an oscilloscope
(model Agilent MSO-X-3104A) connected to the diode, through the N2795A active probe
(with capacitance C = 1 pF and resistance R = 1 MΩ), was used for visualizing the envelope
functions (ID code and clock signals).
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Figure 6 depicts the measured envelope functions inferred from the experimental
setup of Figure 6, obtained by displacing the encoder at constant velocity of v = 10 mm/s.
As it can be seen, the ID code was correctly read, and the clock signals were shifted, as
consequence of the different positions of the resonators CSRRc and CSRRd in the reader.
According to these results, the clock chain first crossed the CSRRc and then the CSRRd.
Thus, the direction of motion was determined.
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This was the first electromagnetic encoder able to provide the ID code synchronously,
and able to discriminate the direction of motion, implemented without metallic inclusions.
As compared to the encoder reported in [67], the proposed encoder is very robust against
friction (eventually caused by unexpected contact between the encoder and the reader, as
consequence, e.g., of vibrations), since the inclusions are simple apertures. Thus, these
3D-printed encoders may be of interest as quasi-absolute encoders in motion control
applications. Nevertheless, the reported prototype demonstrated that by opening apertures
in a 3D-printed material, it was possible to generate an encoder containing an identifying
ID code. Thus, with the results of this work, the possibility of generating an identifying
tag embedded in a certain fabricated (3D-printed) material or consumer product during
fabrication was possible.

4. Conclusions

In this paper, electromagnetic encoders with synchronous reading and motion direc-
tion detection capability have been presented. The encoder is implemented by means of
chains of apertures made in a host substrate, which can be any dielectric material, even
flexible, with a dielectric constant significantly different than the one of vacuum. In this
work, 3D-printing techniques were employed due to their versatility and good perfor-
mance already demonstrated with the implementation of other RFID devices. For that
purpose, a prototype 3D-printed electromagnetic encoder with 16 bits has been fabricated
in dielectric PLA filament. On the other hand, the sensitive part of the reader detects the
presence of the apertures by virtue of the permittivity contrast with the host substrate
material (PLA), since the sensitive part of the reader is, indeed, a permittivity sensor. In
the reported encoders, the relevant information relative to the ID code, encoder velocity
(and acceleration, if encoder motion is non-uniform), and motion direction is contained
in the envelope functions of the AM modulated signals generated at the output ports
of the corresponding channels. The measured envelope functions are indicative of the
functionality of the proposed reader/encoder system. Such systems, based on all-dielectric
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3D-printed encoders, can find applications in motion control (where robustness against
mechanical friction is a key aspect), chipless-RFID tags (where the encoder can be embed-
ded in the product during 3D-printing fabrication), and other potential applications in
industrial scenarios.
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