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Abstract: When the linear active disturbance rejection control (LADRC) is applied for the voltage-
controlled inverter, the discrete period and the measurement noise limits the observer bandwidth,
which affects the anti-disturbance performance of the system. This results in a poor ability to deal
with the output voltage fluctuation under the load switch. In this paper, a novel LADRC strategy
based on the known disturbance compensation is proposed for the voltage-controlled inverters.
Firstly, the original LADRC scheme is designed. The dynamic performance and robustness of the
system are analyzed by a root locus diagram, and the anti-disturbance ability is studied through
amplitude-frequency characteristics. Then the partial model information and the load current are
treated as the known disturbance and introduced to the linear extended state observer (LESO) to
improve observation accuracy. The difference in anti-disturbance performance with the original
scheme is compared and the stability of the LESO and LADRC is analyzed. Finally, the effectiveness
of the proposed scheme is verified by the simulation and experimental results.

Keywords: linear active disturbance rejection control (LADRC); voltage-controlled inverter; linear
extended state observer (LESO); model information; load current; anti-disturbance ability

1. Introduction

Microgrids (MGs) can efficiently integrate the distributed energy resources (DERs)
and improve the penetration of renewable energy sources (RES) [1]. RES is connected to the
grid or load through an interface inverter, so the inverter control is critical [2,3]. In terms
of the power converters operation, which is a vital part of MGs, interface inverters are
generally categorized into three classes: grid-forming, grid-supporting, and grid-feeding
inverter [4,5]. Among them, the grid-forming and grid-supporting inverters can act as
the voltage-controlled inverter (VCI) and provide voltage and frequency support for the
islanded MG, but they have different control strategies and purposes.

The grid-forming inverter usually operates with a fixed amplitude and frequency. In
this case, the voltage control design focuses on rejecting the load disturbance and reducing
voltage distortion under a nonlinear load. For grid-supporting applications, the voltage
and the current loop are always regarded as the inner loop, and the outer power loop can
control the power flow by adjusting the reference voltage of the inner voltage loop. Thus,
the voltage tracking ability is important for the grid-supporting inverters [6].

The voltage control of the inverter plays a vital role in MG operation. Several control
techniques have been implemented to achieve the high-performance voltage tracking
of the inverters. The traditional dual-loop proportional-integral (PI) control with pulse
width modulation (PWM) is widely applied because of the simple structure and easy
implementation [7], but the performance of the PI controller is not always satisfactory under
parameter perturbation. The dead-beat controller (DB) can realize a fast-transient response,
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but its efficiency degrades under system uncertainties and parameter disturbances [8].
A proportional resonant (PR) control method is used in the αβ frame to reduce the total
harmonic distortion (THD) of the output voltage by the multi-resonant frequency [9,10],
but it is sensitive to the variation in frequency and the necessity of accurate tuning. The
repetitive control (RC) method has been designed to suppress repetitive disturbances,
but the response is slow [11]. Therefore, RC and PI controllers are usually integrated to
improve response speed [12]. A model predictive control algorithm is proposed in [13], in
which a novel discrete inverter model is utilized to predict the controlled variables, and the
robustness of the system is enhanced, but it needs accurate model information and has high
requirements for processor performance. The sliding mode control is a robust method, but
the chattering problem in digital implementation is unavoidable [14]. The passivity-based
control method has the advantages of globally asymptotical stability and strong robustness,
but there exists a steady-state error in the case of parameter perturbation [15,16].

As a nonlinear control strategy, active disturbance rejection control (ADRC), proposed
by Han, in which the generalized total disturbance can be estimated by the extended
state observer (ESO), has received increasing attention in recent years [17]. Therefore, the
disturbance effects have been eliminated by the state error feedback (SEF). Furthermore, a
linear framework of the ADRC (LADRC) has been introduced in [18], which employs a
linear ESO (LESO) and a linear SEF (LSEF) for easy implementation and analysis.

ADRC has found various applications in inverter controls. In terms of the grid-
connected inverter current control, the Pade approximation is used to reduce the plant order,
and a first-order LADRC is applied to deal with parameter variation and disturbances [19].
The coupling between the dq axis is regarded as a part of the total disturbance and is
observed by LESO, so the inner current loop is decoupled in [20]. The derivative of the
reference signal is added into LSEF, so the voltage steady-state error is reduced [21]. In the
aspect of the virtual synchronous generator (VSG) control, the LADRC is designed based
on VSG to transmit active power to the grid without overshot [22]. Similarly, an unbalanced
grid and the random disturbance are considered in [23]. LADRC and nonlinear ADRC
(NADRC) are successfully applied to PLL, pre-synchronization, and power decoupling
strategy in [24]. In the aspect of the inverter voltage control, the first-order differential
signal of the voltage reference is introduced into the original LSEF [25], and the bandwidth
is effectively increased. The filter capacitor current is measured to obtain the voltage error
derivative indirectly in [26], so the observation performance of ESO could be significantly
improved. In other aspects, such as the active power filter [27] and solid oxide fuel cell
power plant [28], the ADRC has been successfully applied.

Inspired by the above cases, a LADRC-based voltage control strategy is applied for
the VCI in this paper. The bandwidth of the proposed LADRC controller has a great impact
on the dynamic performance of the control system. The higher bandwidth leads to better
anti-disturbance performance but more sensitivity to the measurement noise. An improved
LADRC scheme based on known disturbance compensation is proposed. The partial model
information and load current are treated as the known disturbance and introduced to the
LESO to improve observation accuracy, then the LSEF is redesigned to eliminate the effects
of the known disturbance.

The rest of this paper is organized as follows. Section 2 describes the inverter model in
the dq synchronous reference frame (SRF), designs the original LADRC-based voltage loop,
and analyzes the influence of the parameters. Section 3 presents the known disturbance
compensation scheme, compares the differences with the original scheme, and analyzes
the stability. Section 4 gives the discretization method of the observer and controller, then
verifies the effectiveness of the proposed scheme by simulation and experimental results.
Section 5 concludes this paper and draws future work directions.

2. Modeling and Control of Inverters

A typical topology and control structure of the three-phase voltage-controlled MG
inverter is shown in Figure 1. The application control layer realizes the droop control or VSG
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control, generates the amplitude reference, Eref, and frequency reference, ωref, according to
different control targets. The voltage control layer then tracks the instantaneous reference
voltage rapidly in the SRF and adjusts the output impedance. The PWM algorithm is used
to generate the driving signals of the switching devices.
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Figure 1. Topology and control structure of the three-phase voltage-controlled MG inverter. 
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Fast and stable voltage control is the guarantee of reliable operation of the inverter.
As the lower control layer, the inner voltage control should achieve a zero-dynamic voltage
control [6]. This paper focuses on the inner voltage control; the application control layer is
not discussed.

The direct current (DC) side is usually equipped with an energy storage system (ESS)
or bus capacitors, and the voltage stabilization control algorithm is adopted to maintain a
constant bus voltage, Vdc; ea,b,c is the voltage of the inverter side; and ua,b,c and ioa,b,c are
the output voltage and current of the inverter. The LC filter includes the filter inductor, Ls,
equivalent series resistance, Rs, and the filter capacitor, Cf; iLa,b,c and iCa,b,c represent the
current of the filter inductor and capacitor. Lg and Rg are line impedances; i∗dq is the output
of the voltage loop and e∗dq is the output of the current loop; local loads are paralleled on
the point of common coupling (PCC).

2.1. Inverter Modelling in SRF

According to Figure 1, the mathematical model of the three-phase inverter with an LC
filter is given in the SRF [3]:

Ls
d
dt

(
iLd
iLq

)
=

(
−Rs ω1Ls
−ω1Ls −Rs

)(
iLd
iLq

)
+

(
ed
eq

)
−
(

ud
uq

)
Cf

d
dt

(
ud
uq

)
=

(
iLd
iLq

)
−
(

iod
ioq

)
+ ω1Cf

(
0 1
−1 0

)(
ud
uq

) (1)

where ed, eq, ud, and uq are the d-axis and q-axis components of ea,b,c and ua,b,c; iLd, iLq, iod,
and ioq are the d-axis and q-axis components of iLa,b,c and ioa,b,c; and ω1 = 2π f1 ( f1 = 50 Hz
in this study) is the fundamental frequency of the output voltage.

The inverter model in the SRF is obtained by Laplace transformation of (1), as shown in
Figure 2, where s represents the Laplace transform operator and the superscript * represents
the reference value of the variable.

Ed(s)−Ud(s) = Ls ILd(s)s + Rs ILd(s)−ω1Ls ILq(s)
Eq(s)−Uq(s) = Ls ILq(s)s + Rs ILq(s) + ω1Ls ILd(s)

CfUd(s)s = ILd(s)− Iod(s) + ω1CfUq(s)
CfUq(s)s = ILq(s)− Ioq(s)−ω1CfUd(s)

(2)
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2.2. Structure of LADRC-Based Voltage Loop

The voltage controller scheme based on LADRC is shown in Figure 2. A dual-loop
control (DLC) structure is used. The inner current loop is utilized to control the inductor
current with the PI-based regulator, and the outer voltage loop is used to control the
capacitor voltage with the LADRC-based regulator.

To simplify the analysis, the delay caused by sampling and calculation is ignored. The
PWM inverter gain KPWM = 1, so e∗d,q ≈ ed,q. To improve the response speed, the current
loop uses a proportional controller with a gain of Kpi. The current loop regulator is:{

e∗d = ud +
(
i∗Ld − iLd

)
Kpi −ω1LsiLq

e∗q = uq +
(

i∗Lq − iLq

)
Kpi + ω1LsiLd

(3)

where e∗d and e∗q are the output of the current loop and are compared to the PWM carrier
to generate the switching signal; i∗Ld and i∗Lq are the output of the voltage loop and the
reference of the current loop.

The closed loop transfer function of the current loop is:

ΦI(s) =
ILd
I∗Lq

=
ILq

I∗Lq
=

Kpi

Lss + Rs + Kpi
(4)

Combined with Equations (1) and (3), the voltage loop is designed based on LADRC,
as shown in Figure 2. Ignoring Rs, the controlled object of the outer voltage loop is obtained:( ..

ud..
uq

)
=

Kpi

LsCf

(
i∗Ld
i∗Lq

)
+

(
1 0
0 1

)(
fd
fq

)
(5)

where, fd and fq are the defined disturbance of dq axis respectively,
(

fd
fq

)
= −

Kpi

Ls

(
1 0
0 1

)
( .

ud.
uq

)
−

Kpi

LsCf

(
iod
ioq

)
+

ω1Kpi

Ls

(
0 1
−1 0

)(
ud
uq

)
+

(
0 ω1
−ω1 0

)( .
ud.
uq

)
− 1

Cf

( .
iod.
ioq

)
.

From Figure 2 and Equation (5), the controlled object of the outer voltage loop is a
second-order system, so two second-order LADRC controllers with third-order LESO need
to be designed in the dq axis. The coupling between the dq axis can be regarded as a part of
the total disturbance. Decoupling can be performed through feedforward compensation, so
the controllers of the dq axis can be designed as separate channels with the same structure
as LADRC. Simply take the d axis as an example.

An LADRC comprises LESO and LSEF. Wherein, the total disturbance is expanded
into a new state. Then LESO is adopted to estimate the total disturbance and other state
information. Finally, LSEF integrates all the state information obtained from LESO and
reconstructs the system state equation.
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From Equation (5), the state variables and output are defined as:

x1 = ud, x2 =
.
ud, y = x1 (6)

Then, the following state-space equation can be derived:
.
x1 = x2.
x2 = bu + fd = b0u + (b− b0)u + fd = b0u + f ′d
y = x1

(7)

where u = i∗Ld is the system input and b = Kpi/(LsCf) is the system control gain (CG).
Considering the uncertainty of b, its estimated value b0 is used, which is generally b0 ≈ b;
b0 is often called the compensation factor (CF); f ′d denotes the total disturbance, which
includes external disturbance, internal dynamics, and the estimation error between CG
and CF [29].

By extending f ′d as a separate state, x3, of the system, and assuming that x3 is differen-
tiable with h =

.
x3, then the system model can be represented in state space:
 .

x1.
x2.
x3

 =

 0 1 0
0 0 1
0 0 0

 x1
x2
x3

+

 0
b0
0

u +

 0
0
1

h

y = x1

(8)

The third-order LESO of the system can be designed as: .
z1.
z2.
z3

 =

 −β1 1 0
−β2 0 1
−β3 0 0

 z1
z2
z3

+

 0
b0
0

β1
β2
β3

( u
y

)
(9)

where z1, z2, and z3 are the state variables of LESO. β1, β2, and β3 are the observer gain.
By choosing the appropriate observer gain, the state variables of the system can be

tracked quickly by the LESO in Equation (9), which is z1 → x1 , z2 → x2 , z3 → x3 .
Through taking the Laplace transformation of Equation (9), we have:

 Z1(s)
Z2(s)
Z3(s)

 =

 b0s
b0s2 + b0β1s
−b0β3

β1s2 + β2s + β3
β2s2 + β3s

β3s2

( U(s)
Y(s)

)
s3 + β1s2 + β2s + β3

(10)

To achieve good disturbance rejection, the estimation variable is added into the control
input; LSEF can be designed as:

u =
u0 − z3

b0
=

kp(r− z1)− kdz2 − z3

b0
(11)

where kp and kd are gains of LSEF, u0 is the intermediate variable, and r = u∗d is the
reference input.

If the LESO is reliable and the estimation error of CG is negligible, then z1 → y ,
z2 →

.
y , z3 → f ′d , and b0 = b. According to Equations (7) and (11), the closed-loop transfer

function of the system can be deduced:

Y(s)
R(s)

=
kp

s2 + kds + kp
(12)
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Combining Equations (10) and (12), the characteristic Equation of LESO and the
closed-loop transfer function are:{

λLESO = s3 + β1s2 + β2s + β3 = 0
λcl = s2 + kds + kp = 0

(13)

According to the parameterization technique proposed [18], the eigenvalues of the
LESO and the closed-loop transfer function can be located at−ωo and−ωc. Then, ωo is the
bandwidth of the LESO and ωc is the bandwidth of the controller in LADRC. The tuning
details are given by: {

β1 = 3ωo, β2 = 3ω2
o, β3 = ω3

o
kp = ω2

c , kd = 2ωc
(14)

With the above configuration, the dynamic performance of the system is dependent on
only two parameters, which are the controller bandwidth, ωc, and the observer bandwidth,
ωo. With appropriate bandwidth parameters, the system can track the reference input
without overshoot.

The design process of the outer voltage loop controller based on LADRC in the d-axis
is completed, including Equations (9), (11), and (14). The simplified structure of the original
LADRC-based controller is shown in Figure 3. The controller in the q axis can be designed
regarding the d axis and will not be described in detail.
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where pk  and 
dk  are gains of LSEF, 

0u  is the intermediate variable, and *
dr u=  is the 

reference input. 
If the LESO is reliable and the estimation error of CG is negligible, then 
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2z y→  , '
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0b b= . According to Equations (7) and (11), the closed-loop transfer 
function of the system can be deduced: 
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Combining Equations (10) and (12), the characteristic Equation of LESO and the 
closed-loop transfer function are: 
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According to the parameterization technique proposed [18], the eigenvalues of the 
LESO and the closed-loop transfer function can be located at 

oω−  and 
cω− . Then, 

oω  
is the bandwidth of the LESO and 

cω  is the bandwidth of the controller in LADRC. The 
tuning details are given by: 
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With the above configuration, the dynamic performance of the system is dependent 
on only two parameters, which are the controller bandwidth, 

cω , and the observer band-
width, 

oω . With appropriate bandwidth parameters, the system can track the reference 
input without overshoot. 

The design process of the outer voltage loop controller based on LADRC in the d-axis 
is completed, including Equations (9), (11), and (14). The simplified structure of the origi-
nal LADRC-based controller is shown in Figure 3. The controller in the q axis can be de-
signed regarding the d axis and will not be described in detail. 
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Figure 3. Structure of original LADRC-based voltage control scheme.

2.3. Influence of Observer Bandwidth and Compensation Factor

After designing the LADRC-based voltage loop completely, the next step is tuning
the parameters to satisfy the requirements of stability and dynamic performance in the
system; ωc is chosen by the requirements of dynamic performance and is generally not an
adjustable parameter.

Affected by discrete period and measurement noise, there exists a trade-off between
observation accuracy and noise rejection ability when choosing ωo. Furthermore, CG in
the actual system is hard to obtain. It can be seen from Equation (7) that the selection of Kpi
and the perturbation of some parameters, such as inductance and capacitance, will also
lead to deviation from the theoretical value, resulting in b0 6= b. Therefore, it is essential
and important to study the influence of CF and ωo on system stability, anti-disturbance,
and noise rejection ability.

According to Equations (10) and (14), and considering the system model (7) and the
measurement noise n(t), the control structure of LADRC can be simplified, as shown in
Figure 4. The control input of the system is:

U(s) =
G1

b0

(
kpR(s)− H(s)(Y(s) + N(s))

)
(15)

where R(s), Y(s), and N(s) are the Laplace transformation of r, y, and n, and

G1(s) =
s3+β1s2+β2s+β3

s3+(β1+kd)s2+(β1kd+β2+kp)s
, H(s) = (kpβ1+kdβ2+β3)s2+(kpβ2+kdβ3)s+kpβ3

s3+β1s2+β2s+β3
.
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Figure 4. Simplified structure of the second-order LADRC.

Let ρ = b0/b, which represents the ratio of CF to CG. The output of the system is:

Y(s) = Φr(s)R(s) + ΦdFd(s)−Φn(s)N(s) (16)

where Φr(s) =
kpG1

ρs2+G1 H , Φd(s) =
ρ

ρs2+G1 H , Φn(s) = G1 H
ρs2+G1 H .

From Equation (16), the system output consists of a tracking term, a disturbance term,
and a measurement noise term; ωo, ωc, and ρ are related to the system’s stability, dynamic
performance, anti-disturbance, and noise rejection ability. In order to study the observer
bandwidth constraints and the influence of CF, the amplitude-frequency characteristics
(called Bode diagram) and root locus diagram are adopted respectively in this subsection.

The Bode diagram of the transfer function Φr(s) with different ωc has been studied
in [19–22,25,26], so they are not mentioned in this paper. The Bode diagrams of the transfer
function Φd(s) and Φn(s) are given in Figure 5, where ρ = 1 and ωc = 2000 rad/s. It can
be seen that increasing ωo can reduce the low-frequency gain of Φd(s), which can enhance
the system’s anti-disturbance ability. On the contrary, the high-frequency gain of Φn(s) is
increased, so the system becomes more sensitive to the measurement noise. Thus, there is a
trade-off between anti-disturbance and noise rejection ability when choosing ωo.
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In Equation (16), ρ does not affect the closed-loop zero position; only affecting the
pole position, so a root locus diagram is adopted to analyze the dynamic performance and
robustness of ρ. To obtain better observation accuracy, ωo is generally chosen between
2 ωc to 10 ωc [30]. Let ωo = 4ωc = 8000 rad/s; the root locus with different ρ is shown in
Figure 6. The yellow area represents the unstable regions caused by the right-half-plane
poles. The solid arrow represents the pole change when ρ increases from 0 to 1, while the
dashed arrow represents the situation when ρ increases from 1 to infinity.

In Figure 6, it can be seen that:

1. When ρ = 1, the poles are located at points A and C on the real axis, corresponding to
ωo and ωc, and the system has no overshoot and a short settling time;

2. When ρ changes from 0 to infinite, if ρ is smaller than 1.02 (point D), or greater than
5.24 (point E), the system will be unstable. The range of ρ that makes the system
stable is listed in Table 1. As ωo increases, the stable range of ρ is expanded.

3. When ρ increases from 0 to 1, poles enter the stable regions and approach point A and
C. Poles λ1, λ2, and λ3 are closer to the imaginary axis, so are marked as dominant
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poles. With ρ increasing, λ1 and λ2 gradually move away from the imaginary axis
and approach the real axis, so the response time and overshoot decreases and the
damping increases.

4. When ρ increases from 1 to 1.02 (point B), λ1, λ2, and λ3 are on the real axis and
there is no overshoot in response. When they continue to increase, poles approach
the imaginary axis, and the damping becomes smaller. This shows that the response
becomes slower, and there is both overshoot and damped oscillation, then poles cross
the negative half axis, and the system becomes unstable.
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Table 1. Stable range of ρ with different ωo and ωc.

ωc (rad/s) ωo (rad/s) Ratio of ωo to ωc Stable Range of ρ

2000 4000 2 0.247~4.11
2000 8000 4 0.208~5.24
2000 12,000 6 0.185~6.51

3. Known Disturbance Compensation Scheme

The observation accuracy of LESO directly affects the performance of LADRC. To
enhance the anti-disturbance ability of the inverter system, a simple way is to increase the
bandwidth of the LESO. Consequently, a better ability will be obtained to deal with the
voltage fluctuation under the load switch. However, ωo is limited by the discrete period
and measurement noise.

3.1. Design of Proposed Scheme

An improved LADRC scheme based on the known disturbance compensation is
proposed in this paper, as shown in Figure 7. The known disturbance consists of model
information and load current.

According to Equation (7), the d-axis component of the plant can be rewritten as:

..
y = b0u + f ′d = b0u−m0

.
y− b0iod + gd (17)

where m0 = Kpi/Ls and −m0
.
y is the model information; −b0iod represents load current

disturbance. The remaining disturbances, gd = ω1m0uq + ω1u2
q −

.
iod/Cf + (b− b0)u, are

part of f ′d, and f ′d = −m0
.
y− b0iod + gd.
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The system model (8) can be rewritten as .
x1.
x2.
x3

 =

 0 1 0
0 −m0 1
0 0 0

 x1
x2
x3

+

 0
b0
0

(u− iod) +

 0
0
1

h′ (18)

where h′ is the differential of gd.
Different from the original LADRC, the system state matrix is changed because of

introducing model information, and the LESO is designed as: .
z1.
z2.
z3

 =

 −β1 1 0
−β2 −m0 1
−β3 0 0

 z1
z2
z3

+

 0
b0
0

β1
β2
β3

( u′

y

)
(19)

where u′ = u− iod. Note that z3 is the estimated value of gd instead of f ′d.
Then, taking the Laplace transformation of Equation (19), we have:

 Z1(s)
Z2(s)
Z3(s)

 =

 b0s
b0s2 + b0β1s
−b0β3

β1s2 + (β2 + m0β1)s + β3
β2s2 + β3s

β3s(s + m0)

( U′(s)
Y(s)

)
s3 + (m0 + β1)s2 + (m0β1 + β2)s + β3

(20)

So the closed-loop poles of the observer (20) are at the roots of:

λe = s3 + (m0 + β1)s2 + (m0β1 + β2)s + β3 = 0 (21)

After parameterization, the poles are allocated at the same position, −ωo. Then LESO
gains are, respectively:

m0 + β1 = 3ωo
m0β1 + β2 = 3ω2

o
β3 = ω3

o

⇔


β1 = 3ωo −m0
β2 = 3ω2

o − 3m0ωo + m2
0

β3 = ω3
o

(22)

The load current can be compensated by feedforward, then the LSEF is changed to:

u =
u0 − (z3 −m0z2 − b0iod)

b0
=

kp(r− z1)− kdz2 − (z3 −m0z2 − b0iod)

b0
(23)



Electronics 2021, 10, 1137 10 of 19

3.2. Analysis of the Proposed Scheme

According to Equations (20) and (23), the control structure of LADRC can be simplified,
as shown in Figure 8, in which fld = fd − biod. The control input of the system is:

U′(s) =
G1

b0

(
kpR(s)− H(s)(Y(s) + N(s))

)
(24)

where G1(s) =
λe

s3+(β1+kd)s2+(β1kd+β2+kp)s
,

H(s) = (kpβ1+(kd−m0)β2+β3)s2+(m0kpβ1+kpβ2+kdβ3)s+kpβ3
λe

.
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So the output of the system is:

Y(s) = Φr(s)R(s) + ΦdFld(s)−Φn(s)n(s) (25)

where Φr(s) =
kpG1

ρs2+G1 H , Φd(s) =
ρ

ρs2+G1 H , Φn(s) = G1 H
ρs2+G1 H .

As seen in Figure 9a, the proposed LADRC scheme has a smaller low-frequency gain
than the original LADRC scheme, so the proposed LADRC has better anti-disturbance
performance and a stronger ability to restraint input disturbance than the original LADRC
in the low-frequency band. Similarly, the proposed LADRC has better noise rejection
performance because of the lower high-frequency gain in Figure 9b.
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3.3. Stability Analysis

Let e = (e1, e2, e3)
T , in which e1 = x1 − z1, e2 = x2 − z2, and e3 = x3 − z3 represent

the estimation error of LESO. According to Equations (18) and (19), the estimation error is:
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.
e = A2e + Eh′ (26)

where A2 = A− LC.

Theorem 1. Assuming that h′ is bounded, namely |h′| ≤ M1(M1 > 0), such that there exists a
LESO that can make the estimation error boundary and ‖e‖ ≤ M2(M2 > 0).

Proof. Choosing 0 < λ1 < λ2 < λ3 to make:

|sI− A2| =
3

∏
i=1

(s + λi) (27)

Then there exists a reversible real matrix T that makes:

A2 = Tdiag{−λ1,−λ2,−λ3}T−1 (28)

So:
exp(A2t) = Tdiag{exp(−λ1t), exp(−λ2t), exp(−λ3t)}T−1 (29)

And ∀t > 0, ‖·‖m∞
is used in Equation (29), so:

‖exp(A2t)‖m∞
≤ ‖T‖m∞

‖T−1‖m∞
exp(−λ1t) ≤ δ exp(−λ1t) (30)

where δ is a constant.
Solving Equation (26), the:

e(t) = exp(A2t)e(0) +
∫ t

0
exp(A2(t− τ))Eh′dτ (31)

Considering the compatibility of ‖·‖m∞
and ‖·‖2 in the complex field, then:

‖e(t)‖ ≤ ‖exp(A2t)e(0)‖+ ‖
∫ t

0 exp(A2(t− τ))Eh′dτ‖
≤ ‖exp(A2t)‖m∞

‖e(0)‖+
∫ t

0 ‖exp(A2(t− τ))‖m∞
‖E‖‖h′‖dτ

≤ δ‖e(0)‖ exp(−λ1t) + M1δ
λ1

(1− exp(−λ1t))
≤ δ‖e(0)‖+ M1δ

λ1
= M2

(32)

This shows that the estimation error of LESO can converge to a small boundary with-
out an accurate mathematical model. As the observer bandwidth increases, the boundary
decreases, and the estimation accuracy improves.

From Figure 8 and Equations (22) and (24), the closed-loop transfer function of the
system is:

Φr(s) =
Y(s)
R(s)

=
kpG1

ρs2 + G1H
=

kp
(
s3 + (m0 + β1)s2 + (m0β1 + β2)s + β3

)
a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

(33)

where



a5 = ρ
a4 = ρ(kd + β1)
a3 = ρ

(
kp + β2 + kdβ1

)
a2 = β3 −m0β2 + kdβ2 + kpβ1
a1 = kdβ3 + kpβ2 + m0kpβ1
a0 = kpβ3

.

The Lienard–Chipard criterion can be applied to judge whether the system is stable
or not. The necessary and sufficient condition for stability is that the coefficients of the
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characteristic equation and each odd (or even) order Hurwitz determinant are greater than
zero separately. Therefore, the stability condition of the system can be simplified as:

∆5 = (a4a3 − a5a2)(a2a1 − a3a0)− (a4a1 − a5a0)
2 > 0 (34)

In Equations (22) and (33), β1, β2, β3, m0 are related to ωo, and kp, kd are related to ωc.
Thus, the stability of the system can be guaranteed by selecting an appropriate ωo and ωc
according to the restriction conditions in Equation (34). �

3.4. Load Current Estimator

By introducing load current information, the influence of load current disturbance can
be decreased. Therefore, the voltage drops during the load switch can be reduced. Conse-
quently, the anti-disturbance ability of inverters can be significantly improved. However,
the load current sensors undoubtedly increase the cost. As an alternate method, a load
current estimation method is proposed that does not require current sensors.

In practice, the derivation of capacitor voltage with a low-pass filter (LPF) is used to
estimate the load current, but it needs the differential signals of the voltage. The observer,
such as a disturbance observer [31] or sliding mode observer [32], is also an effective
method to obtain the load current, but it needs to be designed separately, increasing the
system complexity. In this paper, the LESO observation state is used to simplify the design
of load current observation.

According to Equations (1) and (9), observation values of load current îod(s) can be
obtained by: {

îod = iLd − Cfz2d + ω1Cfz1q
îoq = iLq − Cfz2q −ω1Cfz1d

(35)

where, iLd can be obtained from current sensors; z1d, z1q, z2d, and z2q are the output of the
LESO in Equation (20).

From the analysis in reference [33], the state matrix of LESO in Equation (20) can be
Hurwitz when the appropriate observer bandwidth is taken. Therefore, the estimation
error can converge to zero in a finite time, T1 > 0. That is z1d → ud , z1q → uq , z2d →

.
ud ,

and z2q →
.
uq . Hence, the load current can be estimated by (35).

In addition, the estimated load current is introduced to LESO and subtracted in LESF.
After simplification, the estimated load current can be regarded as perturbations outside
the forward channel, as shown in Figure 8. Then the estimation error of the load current
will be reflected in the total disturbance and does not affect the stability of the system.

4. Simulation and Experimental Verification

In the proposed scheme, the model information belongs to internal disturbance and
cannot be changed independently, while the load disturbance belongs to external dis-
turbance and can be controlled by increasing or decreasing the load. Thus the reference
step simulation and experiment of capacitor voltage under no-load condition has been
carried out to validate the feasibility of the model information compensation scheme. The
voltage tracking capability is compared with the original LADRC scheme, in which the
load current is 0, so only the model information compensation scheme works. During
load switching, the load current dominates the total disturbance and the proportion of the
model information disturbance is small. Thus the load switch simulation and experiment
have been carried out to validate the feasibility of the load current compensation scheme,
and the voltage drop is used to evaluate the ability to suppress the load disturbance.

4.1. Discretization of LESO

In simulation and experiment, the proposed scheme was discretized with the bilinear
transformation method (BTM), and the discrete period equals the sampling period, Ts.



Electronics 2021, 10, 1137 13 of 19

In the system model (18), let:

A =

 0 1 0
0 −m0 1
0 0 0

, B =

 0
b0
0

, C = (1, 0, 0) (36)

So the LESO with the proposed scheme (19) can be rewritten as:

.
Z = (A− LC)Z + Bu′ + Ly (37)

For the convenience of digital implementation, only the LESO is discretized using
BTM, and we have:

Z(k + 1) = ΦX(k) + Γu′(k) + ΘY(k) (38)

where, Φ =
(

I + (A−LC)Ts
2

)(
I − (A−LC)Ts

2

)−1
, Γ =

(
I − (A−LC)Ts

2

)−1
B
√

Ts,

Θ =
(

I − (A−LC)Ts
2

)−1
L
√

Ts, and L = (β1, β2, β3)
T is the observer gain matrix.

For tuning simply, the poles of the desired discrete LESO characteristic equation are
placed at −β, where β = e−ωoTs . Then the desired characteristic polynomial is

λ(z) = |zI −Φ| = (z− β)3 (39)

So the observer gain L can be derived:

L =

(
−m0 −

6β− 6
Ts(β + 1)

Ts
2m2

0(β + 1)2 + 6Tsm0(β2 − 1) + 12(β− 1)2

Ts2(β + 1)2 − 8(β− 1)3

Ts3(β + 1)3

)T

(40)

Then the discrete form of LESO can be obtained by substituting Formula (40) into
Formula (38). The discrete implementation of LSEF (23) is:

u′(k) =
kp(r(k)− z1(k))− kdz2(k)− (z3(k)−m0z2(k)− b0iod(k))

b0
(41)

4.2. Simulation Results

The simulation model was first established through MATLAB/Simulink. Table 2 lists
the key parameters of the inverter and controller in simulation. To verify the feasibility
of the proposed scheme, the original LADRC (marked as OL) scheme, the only model
information compensation (marked as MC) scheme, the only load current compensation
(marked as LC) scheme, the proposed (MC and LC, marked as PS) scheme, and the
estimated load current scheme with model information (marked as ES) were studied.

Table 2. Key parameters of inverter and controller in simulation.

Symbol Quantity Value

Vdc DC bus voltage 300 V
Ls Filter inductor 3.0 mH
Rs Inductor resistor 0.16 Ω
Cf Filter capacitor 14 µF
fsw Switching frequency 10 kHz
Ts Sampling period 100 µs

Vp/ fn Voltage amplitude/frequency 120 V/50 Hz
Kpi The gain in the current loop 18.8
ωc Controller bandwidth in LADRC 3142 rad/s
ωo Observer bandwidth in LADRC 10,472 rad/s

The simulation process is as follows: 0–0.1 s; the reference voltage linearly increases
from 0 to 60 V and remains 60 V until 0.1 s, then steps to 120 V at 0.185 s and remains
120 V until the end of the simulation. The resistive loads (20 Ω per phase) are added at
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0.305 s. The deviation of 5 ms is to ensure that the reference change and load switch are at
the approximately maximum of the A-phase voltage.

The simulation results of the OL, MC, LC, and PS schemes are shown in Figure 10. Un-
der the no-load condition, the load current is 0, so the LC scheme did not work. Therefore,
the OL and LC curves are approximately coincident, the same as theMC and PS curves. In
Figure 10a, four schemes can track the reference voltage well, but the OL and LC schemes
have obvious voltage overshoot (132.04 V) when the reference voltage steps at 0.185 s. The
MC scheme can effectively improve the dynamic performance at the reference tracking,
and the voltage overshoot is reduced to 123.18 V.
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Figure 10. Simulation results: (a) Reference steps at 0.185 s; (b) Adding load at 0.305 s.

During load switching, load current disturbance is dominant in the total disturbance,
so the LC scheme has better anti-disturbance performance than the MC scheme, as shown
in Figure 10b. The comparison of the voltage drop and settling time between different
schemes is listed in Table 3. The MC scheme has little effect on the load switch. On the
other hand, the LC scheme can effectively reduce voltage drops and settling time when the
load switches. Therefore, the proposed scheme can well combine the advantages of the
two schemes.

Table 3. Simulation results of the voltage drop and settling time between different schemes.

Schemes Voltage Drop (V) Voltage Maximum (V) Settling Time (ms)

OL 48.47 19
MC 51.51 21
LC 99.62 130.62 8
PS 97.86 128.79 7

The simulation results of the PS and ES schemes are shown in Figure 11. Both schemes
can reduce voltage drop when loads switch. The voltage error between the ES and PS
schemes is less than 6 V, and is less than 0.4 V at the steady-state. The d-axis load current
can be estimated in real time and stabilized in 2 ms, as shown in Figure 11b. The maximum
estimation error is lower than 2.6 A when the loadis switched, and is less than 0.02 A at the
steady-state.

THD (%) values under different schemes in the simulation are listed in Table 4. Under
no-load conditions, the MC, PS, and ES schemes can reduce the THD to 0.23% and 0.35%,
while LC has little effects because there is no load current. Under full load conditions,
although the voltage drop decreases because of the load current feedforward, the voltage
THD in the steady-state increases because delays caused by sampling and filtering result in
incomplete compensation of the load current. The THD values of the ES scheme are close
to the PS scheme because of the small estimation error, as shown in Figure 11.
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Figure 11. Simulation comparisons between PS and ES schemes under load switching. (a) Voltage amplitude; (b) D-axis
load current and estimated value after adding load.

Table 4. THD (%) values under different schemes in the simulation.

Schemes No Load (60 V) No Load (120 V) Full Load (120 V)

OL 0.26 0.39 0.21
MC 0.23 0.34 0.18
LC 0.26 0.39 0.42
PS 0.23 0.35 0.34
ES 0.24 0.35 0.36

4.3. Experiment Results

The experimental platform is shown in Figure 12. It is comprised of an LC-filtered
three-phase inverter, the DC power supply, and linear load. The DC bus is replaced by
a 300 V/20 A DC power supply. A TI LaunchPad 28379D board was used to implement
the control algorithm. The switching frequency of the IGBT module is set to 10 kHz, and
the dead time is 2.6 µs. The sampling period is 100 µs. TBC10SYW and TBV10/25A are
applied to measure the three-phase current and voltage. A Tektronix A622 current probe is
used to measure the A-phase load current. In the actual system, the measurement noise is
worse, so ωo = 7854 rad/s and ωc = 2094 rad/s, less than the values in the simulation.
Other parameters are listed in Table 2.
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Figure 12. Experimental platform. 1© DC power supply; 2© Control power source; 3© Inverter bridge;
4© LC filters, sensors, and DSP; 5© Loads; 6© Oscilloscope; 7© Computer.

Figure 13 shows the experimental results of the capacitor voltage with different
schemes under no load, in which the amplitude of the reference voltage rises to 120 V from
60 V. The load current is 0, so only MC works. LC and ES schemes are not presented here.
The system can remain stable before and after the reference steps with both schemes.
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Figure 13. Experimental results under the reference voltage change: (a) Original LADRC scheme; (b) Proposed scheme.

As shown in Figure 14, the voltage of the OL and PS schemes track well the reference
voltage, 60 V and 120 V, and can recover within 4 ms, but the overshoot of the OL scheme
is up to 134 V, which is greater than the PS scheme. The amplitude of the capacitor voltage
is calculated from

√
−4(vavb + vbvc + vcva)/3, where vi(i = a, b, c) represents the i-phase

voltage sampled by the oscilloscope.
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In the case of load switching (adding 20 Ω resistor per phase), the load current changes
dramatically, so the instantaneous total disturbance is too large. In order to avoid the system
divergence caused by control saturation, a saturation module is added after z2 and z3. The
experimental results of the capacitor voltage and the A-phase load current are shown in
Figure 15. Due to a lack of known disturbance compensation, the observation accuracy is
limited. After adding the load, the voltage cannot be recovered within one period with the
OL scheme, and the voltage drops to 74.4 V when the load switches. With the PS scheme,
the voltage drops to 89.6 V and can recover within 4 ms with no overshoot. Similar to the
PS scheme, the voltage drops to 90.2 V and recovers within 10 ms with the ES scheme,
which is slower than the PS scheme.

In the experiment, THD (%) values under different schemes are calculated by the
FFT Analysis Tool in Matlab/Simulink, and they are listed in Table 5. Under no-load
conditions, the PS scheme can reduce the THD to 0.85% and 0.89% with model information
compensation. Similar to the simulation results, the output voltage quality was worse with
the PS scheme, and the THD was 1.86%, higher than the OL scheme, 1.67%. Additionally,
the voltage THD under full load conditions was 1.67%, higher than the no-load conditions
(1.25% and 1.38%); this may be caused by control saturation because of the slower response,
as shown in Figure 15a. Under full-load conditions, the THD value with the ES scheme
is 1.96%, which is 0.1% different from the PS scheme, and the difference under no-load
conditions is 0.05%. So the estimation error of the load current affects the voltage quality.



Electronics 2021, 10, 1137 17 of 19

Electronics 2021, 10, x FOR PEER REVIEW 18 of 21 
 

 

In the case of load switching (adding 20 Ω resistor per phase), the load current 
changes dramatically, so the instantaneous total disturbance is too large. In order to avoid 
the system divergence caused by control saturation, a saturation module is added after 

2z  and 3z . The experimental results of the capacitor voltage and the A-phase load cur-
rent are shown in Figure 15. Due to a lack of known disturbance compensation, the obser-
vation accuracy is limited. After adding the load, the voltage cannot be recovered within 
one period with the OL scheme, and the voltage drops to 74.4 V when the load switches. 
With the PS scheme, the voltage drops to 89.6 V and can recover within 4 ms with no 
overshoot. Similar to the PS scheme, the voltage drops to 90.2 V and recovers within 10 
ms with the ES scheme, which is slower than the PS scheme. 

ua ub uc

ioaV
ol

ta
ge

 (5
0V

/d
iv

) C
urrent (5A

/div)

Time (5ms/div)
 

ua ub uc

ioaV
ol

ta
ge

 (5
0V

/d
iv

) C
urrent (5A

/div)

Time (5ms/div)
 

(a) (b) 

ua ub uc

ioa

V
ol

ta
ge

 (5
0V

/d
iv

) C
urrent (5A

/div)

Time (5ms/div)
 

-0.02 0 0.02 0.04 0.06 0.08

80

90

100

110

120

130

OL

ES

PS

Vm
/ V

Time (s)  
(c) (d) 

Figure 15. Experimental results under load switching. (a) Original LADRC scheme; (b) Proposed scheme; (c) Estimated 
load current scheme; (d) Amplitude of different schemes. 

In the experiment, THD (%) values under different schemes are calculated by the FFT 
Analysis Tool in Matlab/Simulink, and they are listed in Table 5. Under no-load condi-
tions, the PS scheme can reduce the THD to 0.85% and 0.89% with model information 
compensation. Similar to the simulation results, the output voltage quality was worse 
with the PS scheme, and the THD was 1.86%, higher than the OL scheme, 1.67%. Addi-
tionally, the voltage THD under full load conditions was 1.67%, higher than the no-load 
conditions (1.25% and 1.38%); this may be caused by control saturation because of the 
slower response, as shown in Figure 15a. Under full-load conditions, the THD value with 
the ES scheme is 1.96%, which is 0.1% different from the PS scheme, and the difference 
under no-load conditions is 0.05%. So the estimation error of the load current affects the 
voltage quality. 

  

Figure 15. Experimental results under load switching. (a) Original LADRC scheme; (b) Proposed scheme; (c) Estimated
load current scheme; (d) Amplitude of different schemes.

Table 5. THD (%) values under different schemes in the experiment.

Schemes No Load (60 V) No Load (120 V) Full Load (120 V)

OL 1.25 1.38 1.67
PS 0.85 0.89 1.86
ES 0.88 0.94 1.96

5. Conclusions

A LADRC-based voltage control strategy with known disturbance compensation is
proposed for voltage-controlled inverters based on a dual-loop structure. The compromise
between the anti-disturbance and noise rejection ability is studied. The constraint of the
observer bandwidth affects the anti-disturbance ability, so the model information and load
current are regarded as the known disturbance and introduced into the LESO to further
enhance the anti-disturbance ability. The comparison between original and proposed
LADRC schemes is then provided by the frequency domain response. Furthermore, the
stability of the proposed LESO and LADRC is analyzed. For saving the current sensors, an
estimated load current feedforward scheme is also mentioned. The theoretical analysis,
simulation, and experimental results show that: (1) The model information can effectively
improve the system’s dynamic performance. The overshoot and settling time of the voltage
dynamics is reduced, the same as THD values. (2) The load current compensation can
reduce the voltage drop under the load switch and enhance the anti-disturbance ability.
However, the voltage THD is increased due to the delays introduced by sampling and
filtering. Moreover, as an alternate method, the estimated load current feedforward scheme
does not need load current sensors and has a similar dynamic performance and ability of
voltage drop suppression as the proposed scheme.
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Power quality issues, such as harmonics and unbalanced voltage, have not been
discussed in this paper. In future work, the LADRC strategy will be designed for positive-
sequence, negative-sequence, and selected harmonic voltage controller to improve power
quality. Furthermore, the compensation factor will be designed adaptively according to
the voltage drop or estimation error to further enhance the anti-disturbance ability of
the system.
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Abbreviations

Acronym Definition
LADRC Linear active disturbance rejection control
VCI Voltage-controlled inverter
LESO Linear extended state observer
DERs Distributed energy resources
RES Renewable energy sources
MG Microgrid
PI Proportional-integral
PWM Pulse width modulation
THD Total harmonic distortion
RC Repetitive control
LSEF Linear state error feedback
SRF Synchronous reference frame
PCC Point of common coupling
CG Control gain
CF Compensation factor
LPF Low-pass filter
BTM Bilinear transformation method

References
1. Hosseinzadeh, N.; Aziz, A.; Mahmud, A.; Gargoom, A.; Rabbani, M. Voltage Stability of Power Systems with Renewable-Energy

Inverter-Based Generators: A Review. Electronics 2021, 10, 115. [CrossRef]
2. Arbab-Zavar, B.; Palacios-Garcia, E.; Vasquez, J.; Guerrero, J. Smart Inverters for Microgrid Applications: A Review. Energies 2019,

12, 840. [CrossRef]
3. Hossain, M.A.; Pota, H.R.; Issa, W.; Hossain, M.J. Overview of AC microgrid controls with inverter-interfaced generations.

Energies 2017, 10, 1300. [CrossRef]
4. Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron.

2012, 27, 4734–4749. [CrossRef]
5. Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power

distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766. [CrossRef]
6. Quan, X.; Dou, X.; Wu, Z.; Hu, M.; Song, H.; Huang, A.Q. A Novel Dominant Dynamic Elimination Control for Voltage-Controlled

Inverter. IEEE Trans. Ind. Electron. 2018, 65, 6800–6812. [CrossRef]
7. Dou, C.; Zhang, Z.; Yue, D.; Song, M. Improved droop control based on virtual impedance and virtual power source in low-voltage

microgrid. IET Gener. Transm. Distrib. 2017, 11, 1046–1054. [CrossRef]
8. Buso, S.; Caldognetto, T.; Brandao, D.I. Dead-beat current controller for voltage source converters with improved large-signal

response. IEEE Trans. Ind. Appl. 2015, 52, 1588–1596. [CrossRef]
9. Lim, K.; Choi, J. Seamless Grid Synchronization of a Proportional+Resonant Control-Based Voltage Controller Considering

Non-Linear Loads under Islanded Mode. Energies 2017, 10, 1514. [CrossRef]

http://doi.org/10.3390/electronics10020115
http://doi.org/10.3390/en12050840
http://doi.org/10.3390/en10091300
http://doi.org/10.1109/TPEL.2012.2199334
http://doi.org/10.1016/j.rser.2015.01.016
http://doi.org/10.1109/TIE.2018.2805733
http://doi.org/10.1049/iet-gtd.2016.1492
http://doi.org/10.1109/TIA.2015.2488644
http://doi.org/10.3390/en10101514


Electronics 2021, 10, 1137 19 of 19

10. Komurcugil, H.; Altin, N.; Ozdemir, S.; Sefa, I. Lyapunov-Function and Proportional-Resonant-Based Control Strategy for
Single-Phase Grid-Connected VSI with LCL Filter. IEEE Trans. Ind. Electron. 2016, 63, 2838–2849. [CrossRef]

11. Zhang, M.; Huang, L.; Yao, W.; Lu, Z. Circulating Harmonic Current Elimination of a CPS-PWM-Based Modular Multilevel
Converter With a Plug-In Repetitive Controller. IEEE Trans. Power Electron. 2014, 29, 2083–2097. [CrossRef]

12. Marati, N.; Prasad, D. A Modified Feedback Scheme Suitable for Repetitive Control of Inverter With Nonlinear Load. IEEE Trans.
Power Electron. 2018, 33, 2588–2600. [CrossRef]

13. Yaramasu, V.; Rivera, M.; Narimani, M.; Wu, B.; Rodriguez, J. Model Predictive Approach for a Simple and Effective Load Voltage
Control of Four-Leg Inverter With an Output LC Filter. IEEE Trans. Ind. Electron. 2014, 61, 5259–5270. [CrossRef]

14. Mahdian Dehkordi, N.; Sadati, N.; Hamzeh, M. A backstepping high-order sliding mode voltage control strategy for an islanded
microgrid with harmonic/interharmonic loads. Control Eng. Pract. 2017, 58, 150–160. [CrossRef]

15. Komurcugil, H. Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power
supply inverters. IET Power Electron. 2015, 8, 1558–1570. [CrossRef]

16. Rymarski, Z.; Bernacki, K.; Dyga, Ł.; Davari, P. Davari Passivity-Based Control Design Methodology for UPS Systems. Energies
2019, 12, 4301. [CrossRef]

17. Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [CrossRef]
18. Gao, Z. Active disturbance rejection control: A paradigm shift in feedback control system design. In Proceedings of the 2006

American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 7. [CrossRef]
19. Benrabah, A.; Xu, D.; Gao, Z. Active Disturbance Rejection Control of LCL-Filtered Grid-Connected Inverter Using Padé

Approximation. IEEE Trans. Ind. Appl. 2018, 54, 6179–6189. [CrossRef]
20. Zhang, H.; Xian, J.; Shi, J.; Wu, S.; Ma, Z. High Performance Decoupling Current Control by Linear Extended State Observer for

Three-Phase Grid-Connected Inverter With an LCL Filter. IEEE Access 2020, 8, 13119–13127. [CrossRef]
21. Cao, Y.; Zhao, Q.; Ye, Y.; Xiong, Y. ADRC-Based Current Control for Grid-Tied Inverters: Design, Analysis, and Verification. IEEE

Trans. Ind. Electron. 2020, 67, 8428–8437. [CrossRef]
22. Zhang, Y.; Zhu, J.; Dong, X.; Zhao, P.; Ge, P.; Zhang, X. A Control Strategy for Smooth Power Tracking of a Grid-Connected

Virtual Synchronous Generator Based on Linear Active Disturbance Rejection Control. Energies 2019, 12, 3024. [CrossRef]
23. Yu, Y.; Hu, X. Active Disturbance Rejection Control Strategy for Grid-Connected Photovoltaic Inverter Based on Virtual Syn-

chronous Generator. IEEE Access 2019, 7, 17328–17336. [CrossRef]
24. Li, S.; Li, Y.; Chen, X.; Jiang, W.; Li, X.; Li, T. Control strategies of grid-connection and operation based on active disturbance

rejection control for virtual synchronous generator. Int. J. Electr. Power Energy Syst. 2020, 123, 106144. [CrossRef]
25. Ma, W.; Guan, Y.; Zhang, B. Active Disturbance Rejection Control Based Control Strategy for Virtual Synchronous Generators.

IEEE Trans. Energy Convers. 2020, 35, 1747–1761. [CrossRef]
26. Zeng, J.; Huang, Z.; Huang, Y.; Qiu, G.; Li, Z.; Yang, L.; Yu, T.; Yang, B. Modified linear active disturbance rejection control for

microgrid inverters: Design, analysis, and hardware implementation. Int. Trans. Electr. Energy Syst. 2019, 29. [CrossRef]
27. Li, H.; Li, S.; Lu, J.; Qu, Y.; Guo, C. A Novel Strategy Based on Linear Active Disturbance Rejection Control for Harmonic

Detection and Compensation in Low Voltage AC Microgrid. Energies 2019, 12, 3982. [CrossRef]
28. Wu, G.; Sun, L.; Lee, K.Y. Disturbance rejection control of a fuel cell power plant in a grid-connected system. Control Eng. Pract.

2017, 60, 183–192. [CrossRef]
29. Zhou, R.; Tan, W. A generalized active disturbance rejection control approach for linear systems. In Proceedings of the IEEE

10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 248–255.
[CrossRef]

30. Fu, C.; Tan, W. Tuning of linear ADRC with known plant information. ISA Trans. 2016, 65, 384–393. [CrossRef] [PubMed]
31. Wu, Y.; Ye, Y. Internal Model-Based Disturbance Observer With Application to CVCF PWM Inverter. IEEE Trans. Ind. Electron.

2018, 65, 5743–5753. [CrossRef]
32. Guo, L.; Li, Y.; Jin, N.; Dou, Z.; Wu, J. Sliding mode observer-based AC voltage sensorless model predictive control for

grid-connected inverters. IET Power Electron. 2020, 13, 2077–2085. [CrossRef]
33. Zheng, Q.; Dong, L.; Lee, D.H.; Gao, Z. Active Disturbance Rejection Control for MEMS Gyroscopes. IEEE Trans. Control Syst.

Technol. 2009, 17, 1432–1438. [CrossRef]

http://doi.org/10.1109/TIE.2015.2510984
http://doi.org/10.1109/TPEL.2013.2269140
http://doi.org/10.1109/TPEL.2017.2690361
http://doi.org/10.1109/TIE.2013.2297291
http://doi.org/10.1016/j.conengprac.2016.10.008
http://doi.org/10.1049/iet-pel.2014.0706
http://doi.org/10.3390/en12224301
http://doi.org/10.1109/TIE.2008.2011621
http://doi.org/10.1109/ACC.2006.1656579
http://doi.org/10.1109/TIA.2018.2855128
http://doi.org/10.1109/ACCESS.2020.2965650
http://doi.org/10.1109/TIE.2019.2949513
http://doi.org/10.3390/en12153024
http://doi.org/10.1109/ACCESS.2019.2894786
http://doi.org/10.1016/j.ijepes.2020.106144
http://doi.org/10.1109/TEC.2020.2991737
http://doi.org/10.1002/2050-7038.12060
http://doi.org/10.3390/en12203982
http://doi.org/10.1016/j.conengprac.2016.12.010
http://doi.org/10.1109/ICIEA.2015.7334120
http://doi.org/10.1016/j.isatra.2016.06.016
http://www.ncbi.nlm.nih.gov/pubmed/27457288
http://doi.org/10.1109/TIE.2017.2774734
http://doi.org/10.1049/iet-pel.2019.1075
http://doi.org/10.1109/TCST.2008.2008638

	Introduction 
	Modeling and Control of Inverters 
	Inverter Modelling in SRF 
	Structure of LADRC-Based Voltage Loop 
	Influence of Observer Bandwidth and Compensation Factor 

	Known Disturbance Compensation Scheme 
	Design of Proposed Scheme 
	Analysis of the Proposed Scheme 
	Stability Analysis 
	Load Current Estimator 

	Simulation and Experimental Verification 
	Discretization of LESO 
	Simulation Results 
	Experiment Results 

	Conclusions 
	References

