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Abstract: The number of studies on applying machine learning to cyber security has increased
over the past few years. These studies, however, are facing difficulties with making themselves
usable in the real world, mainly due to the lack of training data and reusability of a created model.
While transfer learning seems like a solution to these problems, the number of studies in the field of
intrusion detection is still insufficient. Therefore, this study proposes payload feature-based transfer
learning as a solution to the lack of training data when applying machine learning to intrusion
detection by using the knowledge from an already known domain. Firstly, it expands the extracting
range of information from header to payload to accurately deliver the information by using an
effective hybrid feature extraction method. Secondly, this study provides an improved optimization
method for the extracted features to create a labeled dataset for a target domain. This proposal was
validated on publicly available datasets, using three distinctive scenarios, and the results confirmed
its usability in practice by increasing the accuracy of the training data created from the transfer
learning by 30%, compared to that of the non-transfer learning method. In addition, we showed
that this approach can help in identifying previously unknown attacks and reusing models from
different domains.

Keywords: knowledge transfer; intrusion detection; machine learning; payloads; transfer learning

1. Introduction

With the advance of information technology, cyberattacks are becoming more intel-
ligent and mass-produced, overwhelming the detection, analysis, and response abilities
of traditional security approaches [1,2]. Thus, the number of studies applying artificial
intelligence technology to the cybersecurity field is increasing [3–5]. Among these stud-
ies, intrusion detection is one of the particular fields where machine learning is showing
higher detection rates and fewer false positive cases than the conventional signature-based
detection methods [5–8].

In order to understand how machine learning works better than signature-based
methods, one must first thoroughly understand the structure of the data of a common
intrusion detection event. These data consist of two main fields (header and payload),
shown in Figure 1. The header contains network information and the flow of the source
IP and destination IP, while the payload contains the server and user information as well
as data on requests and responses [9]. As cyberattacks continue to evolve, the number of
cases where potential threats are hidden within payloads is increasing.

As demonstrated above, the traditional signature-based detection system uses an at-
tack pattern, such as “admin or 1=1”, to detect SQL injection, despite the user information
in the user-agent section implying that it is, indeed, an attack via an automated attack tool
(sqlmap) [10]. This is the epitome of a situation where the decision regarding intrusion
should be made based on the attack information, such as attack pattern and related charac-
ters as well as domain knowledge, such as URL information, body, user-agent, referrer and
so on.
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POST��/tienda1/publico/autenticar.jsp HTTP/1.1

Host�:�localhost� :�8080

Connection� :�Keep-alive

Accept-Encoding:� identity�

Content-Length:� 68�

Accept-Language:�en-us,en;q=0.5�

User-Agent:�sqlmap/1.0-dev� (r4198)

Accept-Charset:�ISO-8859-15,utf-8;q=0.7,*;q=0.7�

Referer:�http://localhost:8080/publico/autenticar.jsp

Content-Type:� application/x-www-form-urlencoded

login=admin�‘�or�1=1--er=&modo=ent

Src IP��:�
192.168.3.3
Src Port�:�1231
Dst IP��10.10.10.5
Dst Port�:�80
Packet�Size�:�345K
FLAG�:�EST

Web�Server
information

User
information

Query

Attack�Pattern

Figure 1. Example of intrusion detection event.

Recent studies have expanded the detection area from the header to payload to
maximize accuracy and minimize false positives [8,11,12].

Torrano-Gimenez et al. used n-gram to extract features from the payload [13], and
Betarte et al. extracted text-based features from the payload based on professional opin-
ions [14], while Min et al. extracted statistical, vectorized features from the payload. These
studies demonstrate the expanding the detection area from the header with limited infor-
mation to the payload with rich information can prove to be successful not only in the
conventional signature-based intrusion detection system, but also in the field of machine
learning for the same field. However, the application of such supervised machine learning
requires sufficient training data before being deployed into production [15]. Obtaining
these training data requires a lot of resources and professional manpower, especially when
one tries to collect data that contain the payload. Even after collecting enough labeled data
and, thus, building a model with good performance, it is still difficult to reuse the model in
other domains [3,6,16].

One of the machine-learning technologies to solve this problem is transfer learning,
which allows information learned from an existing domain to be transferred to another
domain [17–20]. Transfer learning is widely applied to natural language processing and
visual recognition, but studies using transfer learning in intrusion detection are lacking.
Recently, studies have attempted to use transfer learning in malware classification [21,22]
and network intrusion detection [23–25]. Wu et al. used deep learning for feature extraction-
based transfer learning, while Zhao et al. proposed the HeTL approach to detect unknown
attacks, using already-known detection techniques. However, their applicability in the real
environment is insufficient due to the use of structured datasets [5], such as KDD99 [26] and
NSL-KDD [22], or the limited experiments through hypotheses within the same dataset [27].

Therefore, we propose payload feature-based transfer learning (PF-TL) to solve the
shortage of training data in the field of intrusion detection. For our proposal, the following
points were considered.

Firstly, by limiting the domain subject of this study to an intrusion detection event
for webservices [14,28–33], transfer learning could be applied since intrusion detection
events share similar characteristics with a variation of already-known web attacks. Sec-
ondly, the method to select and extract the features of information were carefully chosen.
Well-known signatures were used to extract the characteristics of the attacks, while text
vectorization was used to extract unstructured domain knowledge, such as user and ap-
plication information [34,35]. We call this the hybrid feature extraction method. With this
new method, we aim to transfer the detection methodology of the source domain to the
target domain [36–38].
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In addition, the transfer learning algorithm, based on heterogeneous features seeking
optimized space between the two domains, is applied to enhance accuracy [18–25].

This study makes the following contributions.
First, the proposed transfer learning approach makes it easier to obtain optimized

label data for the target domain, which saves the time and manpower needed in creating
training data (Section 5).

Second, an effective feature extraction method for transfer learning between intrusion
detection domains is presented. Moreover, feature extraction was extended to the payload,
including headers, the signature-based feature in the payload, and text vectorization-based
feature methods (Section 3).

Third, an improvement over the optimization method and the manual configuration
of HeTL suggested in another study [25] is presented. This leads to optimized transfer
learning for the web application intrusion detection field (Section 4).

Fourth, a benchmark against the HeTL using the training datasets from the same
domain, which in turn proved the necessity of PF-TL, is presented and validated using two
publicly available datasets and one real-world dataset (Section 5).

Fifth, we showed that it is possible to use the training data generated by the proposed
approach to identify the new types of attack detection that do not exist in the training data,
and therefore demonstrated that the model could be reused in other domains (Section 5).

2. Preliminaries

In this section, we will first describe transfer learning and then explain the intrusion
detection system.

2.1. Transfer Learning

Traditional machine learning assumes that training and test data are imported from
the same domain so that the feature spaces and the distributions of two datasets are
similar [17–20]. Training data are often difficult to obtain and time-consuming and expen-
sive to collect [39]. Therefore, when applying machine learning to other domains, training
with data that can be obtained more easily from a particular domain and using the knowl-
edge gained from it is desirable. This methodology is called transfer learning [18–20,40].

When implementing transfer learning, the following points should be considered.
First, what source domain information is useful? Second, what is the best way to send this
information to the target domain? Third, what can be done to avoid sending unnecessary
information to the desired results?

2.1.1. Categorization According to Similarity between Domains and Feature Space

Transfer learning can be categorized into homogenous and heterogeneous transfer
learning, depending on the similarities between source and target domains and the feature
space in between [20].

Homogenous transfer learning [20] is used in the same kind of transfer learning for
which the feature space of the data in the source and target domain is represented by
the same feature (Xs = Xt) and label (Ys = Yt), and the space itself comprises the same
dimension (ds = dt). Therefore, this method focuses on closing the gap in the distribution of
data between domains, which has already been experienced in the cross-domain transition.

As for heterogeneous transfer learning [20], the source and target domain may not
share features (Xs 6= Xt) and labels (Ys 6= Yt), and the size of the feature space may also
vary. Therefore, this method requires the transformation of feature and label spaces to
bridge the gaps between knowledge areas and to deal with differences in data distribution
between domains. This method is even more difficult because little expressive common
points are present between domains. That is, knowledge in the source domain is available,
but it can be displayed in a different way than the target domain, and the most important
thing is its extraction method.
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2.1.2. Categorization According to Transition Content

Based on the transition content, transfer learning can be divided into four categories
(instance-, feature-, parameter-, and relational-based) [20].

Instance-based transfer learning assumes that a particular part of the data in the source
domain can be re-weighted and re-used in the target domain for learning. In this situation,
instance weight and importance can be sampled.

Feature-based transfer learning can be applied to both homogenous and heterogenetic
transfer learning. It aims to reduce the feature distribution gap between the feature spaces
of the source and target domain through a “good” feature.

Parameter-based transfer learning is applied by extracting each shared parameter and
priority between the source and target domain models.

Relational-based transfer learning forms transfer learning for the relational area. The
underlying assumption for this learning is that some relations between the source and target
domain data are similar. Thus, the knowledge to be transmitted is the relation between the
data. The recent statistical relation learning technique is similar to this one [20].

2.2. Intrusion Detection

Intrusion detection aims to identify various types of malicious activities on a network
and computer. How the system responds to the identified malicious activities differs in IDS
and IPS; IDS responds by passively monitoring the activities, while IPS actively restricts the
traffic of the activities. These intrusion detection techniques are continuously developed
and can be largely divided into the signature-based intrusion detection system (SIDS) [5]
and anomaly-based intrusion detection system (AIDS) [5].

2.2.1. Signature-Based Intrusion Detection

SIDS uses pattern matching technology to find known attacks. This is also known as
knowledge-based detection or misuse detection [5,41]. The main concept is to build an
intrusion signature database, compare it with the data in the packets, and raise an alert if a
match is found. SIDS generally shows excellent accuracy in detecting previously known
intrusions, but it shows a poor detection rate when a new attacks occurs until the signature
database is updated [42].

2.2.2. Anomaly-Based Intrusion Detection

AIDS uses machine learning as well as statistics- and knowledge-based methods to
overcome the limitations of SIDS. The main concept is that malicious and benign behaviors
are different. Therefore, this detection comprises two phases that define normal behavior:
a learning phase and a test phase. The advantage of AIDS is that it can identify zero-day
attacks because the recognition of abnormal user activities does not rely on the signature
database [42].

3. PF-TL: Payload Feature-Based Transfer Learning
3.1. Overall Process of Proposed Approach

In this section, we propose payload feature-based transfer learning (PF-TL) as de-
scribed in Figure 2 in which the intrusion detection knowledge is transferred from a source
domain to a target domain in order to train an unlabeled dataset.
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Figure 2. The proposed steps for PF-TL (payload feature-based transfer learning).

The source domain contains labeled intrusion detection data that can be used as
training data. The target domain contains unlabeled intrusion detection data that can be
categorized as test data. The source and target domain data comprise attack and normal
data and we assume that the source domain is labeled by an attack type and the target
domain is unlabeled.

This proposal is comprised of the following steps.
Step 1: Features are extracted from the header and payload data of the source domain

and target domain, using both attack feature extraction and text vectorization, in order to
effectively transfer the attack knowledge.

Step 2: An optimized latent subspace between the source domain and target domain’s
feature space is created, using PF-TL on the features from the extracted payload. These
optimized latent subspaces are then used to create an optimized source domain and
optimized target domain datasets.

Step 3: The optimized source classification model is created through the optimized
source domain dataset created in Step 2. It uses the Random Forest, SVM, MLP, and KNN
algorithms [2] as the model classification and selects a titration algorithm.

The subsequently generated model (optimized source classification model) can then
be used to obtain the target domain (labeled) that is formed by adding a label to the
target domain (unlabeled). This allows labeled data to be generated, even in the target
domain where training data are limited, and machine learning can be applied through the
subsequently created model.

3.2. Hybrid Feature Extraction for Identifying Attack and Domain Characteristics

In this section, we propose a payload-based feature extraction method, which enhances
the knowledge transfer between two domains for transfer learning.

Our proposal includes not only the statistical feature extraction of header—the com-
mon approach used in many research—but also a hybridized feature extraction method
that extracts both attack features and domain characteristics from the payload as shown in
the Figure 4. The attack features are extracted from the payload based on the keyword or
special characters commonly used in the attacks [14,37,43]. The domain characteristics are
extracted using latent semantic analysis (LSA) on the vectorized payloads.

In order to do so, the collected source data must include a payload of the intrusion
detection event, which contains a variety of information. As shown in the Figure 3, the
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header of the source data includes the IP, port, packet size, etc., of a specific network
connection. The payload is comprised of text data that contain the signature used in a
detection system as well as related domain information, such as application, server and
users [9].
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Figure 3. Payload based Feature Extraction.

First, the payload can be distinguished according to the characteristics of the service.
In particular, in the case of web service, it can be divided into the URI, query, body, etc.,
within the payload. URI refers to the area up to the previous part of the string “?” that
contains a specific location for resources on a particular server, including domains. Query
refers to the area after “?” that contains the remaining area from the URI area. Body
means the area containing head information, excluding the URI and Query areas. Payloads
divided, such as those in Figure 3 (URI, Query, and Body), are more representative of the
characteristics of each domain (Step 2).

Therefore, for each payload area, the feature required for transfer learning can be
extracted through the following tasks (Step 3).

First, as proposed by Latha et al. [44], to extract the characteristics of each type of attack
from the payload, the keywords and characters used for each type of attack, identified by
security experts, were extracted to create the feature, shown in Table 1. Table 1 is similar
to the character extraction method used by experts to determine attacks when using a
signature. It differs from signature-based detection, as it does not simply consider one
pattern but considers various signature combinations for related types, such as that in
Table 2, extracting them to values such as frequency and length.
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Table 1. Example of features by the security specialist [44].

Attack Class Feature List

XSS

’&’, ’%’, ’/’, ’\\’, ’+’, ”’”, ’?’, ’!’, ’;’, ’#’, ’=’, ’[’, ’]’, ’$’, ’(’, ’)’, ’∧’, ’*’, ’,’, , ’<’,
’>’, ’@’, ’ ’, ’:’, ’{’, ’}’, ’ ’, ’.’, ’ ’, ’|’, ’”’, ’<>’, ’‘’, ’<>’, ’[]’, ”==”,

’createelement’, ’cookie’, ’document’, ’div’, ’eval()’, ’href’, ’http’, ’iframe’,
’img’, ’location’, ’onerror’, ’onload’, ’string.fromcharcode’, ’src’,

’search’,’this’, ’var’, ’window’, ’.js’, ’<script’

SQL Injection

char’, ’,’, ”, ’<’, ’>’, ’ ’, ’.’, ’|’, ’”’, ’(’, ’)’, ’<>’, ’<=’, ’>=’, ’&&’, ’||’, ’:’, ’!=’,
’+’, ’;’, ’ ’, ’count’, ’into’, ’or’, ’and’, ’not’,’null’, ’select’, ’union’, ’#’, ’insert’,

’update’, ’delete’, ’drop’, ’replace’, ’all’, ’any’, ’from’, ’count’,
’user’, ’where’, ’sp’, ’xp’, ’like’, ’exec’, ’admin’, ’table’, ’sleep’, ’commit’,

’()’, ’between’

LDAP Injection ’\\’, ’*’, ,(’, ’)’, ’/’, ’+’, ’<’, ’>’, ’;’, ’”’, ’&’, ’|’, ’(&’, ’(|’, ’)(’, ’,’, ’!’, ’=’, ’)&’, ’
’, ’*)’, ’))’, ’&(’, ’+)’, ’=)’,’cn=’, ’sn=’, ’=*’, ’(|’,’mail’, ’objectclass’, ’name’

SSL

’<!−’, ’−−>’, ’#’, ’+’, ’,’, ’”’, ’access.log’, ’bin/’, ’cmd’, ’dir’, ’dategmt’,
’etc/’, ’#exec’, ’email’, ’fromhost’, ’httpd’, ’log/’ ’message’,

’odbc’,’replyto’, ’sender’, ’toaddress’, ’virtual’,
’windows’,’#echo’, ’#include’,

’var’, ’+connect’, ’+statement’, ’/passwd’, ’.conf’, ’+l’, ’.com’, ’:\\’

Table 2. Some of the feature frequency (Table 1) by attack type and length content depending on the
payload field area.

Feature Description

url_length Length of URL area
url_kwd_wget_cnt Number of frequency of inclusion of ‘wget’ in URL area
url_kwd_cat_cnt Number of frequency of inclusion of ‘cat’ in URL area

url_kwd_passwd_cnt Number of frequency of inclusion of ‘passwd’ in URL area
url_query_length Length of QUERY area

query_kwd_wget_cnt Number of frequency of inclusion of ‘wget’ in QUERY area
body_length Length of BODY area

body_kwd_wget_cnt Number of frequency of inclusion of ‘wget’ in BODY area
http_method_HEAD Whether http method value is ‘HEAD’

http_method_PUT Whether http method value is ‘PUT’
digits_freq Frequency of inclusion of numbers in URL and QUERY areas

Such extracted features show that even within the same dataset, the distribution of
features can differ by event, and even in the same type of attack, the distribution of features
differ depending on the domain. In addition, even for features that characterize the type of
attack, feature distribution varies depending on the characteristics of the classified fields.

The second is the feature extraction method for domain characteristics.
In order to apply LSA on the payload as a feature extractor, the payload data must

be vectorized first. In this paper, we used term frequency-inverse document frequency
(TF-IDF) [45] to achieve that. Nevertheless, since the payload often consists of seemingly
unmeaningful combination of characters instead of general words and sentences, we
obtained the vectorized values, using a hash of a limited size of characters instead of words.

Furthermore, it removes noise by applying a truncated SVD for LSA and extracts only
the characteristics.

Using this method, 593 and 300 features have been extracted herein based on the
characteristics of the domain information. Moreover, some additional common information
was used to extract the method, version, and host related information for HTTP as eight
binary values, and the information about the character format for URI and Query areas
was also extracted as a feature.

The extracted features, using the methods suggested in this study, seemed to charac-
terize the intrusion detection events better than the existing methods.
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3.3. Optimizing Latent Subspace for Both Source and Target Domain Data

This chapter proposes feature-based transfer learning [25] to optimize the space
and distribution of features between source and target domains based on the payload-
based extracted features in the previous chapter. This helps in obtaining optimized latent
subspaces S and T, as they are similar to each other. In addition, we can create a model
using optimized latent subspace S and make predictions with optimized latent subspace T
to obtain labeled data of target domain T [46].

The optimization methods suggested in this chapter are shown in Figure 4. We apply
principal component analysis (PCA) to extract characteristics only for given S and T and
to obtain S and T with a projection of the same size. Optimization is performed through
similarity parameters β and distance measures D(∗, ∗) for the two S′ and T′ to obtain Vs
and Vt, respectively, which are similar to each other.
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Figure 4. Optimizing latent subspace for both the source and target domain.

To summarize, the issue of optimizing feature-based similarity for the two domains
that have been projected by PCA can be considered as the well-known Equation (1).
However, here, l(∗, ∗) is the distance measure for the two given matrixes.

min
VsVT

s = I, VtVT
t = I

l
(
Vs, S′

)
− l
(
Vt, T′

)
+ βD(Vs, Vt) (1)

By introducing the distance measures l(∗, ∗) and D(∗, ∗), used in Zhao et al. [41],
Equation (1) can be expressed as Equation (2). However, here, Ps is a projection matrix that
converts Vs to the S′ coordinate system, and Pt is a projection matrix that converts Vs to the
T′ coordinate system.

G(Vs, Vt, Ps′ , Pt′)=
min

VsVT
s = I, VtVT

t = I
∣∣|S′ −VsPs|

∣∣− ∣∣|T′ −VtPt||+β|
∣∣Vs −Vt|| (2)

Therefore, the optimal value is obtained by applying AdaDelta [47], which is quan-
tified for Equation (2) to obtain the optimization goals of similar source domain Vs and
target domain Vt.

First, the partial differential coefficient for each application of Equation (2) is as follows:

∂G
∂Vs

= 2
(

VsPsPT
s − S′PT

s + β(Vs −Vt)
)

(3)

∂G
∂Vt

= 2
(

VtPtPT
t − T′PT

t + β(Vt −Vs)
)

(4)

∂G
∂Ps

= 2
(

VsS′ −VT
s VsPs

)
(5)
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∂G
∂Pt

= 2
(

VtT′ −VT
t VtPt

)
(6)

Here, if the variables Vs and Vt, which we have final interest in, are fixed, the optimal
values of Equations (5) and (6) are zero, and accordingly, Ps and Pt are arranged into
the following:

Ps =
(

VT
s Vs

)−1(
VT

s S′
)

(7)

Therefore, it is possible to obtain Vs and Vt, by repeating optimization through
AdaDelta, along with Equation (7). However, since existing AdaDelta performs opti-
mization for each individual element, it does not consider the relation between matrix
elements for Vs and Vt. Thus, to consider the relation between matrix elements for Vs
and Vt, AdaDelta is quantified and applied in a matrix-approximation-based optimization
method by introducing the following.

1. All operations are calculated based on matrix operations.
2. Initialize with random number N (0, 1) for the initial value of Vs and Vt.
3. Estimates of changes (gs, gt, zs, zt) are estimated using Frobenius Norm.
4. Then, select the relation that is orthogonal to each other through QR decomposition

as the result value for Vs and Vt, either at the initial or calculated value.

The finally proposed feature-based transfer learning algorithm can be presented as
shown in Algorithm 1 below.

Algorithm 1: Optimization performance algorithm.

input: T, S, β,
feature k, step = 10,000, tol = 1× 10−4,
γs = 0.1, γt = 0.1, hs = 0.1, ht = 0.1,
bs = 1× 10−7, bt = 1× 10−7

Output: Vt, Vs
Step 1. Normalize T′, S′

Step 2. S′ = PCA(S), T′ = PCA(T), for Features k
Step 3. Initialize: Vs, Vt ∼ N(0, 1)

Vs = Q ← QR(Vs) ***QR is QR Decomposition
Vt = Q ← QR(Vt) ***QR is QR Decomposition
Ps = Vs

TS′, Pt = Vt
TT′,

Step 4. While Optimized Step 4-1~4-6 not converge or step < steps
Step 4-1. Calculate Gradient, Js, Jt

Js =
∂G
∂Vs

, Jt =
∂G
∂Vt

Step 4-2. Calculate Frobenius Norm, gs, gt
gs =

∣∣∣∣Js
T Js
∣∣∣∣

F, gt =
∣∣∣∣Jt

T Jt
∣∣∣∣

F
Step 4-3. Update bs, bt

bs ←
√

γsbs + (1− γs)gs ,
bt ←

√
γtbt + (1− γt)gt

Step 4-4. Update Vs, Vt

Ks =
hs
bs

Js, Kt =
ht
bt

Jt,
Vs ← Vs − Ks , Vt ← Vt − Kt

Step 4-5. Update hs, ht
zs =

∣∣∣∣Ks
TKs

∣∣∣∣
F, zt =

∣∣∣∣Kt
TKt

∣∣∣∣
F,

hs ←
√

γshs + (1− γs)zs ,
ht ←

√
γtht + (1− γt)zt

Step 4-6. Calculate Ps, Pt

Ps =
(
Vs

TVs
)−1(Vs

TS′
)
, Pt =

(
Vt

TVt
)−1(Vt

TT′
)

End while
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Step 5. Calculate orthogonal matrix Q
Vs = Q ← QR(Vs) ***QR is QR Decomposition
Vt = Q ← QR(Vt) ***QR is QR Decomposition

4. Experiments and Evaluation

In this chapter, experiments were conducted and evaluated through three scenarios,
as shown in Table 3 below, for transfer learning, which is proposed to solve the shortage
of training data through a knowledge transfer between the two domains. In addition, in
the case when transfer learning is not used, the performance comparison between No-TL
and heterogeneous-based transfer learning, proposed by Zhao et al. [24], evaluates the
superiority of the transfer learning proposed in this study. Thus, the accuracy and F1-score
are compared for the labeled data generated from each experiment.

Table 3. Description and configuration by scenario.

Scenario 1 Scenario 2 Scenario 3

Objective
Is an accurate detection possible when
a new type of attack occurs that does

not exist in the training dataset?

Is a well-trained model reusable in other
network environments?

Will it perform well in the real
environment?

Experiment setting
Transfer learning comparison

experiment for different attack types
on the same equipment

Transfer learning comparison
experiment for attack types on different

equipment of the same model

Scenario 1
Scenario 2

Source Domain Specific attack type dataset with label Specific target dataset with label Labeled dataset

Target Domain Unlabeled specific attack type dataset Unlabeled specific target dataset Unlabeled dataset

Inter-domain Dataset Same
(PKDD2007)

Different
(PKDD2007 and CSIC2012)

Different
(PKCS, WAF2020)

Inter-domain Feature space Same Same Same

Inter-domain Feature distribution Different Different Different

In the first scenario, experiments are performed when labels are produced for different
types of attacks, using the labels granted for a particular type of attack, provided that the
distributions between the features differ due to the transfer learning according to the type
of attack that occurred in the same dataset.

The second scenario is the same model, but it assumes that the distribution between
each feature is different for different equipment due to the transfer learning that occurred
in the different datasets. The labeled, well-known source domain of the existing equipment
is used to apply to the other target domain of the same model.

In the third scenario, experiments are performed on the dataset in the real environment.
In addition, in Section 4.5, a performance comparison and parameter sensitivity

analysis of various algorithms are performed.

4.1. Dataset

The selection of the dataset used in this experiment considered the following condi-
tions to implement the three scenarios presented in Table 3: the dataset’s intrusion detection
area, presence of labels, multi class, payload, etc. Two of the public datasets in various
fields of intrusion detection, such as those in Table 4, and the web application firewall
dataset in the real environment were selected as datasets to satisfy this requirement. The
selected datasets are PKDD2007 (ECML PKDD2007 Discovery Challenge dataset) [48],
CSIC2012 (HTTP CSIC Torpeda 2012 dataset) [49], and WAF2020 (web application firewall
real dataset) [50].

4.1.1. PKDD2007

The PKDD2007 dataset was created in 2007 through Challenger for web traffic analysis
at the 18th European Machinery Conference (ECML) and the 11th European Conference
(PKDD) on knowledge discovery principles and practices in databases. As part of Chal-
lenger, the dataset was provided with normal traffic and seven types of attack traffic [48,51].
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The dataset included 35,006 requests as normal traffic and 15,110 requests as attacks. The
PKDD2007 dataset recorded and generated traffic and processed some information, includ-
ing replacing all URL, parameter, and values with randomly strings. The seven types of
attacks were Normal, SQL Injection, Path Traversal, XSS, Command Extraction, XPATH
Injection, LDAP Injection, and SSI Attack. The dataset is in the XML file format, compris-
ing reqContext, class, and request; request is divided into Method, Protocol, URI, Query,
and Headers.

Table 4. Description and datasets (PKDD, CSIC2012, and WAF2020).

Datasets Labeled Class Payload Sum Etc.

PKDD2007 O 7 EA O 50,116 Normal: 35,006
Attack: 15,110

CSIC2012 O 10 EA O 65,767 Normal: 8363
Attack: 57,404

WAF2020 O 13 EA O 67,407 Normal: 10,000
Attack: 57,407

4.1.2. CSIC2012

The CSIC2012 dataset was presented in the TORPEDA Framework in RECSI2012 in
2012. The TORPEDA framework is used for generating labeled web traffic for the evaluation
and testing of web application firewalls (WAF) [49–53]. The data comprises 10 classes,
including 8363 requests classified as normal, 16,456 requests classified as anomalous, and
40,948 requests classified as attacks. The 10 types of attacks were Normal, SQLi, Format
String, Buffer Overflow, XPath, XSS, CRLFi, SSI, LDAP, and Anomalous. The dataset is
in the XML file format, comprising label and request. Request is divided into Method,
Protocol, Path, Headers, and Body.

4.1.3. WAF2020

The WAF2020 dataset is the data collected over a year from the web application fire-
wall (WAF) established and operated by Company A’s SOC [50]. The dataset was detected
in the WAF based on users that accessed the portal-based web application environment.
The dataset was divided into 13 types of attacks, among which the false-detection event
that detected a normal user as an attack was selected as Normal. The data comprised
10,000 requests as Normal and 57,407 requests as attack. The thirteen types of attacks were
Normal, Default Page Access, HTTP Method Restrictions, Directory Access, URL Exten-
sion Access, Command Injection, XSS, SQL Injection, Header Vulnerability, Application
Vulnerability, SSI Injection, LDAP Injection, and Directory Listing. The dataset is in csv file
format and is divided into Method, Protocol, URI, URI_Query, Body, etc.

In particular, the attack type of each dataset was defined with a different name and
similar attack types were matched and sorted out for experimentation. Selected attack
types were Normal, XSS, SQLi (defined as SQL Injection in PKDD2007), LDAPi (defined as
LDAP Injection in PKDD2007), SSI (defined as SSI Attack in PKDD2007), OS Commander.

4.2. Data Preprocessing

At this stage, the data are structured and preprocessed so that the collected datasets
(PKDD2007, CSIC2012, and WAF2020) can be applied to machine learning.

Pre-processing steps are performed in the following order: Normalization, Field
Selection, Feature Extractor and Selection, and Sampling, as shown in Figure 5.

Data
Source Normalization

Field 
Selection

Feature 
Extractor & Selection Sampling

Figure 5. Data Preprocessing.
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4.2.1. Normalization

Among the datasets collected, PKDD2007 and CSIC2012 are in the form of unstruc-
tured XML, shown in Sample 1 [54] below, and WAF2020 is composed of structured data.
To start with, we equally perform normalization with Method, Version, URI, Query, and
Body for the applicable dataset. In particular, values that represent user information, etc.,
are included in the Body field. Then, the letter “\n” will be removed and URI decoding
will be applied for URI, Query, and Body.

Sample 1: Contents of xml File [54].

<sample id=“88888”>
<reqContext>

<os>WINDOWS</os>
. . . ..

</reqContext>
<class>

<type>xxxxxxx</type>
<inContext>FALSE</inContext>

<attackIntervall>xxxxxx</attackIntervall>
</class>
<request>

<method>POST</method> <protocol>HTTP/1.0</protocol>
<uri></cxxxxcktp/WKKj_l3333/iAdgxxxx6mMT.gif]></uri>

<query><D1d=%5Bddt%2Fsxl&loh=5nddd5Ni=aL1]></query>
. . . . . .

Accept-Language: ++insert+??+++from+++ith+
Referer: http://www.xxxxx.biz/icexxx/uoxxx.zip
User-Agent: Mozilla/7.9 (Machintosh; K; PPD 6.1]></headers>

</request>
</sample>

4.2.2. Field Selection

For each dataset, we select the field that is going to be used for the experiment. In
PKDD2007 and CSIC2012, the category type can be divided into Class, Method, and
Version, and the text type selects URI, Query, and Body. At this time, missing values occur
if a Query does not exist in the generated data of CSIC2012. Therefore, the missing values
are batch-processed with “?” for the field.

4.2.3. Feature Extractor and Selection

Feature extraction is performed with signature-based feature extraction and text-
vectorization-based feature extraction according to the selected field. Signature-based
feature extraction first performs numericalization for Method and Version. Method is
expressed as three features with numerical values of “0” and “1” depending on the existence
of GET, POST, and PUT, and Version is expressed as two features with numerical values
of “0” or “1” depending on the existence of HTTP/1.0 and HTTP/1.1. Second, character-
based features by attack type are extracted as numerical features in URI, Query, and
Body fields. Hence, eight common-related features, 196 URI-related features, 196 Query-
related features, and 196 Body-related features are created. Text-vectorization-based feature
extraction performs text vectorization for URI, Query, and Body characters using LSA,
which compresses the hashing vector, comprising 10,000 features, into 100 features again.
As a result, URI, Query, and Body strings are converted into features with a size of 100 each.
This merges the extracted features into an index basis and will eventually produce a dataset
with 901 features.

http://www.xxxxx.biz/icexxx/uoxxx.zip
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4.2.4. Sampling

After preprocessing, each dataset is randomly sampled so that it contains 1000 sam-
ples from the attacker’s label and 4000 samples from the normal label for experiments
by scenario.

4.3. Evaluation Environment & Metrics

This experimental environment was implemented using Python in Ubuntu 18.04.2 LTS.
The classical machine learning library Scikit-learn 0.20.4 was used. Hardware specifications
include NVidia GeForce RTX 2060 * 2 for GPU, 128 GB RAM, an 8 TB hard disk, and an
AMD Ryzen Threadripper 1900X 8-core processor environment.

Accuracy and F1-score for the predicted target data after transfer learning were
selected as the evaluation method for this experiment. The three scenario approaches
(No-TL, HeTL, and PF-TL) presented in Table 3 were evaluated using Random Forest, SVM,
MLP, and KNN as classification algorithms. To calculate the selected evaluation method,
confusion matrix metrics were used, which are commonly used in machine learning. As
shown in Table 5, the confusion matrix [55] comprises four information points.

Table 5. Confusion matrix.

Predicted

Positive Negative

Labeled
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Based on these four information points, four scales can be evaluated, as shown in
Table 6 [55]. First, accuracy is a measure of evaluating how accurately a model classifies.
Second, precision is a measure of evaluating how reliable the results that were predicted
through the model are. Third, recall is a measure compared to precision, which can indicate
how well the predicted results reflect the actual results. In other words, it is a measure
related to the practicality of the model. Fourth, F1-score is a number that divides the
product of precision and recall by the sum of the two and then multiplies by two.

Table 6. Performance Measurement.

Rule Formula

Accuracy (TP + TN)/(TP + TN + FP + FN)
Precision TP/(TP + FP)

Recall TN/(TP + FN)
F1-Score (2 × Recall × Precision)/(Recall + Precision)

Therefore, in this study, we are going to measure performance through the accuracy
and F1-score of the model.

4.4. Experimental Result

As presented in Table 3, the experiment was conducted through three scenarios, and
results were obtained.

4.4.1. Scenario 1: Transfer Learning Comparison for Different Attack Types on the Same
Equipment

The first scenario is based on “Can we accurately detect when a new type of unknown
attack occurs?” in a security system. In other words, the dataset being targeted is the same,
the feature space between domains is the same, and the feature distribution is different.

To test this, the PKDD2007 dataset was used, the web application intrusion detection
dataset was set to be identical, and the source and target domains were set differently
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for each type of labeled attack. The feature space used the 901 features presented earlier.
Feature distribution is differently distributed for each detection event and for HTTP header
and request values.

For the types of attacks used in the experiment, SQLi, LDAPi, XSS, and SSI in the
PKDD2007 dataset were selected as four types of attacks that are uniformly distributed,
and source and target domains were set up and experimented, as shown in Table 7. In
addition, for more accurate results, the experiments were performed by changing the target
domain type (LDAPi, XSS, and SSI) to the same type of source domain (SQLi), as shown in
Table 8.

Table 7. Performance comparison of transfer learning on Scenario 1-1.

Source PKDD2007 SQLi LDAPi XSS

Target PKDD2007 LDAPi XSS SSI

Accuracy
No-TL 0.6548 0.8134 0.8004

HeTL(2017) 0.9696 0.9690 0.9668
PF-TL 0.9988 0.9990 0.9996

F1-Score
No-TL 0.4418 0.4398 0.0060

HeTL(2017) 0.9180 0.9109 0.9096
PF-TL 0.9997 0.9990 0.9990

Source CSIC2012 SQLi LDAPi XSS

Target CSIC2012 LDAPi XSS SSI

Accuracy
No-TL 0.9730 1 0.8638

HeTL(2017) 0.9676 0.9686 0.9678
PF-TL 1 1 1

F1-Score
No-TL 0.9368 1 0.4837

HeTL(2017) 0.9120 0.9150 0.9126
PF-TL 1 1 1

Table 8. Performance comparison of transfer learning on Scenario 1-2.

Source PKDD2007 SQLi LDAPi XSS

Target PKDD2007 LDAPi XSS SSI

Accuracy
No-TL 0.6548 0.7954 0.8598

HeTL(2017) 0.9696 0.9678 0.9704
PF-TL 0.9988 0.9994 0.9992

F1-Score
No-TL 0.4418 0.6129 0.5980

HeTL(2017) 0.9180 0.9127 0.9203
PF-TL 0.9997 0.9985 0.9980

Source CSIC2012 SQLi SQLi SQLi

Target CSIC2012 LDAPi XSS SSI

Accuracy
No-TL 0.9730 0.9730 0.8176

HeTL(2017) 0.9696 0.9678 0.9704
PF-TL 0.9988 0.9994 0.9992

F1-Score
No-TL 0.9368 0.0.936 0.1648

HeTL(2017) 0.9180 0.9127 0.9203
PF-TL 0.9997 0.9985 0.9980

As seen in Tables 7 and 8, the experimental results show that the predictive model
performance for different types of attacks in the same dataset is improved, as No-TL <
HeTL(2017) < PF-TL in accuracy and F1-score. In particular, the accuracy and F1-score
vary widely by type when transfer learning is not used. However, the application of
transfer learning shows that the deviation is not significant. This enables transfer learning
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to increase the training dataset for the deficient attack types when the variation in the
amount of training data by attack type is significant. This can also be used by transfer
learning to increase detection accuracy when events that are not included in the training
data occur.

4.4.2. Scenario 2: Transfer Learning Comparison for Attack Types from other Equipment

The second scenario is the view on whether a well-trained model can perform equally
well in other network environments. In other words, the target dataset is different, the
feature space between domains is the same, and the feature distribution is different. To test
this, the PKDD2007 dataset, which is a web application intrusion detection dataset, was
selected as the source domain, the CSIC2012 dataset was selected as the target domain, and
901 features were used in common, as shown in Scenario 1 for feature space.

The results of Table 9 show that the accuracy and F1-score performed better when
transfer learning was applied compared to when it was not applied. The results show
that accuracy is high, but the F1-score is low when transfer learning takes place from
XSS to SSI. This suggests that the performance was very poor in recall or precision. This
also shows that the use of transfer learning reduces bias against data, which increases
model performance, such as the F1-score. Moreover, while the previous model does not
perform well when applied to other security equipment, it can be used for other security
equipment if the training data are optimized for the target security equipment through
transfer learning.

Table 9. Performance comparison of transfer learning on Scenario 2.

Source PKDD2007 XSS XSS XSS XSS

Target CSIC2012 XSS SSI SQLi LDAPi

Accuracy
No-TL 0.1204 0.8086 0.8370 0.2166

HeTL(2017) 0.9690 0.9694 0.9698 0.9682
PF-TL 0.9998 1 0.9994 0.9996

F1-Score
No-TL 0.1804 0.0825 0.3369 0.3301

HeTL(2017) 0.9162 0.9172 0.9187 0.9138
PF-TL 0.9995 1 0.9985 0.9990

4.4.3. Scenario 3: Application of Scenario 1 and 2 to the Real Environment

The third scenario is the view on whether what was done in Scenarios 1 and 2 can be
well applied in the real environment. To this end, we applied the web application firewall
dataset WAF2020 collected in the real environment to Scenarios 1 and 2.

First, Scenario 1 was applied to the WAF2020 Dataset. As shown in Table 10, the use
of PF-TL in the real environment shows high accuracy and F1-score. In particular, if the
domain applies the model without using transfer learning from OS Commander to SQLi, it
shows a low accuracy of 0.21; however, when transfer learning is applied, high accuracy of
0.99 or higher is obtained.

Table 10. Performance comparison of transfer learning on Scenario 3-1.

Source WAF2020 SQLi XSS OS Cmd

Target WAF2020 XSS OS Cmd 1 SQLi

Accuracy
No-TL 0.8755 0.8157 0.2116

HeTL(2017) 0.9720 0.9726 0.9732
PF-TL 0.9999 0.9999 0.9999

F1-Score
No-TL 0.5546 0.1456 0.2196

HeTL(2017) 0.9247 0.9265 0.9282
PF-TL 0.9999 0.9999 0.9999

1 OS Cmd = OS Commander.
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Second, transfer learning was tested with WAF2020 for models created in PKDD2007+
CSIC2012, as shown in Scenario 2. Table 11 contains a new dataset called PKCS, created by
merging existing common datasets (PKDD2007 and CSIC2012) and applying the model
obtained from this to the WAF2020 dataset. As a result, an accuracy of lower than 0.53 was
obtained when transfer learning was not applied, whereas a 0.99 or higher accuracy was
obtained when transfer learning was applied.

Table 11. Performance comparison of transfer learning on Scenario 3-2.

Source PKCS SQLi SQLi XSS XSS

Target WAF2020 SQLi XSS XSS SQLi

Accuracy
No-TL 0.1951 0.2555 0.5296 0.5333

HeTL(2017) 0.9715 0.9727 0.9708 0.9716
PF-TL 0.9998 0.9998 0.9999 0.9999

F1-Score
No-TL 0.2512 0.3112 0.4596 0.4405

HeTL(2017) 0.9234 0.9269 0.9215 0.9236
PF-TL 0.9995 0.9995 0.9997 0.9997

This shows that transfer learning can be applicable to data in the real environment by
applying it to the existing public dataset.

4.5. Limitations and Discussion

In this study, three different scenarios for domain knowledge transfer were used to
create optimized training data for target domain, using payload feature-based transfer
learning. In addition, by comparing with No-TL and HeTL, we showed that the proposed
transfer learning could create the dataset that might effectively be used to improve model
accuracy. Considering how the machine learning applications in intrusion detection have
been dependent on the training data, the research result is very promising. Through
the aforementioned three scenarios, our proposal can significantly enhance the detection
accuracy of unknown attacks based on the same dataset and guarantee understandable
performance on a dataset of different security devices when using the transfer learning.

Nevertheless, in order to achieve the desired outcomes, the following limitations
regarding the labels of source and target domains, feature spaces and distributions, were
put into the consideration [56].

First, the source and target domains must have the same feature spaces. To solve this,
PCA was performed to adjust the number of features.

Second, the source and target domains must have the same number of records. Thus,
the number between domains was identically adjusted through sampling.

Third, the similarity between the source and target domain is high and must be entered
in pairs when being input. Hence, similarity parameter β was used and matched and was
set as β = 1 for this experiment.

In this experiment, we will look into the proposed algorithm and the similarity
parameter β.

4.5.1. Algorithm Selection

To select the best algorithm, the PKDD2007 dataset and the CSIC2012 dataset were
selected as the target and source domains, respectively.

The dataset configuration used the entire datasets without distinction of attack types.
The data used were applied with Random Forest, Linear SVM, MLP, and KNN algorithms
to compare the transfer learning results. As shown in Table 12, the comparison shows
that Random Forest has the best performance. In particular, it has the highest accuracy
and a high improvement rate of 95.4% when transfer learning is applied. In addition, the
performance of the KNN algorithm was excellent when transfer learning was not used, but
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its performance improvement was not high when transfer learning was applied. Therefore,
in this paper, Random Forest was applied in the experiment.

Table 12. Algorithm comparison of transfer learning on Scenario 2.

Source
Target

PKDD2007
CSIC2012 RF 1 SVM MLP KNN

Accuracy
No-TL 0.2010 0.1900 0.2112 0.6946

HeTL(2017) 0.9624 0.5162 0.7414 0.8132
PF-TL 0.9638 0.8988 0.8966 0.9146

F1-Score
No-TL 0.3135 0.3193 0.3219 0.1724

HeTL(2017) 0.9260 0.3091 0.1465 0.2634
PF-TL 0.9032 0.6645 0.7608 0.7303

RF 1 = Random Forest.

4.5.2. Parameter Sensitivity

For inter-domain optimization, two hyperparameters must be set: similarity parameter
β [46] and the size of new feature space k. Therefore, we decided on the sensitivity
of parameters through an experiment. First, we analyzed the sensitivity to similarity
parameter β.

To analyze the sensitivity to similarity parameter β, the size of the new feature space
k was fixed with the same value of 100 as the control variable.

As seen in Figure 6, as the similarity parameter β increases, the similarity between the
target and the source domains increases. In particular, the source and target domains are
almost identical when β is greater than 0.8. In this experiment, the β value was set to 1 for
more obvious results.

𝜷 = 0 𝜷 = 0.5

𝜷 = 0.8 𝜷 = 1

+     : Source
O    : Target

+     : Source
O    : Target

Figure 6. Distribution diagram according to similarity parameter β (class: LDAP injection, source
domain: PKDD2007, target domain: CSIC2012).

4.5.3. Comparison of Methods of Creating Training Data

While there are multiple ways to create training data, including Generative Adver-
sarial Net (GAN) and SVM Feature selection, many studies suggest creating training data
using the same datasets that are labeled together. These methods focus on creating new
training datasets based on the same dataset [57–61]. Nonetheless, our proposal focuses on
transferring data from both the same and different datasets using three scenarios.
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5. Related Works
5.1. Payload Based Intrusion Detection

Torrano-Gimenez et al. [13] proposed a method for extracting feature from the payload
using n-gram to increase the accuracy of web intrusion detection. Generic feature selection
(GFS) measurements were applied to decrease the number of features extracted by n-gram,
and the accuracy tended to improve through classification algorithms (Random Forest,
Random Tree, CART, and C4.5). Betarte et al. [14] extracted character-based features with
the help of an expert’s analysis in the payload, based on which classification algorithms
(RF, KNN, and SVM) suggested better performance than conventional signature-based
detection technology. Min et al. [62] proposed statistical methods that are important in
network flows for efficient feature extraction in packet headers and payloads, as well
as methods using the Random Forest algorithm after word vector followed by feature
extraction via Text-CNN.

However, in these studies, a large number of training data is needed to achieve good
results and learned models cannot be reused in other domains.

5.2. Transfer Learning for Intrusion Detection

Transfer learning has commonly been applied to natural language processing and vi-
sual recognition; however, its application in the cybersecurity field is insufficiently studied.
Intel Labs and Microsoft researchers Chen and Parich [21] proposed a malware classifica-
tion method using deep-learning transfer learning technology that has low false detection
rates and high accuracy through a static malware as the image network (STAMINA). Mi-
crosoft’s REA+L dataset was used as an applicable dataset and showed improvements
over previous studies [22]. Wu et al. [23] proposed the TL-ConvNet model in transfer
learning for network intrusion detection. Furthermore, the deep learning algorithm Con-
vNet was used for feature extraction. Source domain (KDDTest+) was learned through the
NSD-KDD dataset and transfer learning was implemented through the prediction of the
target domain (KDDTest-21). Moreover, Zhao et al. [24,25] proposed a feature-based HeTL
approach to detect unknown attacks based on known detection techniques. NSD-KDD
was used as a dataset, and the source and target domains were selected and tested for
each type of attack within the same dataset. Subsequent studies [25] also suggest transfer
learning that uses clustering to improve the optimization of the source and target do-
mains. However, studies of transfer learning in the field of network intrusion detection
have so far been conducted using formalized datasets, such as KDD99 and NSL-KDD,
and have been experimented with different types and distinctions of attacks within the
same dataset. Therefore, a limitation exists in the application of transfer learning in a real
network environment [63,64].

6. Conclusions and Future Work

In this paper, we proposed payload feature-based transfer learning as a solution to the
shortage of training data in the field of intrusion detection, which extracts features from the
payload of the intrusion detection event. Our proposal confirmed that transfer learning can
create optimized training data for a domain that has insufficient labeled data or no label
data at all. In addition, the proposal demonstrated three distinctive scenarios in which
we proved the proposal’s capability of detecting new types of attack events and reusing a
well-trained model in another network environment by utilizing a newly created training
dataset from PF-TL. Furthermore, by validating real-life datasets, we showed that our
proposal can indeed be used in practice. In the future, we will cover methods to process
imbalanced training data and to create big data specifically optimized for the intrusion
detection field to increase the utility of the training data created from transfer learning.
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