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Abstract: Electric vehicle (EV) charging stations fed by photovoltaic (PV) panels allow integration of
various low-carbon technologies, and are gaining increasing attention as a mean to locally manage
power generation and demand. This paper presents novel control schemes to improve coordination
of an islanded PV-fed DC bus EV charging system during various disturbances, including rapid
changes of irradiance, EV connection and disconnection, or energy storage unit (ESU) charging and
discharging. A new hybrid control scheme combining the advantages of both master–slave control
and droop control is proposed for a charging station supplying 20 EVs for a total power of 890 kW.
In addition, a three-level (3L) boost converter with capacitor voltage balance control is designed
for PV generation, with the aim to provide high voltage gain while employing a small inductor.
The control techniques are implemented in a simulation environment. Various case studies are
presented and analysed, confirming the effectiveness and stability of the control strategies proposed
for the islanded charging system. For all tested conditions, the operating voltage is maintained within
5% of the rated value.

Keywords: photovoltaic systems; electric vehicles; charging stations; islanded microgrid; droop control

1. Introduction

The transportation sector is one of the main contributors to Greenhouse Gas (GHG)
emissions [1]. Following the introduction of Electric Vehicles (EVs), it is expected that an
effective de-carbonization of the transportation section will take place in the next decades,
thus contributing to the achievement of the targets stated in the Paris Agreement [2].
However, with the rapidly increasing number of EVs, the demand for charging facilities
is expected to increase, thus posing a further burden to the electricity grid, which in
many countries is already constrained. This phenomenon is further aggravated by the
uncontrolled and random charging patterns of EVs [3] and by the increasing deployment
of fast charging approaches [4], drawing high power from the grid for short periods [5].

The establishment of distributed generation based on renewable energy sources (RESs)
is a practical solution to the challenges described above, as it will allow local generation
of electricity to charge the EVs. RESs have gained popularity [6] following the drop in
semiconductor price in the last two decades [7]. Among RESs, solar energy is a promising
generating source for both grid-connected [8,9] and off-grid applications [10,11].

As DC sources, PV arrays can be directly connected to a DC-bus system [12]. Com-
pared with the more common AC configuration, the benefits of a dc-bus system include
the following [7,13]:

• Lower energy conversion losses when the system includes dc sources such as PVs,
dc loads such as EVs, and energy storage units (ESUs).

• Reduced cost and lower number of power electronics devices.
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• No need to consider synchronization with the utility grid and reactive power management.

Given the above advantages, the literature shows a growing interest in PV-fed dc
fast-charging stations. A typical PV-fed dc bus charging station is comprised of PV arrays,
EV chargers, ESUs and various DC–DC power converters that connect each component
to a common dc bus. The bus is either connected to the grid (grid-connected mode—
in this case, a DC–AC converter is required) or disconnected from the grid (off-grid or
islanded mode) [14]. An islanded charging station can provide charging facilities for
tourists or long-distance travellers in remote locations with a lack of infrastructure. In this
mode, the bus voltage is regulated by the ESU. Various projects employing AC off-grid
charging stations have been deployed. For example, a 1.0 MW off-grid PV system started to
operate in Bamyan, Afghanistan in 2014 [15]. In Australia, the world’s largest off-grid solar
project, a 10.6 MW PV plant with 6 MW battery was completed in 2016, which reduces the
customer’s total diesel consumption by approximately 20% [16]. Robben Island, a world
heritage site, also has been isolated from the mainland’s power grid from 2017, supplied by
a 666.4 kW solar PV and battery storage microgrid [17].

The existing literature for PV-fed DC charging systems mainly contributes to system
design [18–20], vehicle-to-grid (V2G) operations [21,22], energy management [23–25],
and minimization of electricity bills in smart homes [26]. However, these strategies are
considered at a high level over a long timescale, thus they cannot cope with sudden system
disturbance such as fast irradiance changes.

To fill this gap, [27] proposes a sliding-mode control to regulate the DC=bus out-
put voltage fast dynamic response, but EVs and ESU coordination is not mentioned.
The work presented in [28] introduces a coordinated control to avoid over-charging and
over-discharging of the ESU in islanded mode. However, transient PV generation dis-
ruption, which may cause insufficient EV charging power, thus affecting system stability,
is not considered.

A decentralized control method to coordinate PV generation and ESU charging/
discharging is proposed in [29]. The authors use a droop control-based scheme on the ESU
side and an adaptive power control method on the PV generators side. In [29], the EV
chargers are shown in a simplified form and not regarded as part of the coordination,
hence the impact of any outages from the EV side is not analysed.

Based on the summary above, it can be concluded that the existing decentralized
control strategies for islanded DC bus EV charging systems mainly deal with PV-ESU
coordination [30], while the complete PV-ESU-EV coordination study is still absent. Addi-
tionally, short-term and fast disturbances are not fully analysed. Table 1 summarises the
main characteristic of the works reported above.

Table 1. Comparison of existing literature on islanded DC charging systems.

Ref. [19] Ref. [27] Ref. [28,29]
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PV-ESU-EV coordination

This paper proposes novel hybrid control schemes for coordinating PV arrays, EVs and
ESU. These control schemes include master–slave and droop controls to maintain system
stability and improve operation under numerous operating conditions. A three-level (3L)
boost converter [31] is designed for PV generation to provide high efficiency. The proposed
techniques are implemented in Simulink/Simscape Power Systems. Various cases are
presented and analysed.
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Section 2 describes the islanded charging station configuration. Section 3 illustrates
the proposed PV system control, the charging/discharging control, and the hybrid control
schemes. Simulation results for different cases are presented in Section 4.

2. System Description

The overview of the PV-fed DC-bus EV charging station architecture considered in
this work is shown in Figure 1. The charging station is designed to charge up to 20 EVs
simultaneously: four rapid chargers (62.5 kW) and 16 standard chargers (40 kW). The total
power demand for the station is approximately 890 kW.
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Figure 1. The architecture of the PV-fed DC bus charging station.

The power supply consists of three PV arrays connected to the DC bus by means of
three 3L boost converters. The arrays are connected in a 14 × 90 structure, for a total of
3780 modules. Each module is rated Pmp = 280 W, and therefore the PV system can generate
up to 1.06 MW.

An ESU is included to store or release energy, and to ensure that the DC bus voltage is
maintained close to the nominal value under varying operating conditions.

2.1. PV System

The conventional two-level (2L) boost converter used for PV generation is shown in
Figure 2a: the low voltage side (Vpv) is connected to the PV array and the high voltage
side (Vbus) is connected to the DC bus. This design causes power losses due mostly to the
inductor Lpv: these losses are amplified in high power density and low voltage applications
such as EV charging stations. Hence, an improved boost converter design is necessary
for the PV system to reduce losses. A 3L-boost converter, shown in Figure 2b, is adopted
to provide higher efficiency [31]. It consists of an inductor, two insulated-gate bipolar
transistors (IGBTs) with anti-parallel connected diodes, two capacitors and two diodes.
Compared with a conventional two-level boost converter, this topology requires half rated
voltage for the switches and the capacitor. Additionally, it provides double voltage gain
but requires a quarter of the inductance compared to the 2L converter, as shown in the
following subsections.
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2.1.1. Voltage Gain

Figure 3 shows the switching states and corresponding inductor current of the two
topologies described above (2L and 3L). Since, in steady-state, the time integral of the
inductor voltage over one cycle must be zero, the voltage gain [32] of the standard 2L boost
converter is calculated as follows (Figure 3a):

Vpvton,a +
(
Vpv −Vbus

)
to f f ,b = 0 (1)

Vbus
Vpv

=
T

to f f ,a
=

1
1− Da

(2)

where Vpv is the PV array terminal voltage, Vbus is the main DC bus voltage, ton,a is the
switch switching-on time and to f f ,a is switching-off time, T is a full-cycle time and Da is
the duty ratio, defined as Da = ton,a/T.
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For the 3L boost converter, the integral is calculated over half cycle, and the voltage
gain is calculated as follows (Figure 3b):

Vpv
ton,b − to f f ,b

2
+

(
Vpv −Vbus

)
to f f ,b = 0 (3)

2Vbus
Vpv

=
T

to f f ,b
=

1
1− Db

(4)

where the switching-on time is defined as ton,b, the switching-off time is to f f ,b, and the duty
ratio is Db.

By comparing (2) and (4), it can be concluded that the voltage gain of the 3L boost
converter is double of the 2L converter, with same duty ratio.
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2.1.2. Inductor Size

The boost converter output current ripple ∆ILpv is related to the inductor size. The
conventional 2L boost converter inductance is calculated as [32]:

Lpv
dILpv

dt
= Vpv (5)

∆ILpv =
ton,a ×Vpv

Lpv
=

T ×Vbus
Lpv

Da(1− Da) (6)

Therefore, when Da = 0.5, the ripple is the highest (∆ILpvmax ) and the corresponding
inductance is:

Lpv =
T ×Vbus

4× ∆ILpvmax

(7)

Similarly, the 3L boost converter inductance is calculated as follows:

Lpv
dILpv

dt
= Vpv (8)

∆ILpv =
(2Db − 1)TVpv

2Lpv
=

T ×Vbus
2Lpv

(2Db − 1)(1− Db) (9)

In this case, when Db = 0.75, the ripple is at maximum value and the corresponding
inductance is:

Lpv =
T ×Vbus

16× ∆ILpvmax

(10)

The characteristic waveforms of the two converters inductance current ripples versus
duty ratio are shown in Figure 4. If the maximum inductor current ripple ∆ILpvmax for the
two converters is the same, the corresponding duty ratios are Da = 0.5 and Db = 0.75,
respectively. Substituting these values in (10) and (7), one can verify that the inductance of
the 3L boost converter is a quarter of the 2L boost converter—thus saving on space, cost,
and losses.
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interface the DC bus to the EV battery terminals and to regulate the charging current ܫ௘௩ 
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2.2. EV Charger and ESU Converter

The power converters adopted for the EV charger and the ESU converter are shown
in Figure 5. They are based on standard converters (i.e., buck converter for EVs and
bidirectional DC–DC converter for the ESU), in order to reduce computational effort and
highlight the whole system coordination control from grid operation point of view.

The EV charger is the buck converter shown in Figure 5a. It includes a semiconductor
switch, a diode, an inductor and a capacitor. The main functions of the charger are to
interface the DC bus to the EV battery terminals and to regulate the charging current
Iev according to the different charging speed requirements and standards. In this paper,
two EV charger technologies are considered: the standard charger, limited to 80 A, and the
fast charger, limited to 125 A.
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Figure 5. Power converters used in the model: (a) EV buck converter and (b) ESU bi-directional DC–DC converter.

The ESU includes a standard bi-directional DC–DC converter and a battery. The con-
verter consists of two switches (Sa and Sb), two capacitors and an inductor, as shown in
Figure 5b. Sa works as active switch for buck mode, while for boost mode Sb becomes
active; two anti-parallel diodes are also connected to the switches to provide a path for the
inductor current while the switches are off.

3. Control System Design

The control of the above system includes three main algorithms: PV system control,
EV charging control, and ESU bi-directional charging/discharging control. The three
algorithms are shown in Figure 6 and will be described in the next subsections.
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3.1. PV System Control

The PV system control, shown in Figure 6a, is designed to regulate the array terminal
voltage via the 3L boost converter and to extract maximum power from the PV arrays.
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The converter requires balancing of the two capacitor voltages and two 180◦ phase-shifted
carrier signals to control the upper switch and the lower switch, respectively [33].

The reference voltage VPVre f is obtained from one of the most commonly implemented
MPPT algorithms, Perturb and Observe (P&O) [34]. The error term obtained as the differ-
ence between Vpvre f and Vpv is applied to a proportional-integral (PI) controller to generate
the duty ratio Dpv for the 3L boost converter. This term is adjusted by the duty ratio Dc
generated from the capacitor voltage balance controller. In this way, the voltages of the
upper and lower capacitors (Vf 1 and Vf 2) are kept well balanced.

3.2. Charging/Discharging Control

The charging/discharging control is deployed in the 20 EV chargers and ESU converter.
The EV charging control is shown in Figure 6b, and the reference charging current is Ievre f .
The controller contains a disable function depending on the average value of the solar
irradiance Gavg. This function enables the EV chargers to coordinate with the ESU and
limits the ESU discharging current. When Gavg falls below a certain level, the disable
function is triggered. Subsequently, the EV charging current reference becomes zero and
the charger is soft switching off from the DC bus. The number of disconnected EVs
increases with Gavg dropping. In the proposed design, when Gavg reduces to zero, only two
EV chargers are connected, and the rely on the ESU for charging. When the ESU reaches the
minimum state-of-charge (SoC) level, and Gavg keeps being equal to zero, all EV chargers
are switched off, until the PV arrays generate power again.

The ESU bi-directional DC–DC converter is controlled to ensure that the DC bus
voltage is maintained at the nominal level. It can either work in buck mode to charge the
battery, or in boost mode to discharge it. A control strategy has been designed to regulate
switching between the two modes, as shown in Figure 7. After setting the reference voltage
and monitoring the bus voltage and power in the system, the difference between the
instantaneous power generated by the PVs (Pmpp and the power absorbed by the EVs
(Pev is used to determine the converter operating model:
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• Pmpp − Pev ≥ 0: ESU in buck mode (charge)
• Pmpp − Pev < 0: ESU in boost mode (discharge)

A time delay equal to 0.1 s is added to the logic shown in Figure 7 to avoid changing
the operating mode too frequently, which can damage the ESU battery.

Since the DC system is islanded from the grid, the three algorithms described above
are not suitable for all operating conditions. More advanced control strategies are required
to maintain system stability under fast-changing operating conditions, such as sudden
disconnection of the ESU, or rapid change in PV generated power due to irradiance
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variation. Therefore, a hybrid control scheme is adopted to handle these transients and
maintain coordination across all converters.

3.3. Hybrid Control

Although the control scheme described in the previous section provides accurate
current sharing during both steady-state and transient conditions, the main drawback
is that the stability and reliability of the entire system is highly dependent on the ESU.
Therefore, the ESU cannot be switched off nor the current through it can be regulated when
SoC falls below or rises above a certain value.

Furthermore, the proposed charging/discharging controller is only suitable for slow-
changing conditions. When fast disturbances occur in the system, the EVs cannot con-
nect/disconnect from the bus frequently in a short period of time because this operating
mode may damage the EV batteries. Therefore, an additional control loop is required to
cope with these sudden transients.

The aforementioned challenges can be overcome by adopting a droop-based control
which exhibits flexible current sharing capabilities and high reliability. However, the inher-
ent trade-off between current sharing and bus voltage regulation degrades the performance
of the droop-based control scheme. To this end, a hybrid control scheme that exploits
advantages from both droop and master–slave control methods is proposed.

Figure 8a shows the modified ESU control system, which is adaptive to the rate of
change in solar irradiance G′ ( dGavg

dt ), change in SoC, and change in demand. The modified
storage current reference Iesure f can be calculated as follows:

Iesure f =
Pmpp − Pev

Vre f
× Kesu (11)

where Kesu represents the ESU droop gain, varying between 0 and 1. The droop gain is
generated using a look-up table based on the levels of G′ and SoC.
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Figure 8b shows the modified EV control system, where all EV units are equipped with
a voltage-based droop control structure and participate into the DC-bus voltage regulation.
The output ∆Iev of the droop control can be expressed as follows:

∆Iev = Kdroop

(
Vre f −Vbus

)
(12)

where Kdroop represents the EV adaptive droop gain and is calculated using the levels of
G′ and SoC.

The overall system operation can be described by the following control modes:

• Mode 1—Master-slave control: Kesu = 1, Kdroop = 0 and SoC & G′ are within the defined
limits: droop controls are disabled.

• Mode 2—Hybrid control: 0≤ Kesu ≤ 1, 0 < Kdroop ≤ 1 and SoC or G′ falls outside the
defined limits: droop controls are activated to provide better transient response.
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• Mode 3—The ESU battery charging reaches its SoC limit (90%) and no EVs are con-
nected. This mode leads to Kdroop = 0 and Kesu < 1, and the PVs are disconnected from
the bus to avoid the system to become unstable.

The charging station overall control strategies are shown in Figure 9, which comprises
the three main control functions (PV system 3L boost converter control, EVs buck converter
control with droop control, and the ESU converter control) and coordination between the
ESU and EVs.
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4. Simulation Results

To validate the effectiveness of the proposed control strategies, the system is imple-
mented in Simulink/Simscape Power Systems. The system parameters are listed in Table 2.
Simulation results are presented in this section for various operating conditions.

For all simulations, initially, the PV arrays generate the rated power, and no EVs are
connected. Therefore, the power Pmpp flows to the ESU. The 20 EVs connect to the DC bus
between 1 and 2 s: although this connecting sequence is much faster than the one taking
place in the real world, it is adopted to show the stability of the proposed control.

Two different solar irradiance profiles are considered, as shown in Figure 10. So-
lar irradiance G1 is 1 kW/m2 initially, and decreases to 500 W/m2 between 2.5 and 3.5 s,
to further drop to 0 kW/m2 between 4 and 5 s. Solar irradiance G2 drops from 1 kW/m2

to 300 W/m2 between 2.5 and 3.5 s, and to 0 kW/m2 between 4 and 4.5 s. Furthermore,
the initial SoC for the ESU is set to 40 %, where the nominal operating range is 30–70% [35].

4.1. Master–Slave Control Mode for Slow Irradiance Change

One of the most important factors affecting system stability is the rate of change in
solar irradiance (G′. The following subsections will address the impact of this parameters
for different irradiance profiles and applied to a varying number of PV panels.

4.1.1. Case 1: Single-Array Irradiance Changing according to G1

In this case, the irradiance of one of the three PV array power is changing according
to G1, and the other two are constant at 1000 W/m2.

Figure 11a,b show the DC bus voltage and three PV array currents. At the beginning
of the simulation, the voltage is maintained at a nominal value 750 V, and the array currents
are 460 A. The first array current (IPV1) starts to drop at t = 2.5 s when its irradiance is
reduced, while the other two are constant. Following the sudden drop in generation,
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at t = 3.4 s the ESU converter changes from buck mode to boost mode to discharge the
battery and to keep the bus voltage constant, while supplying power to charge the EVs.
At 4.8 s, the first PV array is disconnected from grid due to the low irradiance value and its
current drops to 0. In spite of the oscillations in the waveforms due to battery discharging,
the voltage profile is maintained within the 5% of the nominal value (750 V). The oscillations
in DC voltage will disappear when the battery will switch back to buck mode.

Table 2. System parameters.

Component Value

Source Side

PV module quantity n = 14 × 90 × 3
Per module Max. voltage Vmp = 35 V
Per module Max. current Imp = 8 A

Per module Max. Power at STC Pmpp = 280 W

3L converter input side capacitor Cpv = 0.3 mF
3L converter inductor Lpv = 1 mH

Converter output side capacitor C f 1 = C f 2 = 4.2 mF

PI controller Kp = 10, Ki = 150

Charger Side

EV battery charger type 1 Vev1 = 400 V; Iev1 = 80 A
Init. SoC = 5%

EV battery charger type 2 Vev2 = 400 V; Iev2 = 125 A
Init. SoC = 5%

Buck converter Cev = 25 µF
Lev = 2.5 mH

ESU

ESU battery
Vesu = 500 V

Cap: 1000 Ah
Init. SoC = 40%

Bi-directional dc/dc converter Cesu = 25 µF
Lesu = 1 mH
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(e) 20 EV charging currents for Case 1.

Figure 11c,d show the ESU current and battery SoC, respectively. The ESU is charging
between t = 0 s and t = 3.5 s, and discharges afterwards, when the ESU switches to buck
mode. Figure 11e shows the EVs charging currents. The EVs connect in sequence between
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t = 1 and 2 s, and two of the EVs are disconnected at t = 4.4 s and t = 4.8 s, respectively,
as the ESU is unable to meet the full power demand. Therefore, in this case, 18 vehicles can
be charged for t > 5 s.

4.1.2. Case 2: Two Arrays Irradiance Changing according to G1

In this case, the irradiance of two PV arrays change according to G1 and for the third
array, the irradiance remains constant at 1000 W/m2. Figure 12 shows the main DC bus
voltage. The voltage oscillations are due to the ESU switching from buck mode to boost
mode, as in Case 1, and additional spikes are due to the disconnection of electric vehicles.
However, the voltage remains close to 750 V and the ripple is within the 5% of nominal
level. In this case, for t > 5 s only 10 EV can be charged, because the PV-generated power
is reduced.

Electronics 2021, 10, 1142 12 of 16 
 

 

Figure 11c,d show the ESU current and battery SoC, respectively. The ESU is 
charging between t = 0 s and t = 3.5 s, and discharges afterwards, when the ESU switches 
to buck mode. Figure 11e shows the EVs charging currents. The EVs connect in sequence 
between t = 1 and 2 s, and two of the EVs are disconnected at t = 4.4 s and t = 4.8 s, 
respectively, as the ESU is unable to meet the full power demand. Therefore, in this case, 
18 vehicles can be charged for t > 5 s. 

4.1.2. Case 2: Two Arrays Irradiance Changing according to G1 
In this case, the irradiance of two PV arrays change according to G1 and for the third 

array, the irradiance remains constant at 1000 W/m2. Figure 12 shows the main DC bus 
voltage. The voltage oscillations are due to the ESU switching from buck mode to boost 
mode, as in Case 1, and additional spikes are due to the disconnection of electric vehicles. 
However, the voltage remains close to 750 V and the ripple is within the 5% of nominal 
level. In this case, for t > 5 s only 10 EV can be charged, because the PV-generated power 
is reduced. 

 
Figure 12. DC bus voltage for Case 2. 

4.1.3. Case 3: Three Arrays Irradiance Changing according to G1 
In this case, all the three PV arrays are controlled by irradiance G1. Figure 13 shows 

the DC bus voltage: while additional oscillations than in Case 2 are observed, still the 
voltage is maintained within the 5% of nominal level. All EVs except two disconnected 
from the DC bus between 3 s and 5 s. The two remaining EVs are charged by the ESU 
directly. 

 
Figure 13. DC bus voltage for Case 3. 

4.2. Hybrid Control Mode for Rapid Irradiance Change 
Solar irradiance can change suddenly at any point in time, and the following case 

shows the results when this parameter changes according to curve G2 in Figure 10. 

Figure 12. DC bus voltage for Case 2.

4.1.3. Case 3: Three Arrays Irradiance Changing according to G1

In this case, all the three PV arrays are controlled by irradiance G1. Figure 13 shows the
DC bus voltage: while additional oscillations than in Case 2 are observed, still the voltage
is maintained within the 5% of nominal level. All EVs except two disconnected from the
DC bus between 3 s and 5 s. The two remaining EVs are charged by the ESU directly.
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4.2. Hybrid Control Mode for Rapid Irradiance Change

Solar irradiance can change suddenly at any point in time, and the following case
shows the results when this parameter changes according to curve G2 in Figure 10.

Figures 14 and 15 show the droop gain and the voltage profile for two cases: without
and with the droop control, respectively. Figure 14b illustrates that the bus voltage drifts
from the rated value without droop control. When the droop control is implemented,
the voltage is stable, as shown in Figure 15b m and the gain Kdroop changes from 0 to 1
to enable droop control when the rate of change in irradiance G′ is beyond the threshold
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600 W/(m2s), as shown in Figure 15a. This case indicates that the proposed droop control
is required when fast irradiance change takes place, while it is not necessary under slow-
changing operating conditions.
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4.3. Reduced Charging Current

This case illustrates system operation when the ESU battery is charged beyond the
nominal SoC range (i.e., 60%). The condition is set as follow: the solar irradiance is constant
at 1000 W/m2; 20 EVs are connecting to the system between 1 to 2 s and the ESU battery is
changed to 80 Ah (i.e., 59.2% of the SoC).

The battery reaches a SoC equal to 60% at t = 4.2 s, as shown in Figure 16. As a result,
the hybrid control is enabled and the gain Kesu and Kdroop change from 1 to 0.9 and 0 to
1, respectively. Therefore, the power generated by the PV panels is shared by the ESU
and all the connected EVs, and the charging current for ESU reduces. However, the bus
voltage will not be affected visibly, only increasing by approximately 0.67% as shown in
Figure 16d.
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5. Conclusions

This paper presented a novel hybrid control scheme that effectively improves the
transients and operational stability of a PV-fed DC bus islanded EV charging station,
when compared to a standard master–slave control scheme. The advantages of both
master–slave and droop-based controls are combined in the proposed scheme, that leads to
an improved PV-ESU-EV coordination in an islanded charging station. Various cases have
been presented, including varying PV power generation, slow and rapid solar irradiance
change, and the ESU battery SoC being charged outside the nominal range.

A 3L boost converter was designed to provide double voltage gain using a quarter
of the inductance compared to the conventional 2L boost converter, thus resulting in
higher efficiency for PV generation. The 3L boost converter is controlled by P&O MPPT
and a capacitor voltage balance controller. EV chargers and ESU converter design with
corresponding control schemes were also described.

The proposed methodology has been tested on a DC-charging station supplying
20 EVs. Various operating conditions have been studied, including slow and rapid changes
of solar irradiance (between 700 W/m2s and 300 W/m2s) and the impact of charging the
ESU beyond the nominal SoC (60%). Simulation results show that the DC bus voltage
is always maintained within 5% of the nominal level under all operating conditions.
The results also indicated that the EVs charge at the rated value and the ESU can either
charge or discharge within its nominal SoC limits.

The proposed design allows increasing the utilisation of RESs for electrification of
transport, and deployment of LTCs in areas with weak grid connection.
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