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Abstract: This work deals with the computationally-efficient inversion of microwave scattering
data for brain stroke detection and monitoring. The proposed multi-step approach is based on
the Learning-by-Examples (LBE) paradigm and naturally matches the stages and time constraints
of an effective clinical diagnosis. Stroke detection, identification, and localization are solved with
real-time performance through support vector machines (SVMs) operating both in binary/multi-
class classification and in regression modalities. Experimental results dealing with the inversion
of laboratory-controlled data are shown to verify the effectiveness of the proposed multi-step LBE
methodology and prove its suitability as a viable alternative/support to standard medical diagnostic
methods.

Keywords: brain stroke microwave imaging; real-time inverse scattering; learning-by-examples;
support vector machines

1. Introduction

The use of microwave radiation for sensing the human body is an emerging technology
and a promising alternative/support to well-established medical equipment, such as
magnetic resonance imaging (MRI ) and computed tomography (CT) [1–3]. As a matter of
fact, differently from MRI and CT, microwave imaging (MI) takes advantage of desirable
features, such as lower costs, easier deployment (since it does not require the patient to
be transported to an appropriately equipped hospital), and faster acquisition times, as
well as the use of non-ionizing radiation [2]. For such reasons, it is currently attracting
many researchers, being a promising candidate for many medical applications requiring a
continuous monitoring/treatment, as in the case of brain strokes [4–11]. Within this context,
strokes are, worldwide, the third leading cause of death and the first one of neurological
dysfunction, with an estimated annual expense for patients treatment of 64.1 billion in
Europe only [12]. The probability of permanent consequences of a stroke are strongly
related to the amount of time that passes from the first symptoms/its detection to the early
treatment. Moreover, the identification of the type of stroke, besides its localization, plays
a critical role in the decision of the most appropriate intervention [4,5]. As an example,
thrombolytic treatment can be disastrous if applied to a patient with an hemorrhagic stroke
(i.e., caused by bleeding), rather than an ischaemic one (i.e., caused by the obstruction of a
blood vessel) [13].

Several studies have been recently published on brain stroke MI. To cite a few
representative examples, the Born Iterative Method (BIM) has been successfully applied
in Reference [7] for retrieving 2D guesses of brain tissues from numerical data. However,
the time required for a single reconstruction (i.e., approximately 4 h [7]) is not compatible
with a real-time monitoring. The exploitation of modern graphics processing units (GPUs)
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and parallel computing has been recently explored [4,5] to reduce the inversion time, but
unfortunately such solutions still appear to be clinically unfeasible for the continuous
monitoring of the patient’s head. Alongside such promising advancements, Learning-
by-Examples (LBE) methods are rapidly emerging as a viable alternative towards real-
time performance [14–25]. As a matter of fact, they do not require the solution of any
forward scattering equation to produce a diagnosis, the computational load/complexity
being shifted to the off-line generation of a fast prediction model from a suitable set of
known input/output (I/O) pairs [14]. Within this context, this work has the objective
to present a new multi-step LBE strategy that naturally fits the clinical need of multi-
level information about the patient’s health status. More specifically, the inversion of
experimental MI data is addressed in a computationally efficient way to progressively (i)
detect the presence of a stroke, (ii) identifying its typology, and, finally, (iii) localizing it.
Such steps are accomplished through support vector machines (SVM)-based inversion
algorithms exploiting binary/multi-class classification and regression formulations. The
SVM framework has been adopted in this work because of several positive features,
including (i) a solid mathematical background, (ii) the absence of local minima during the
training phase, (iii) its intrinsic capability to deal with noisy (i.e., real-world) acquisitions,
(iv) the high computational efficiency, and (v) the availability of both classification and
regression formulations [26].

It is worth highlighting that the main contribution of this work over the existing
literature and preliminary validations from the authors [22,23] consists in the following key
aspects: (i) an innovative integrated multi-step diagnosis framework exploiting progressively
acquired information on the monitored patient’s health status, (ii) a novel regression-based
localization approach to yield accurate predictions of the location of a previously-detected
brain stroke, (iii) practical guidelines on the setting of the main SVM parameters, as well
as (iv) insights on the nature/behavior of real scattering data acquired in a controlled
environment when dealing with both ischaemic and hemorrhagic stroke phantoms. The
paper is organized as follows. Section 2 describes the mathematical formulation of the
problem and the proposed multi-step LBE-based inversion strategy. Some representative
experimental results are reported in Section 3 to assess the effectiveness of the proposed
method. Finally, some concluding observations and remarks are drawn (Section 4).

2. Multi-Step LBE Brain Stroke Diagnosis

With reference to the geometry sketch in Figure 1, let us model the human brain as
an investigation domain D ∈ R3 made of an inhomogeneous, lossy, and non-magnetic
medium [4].
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Figure 1. Pictorial sketch of the general brain stroke microwave imaging (MI) geometry.
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A set of V antennas working at central frequency f0 and placed over an external
observation domain Dobs is exploited to sense D through electromagnetic (EM) waves
and retrieve information on its status (Figure 1). Accordingly, under the v-th illumination
(v = 1, ..., V), the scattering phenomena occurring between incident wave and probed
scenario [4] are measured in Dobs as the ensemble of V complex scattering coefficients

S̃uv =
ψ̃−u
ψ̃+

v
= S<uv + jS=uv; u = 1, ..., V, (1)

with ψ̃−u and ψ̃+
v denoting the reflected and incident voltages at the u-th and v-th antennas,

respectively. From an EM point of view, the presence in D of a stroke is modeled as a
volumetric region Ω ⊂ D with complex permittivity ε̃S different from the average proper-
ties of the surrounding medium (i.e., healthy brain tissue, ε̃B = εB − j σB

2π f —Figure 1) (It is
worth remarking that, according to the reference literature [27], the considered conductivity
model is a dispersive one, which has been sampled at the central frequency of the measure-
ment equipment.). Moreover, it is worth observing that ε̃S is proportional to the amount

of blood inside Ω: indicating, with ε̃S
H/I = εS

H/I − j
σS
H/I

2π f , the permittivity of an hemor-

rhagic/ischaemic stroke, it is typically verified that εS
H > εB > εS

I and σS
H > σB > σS

I [4].
Obtaining a reliable diagnosis of D starting from the acquired data in Dobs can be decom-
posed as a three-step process, in which each stage is aimed at gradually increasing the level
of information on the monitored domain, and solved through a dedicated LBE strategy, as
detailed in the following Sections.

2.1. Step 1—“Detection”

The first step, necessary to trigger successive deeper diagnoses, is that of detecting
the presence of a stroke within the monitored patient’s head. Towards this goal, the LBE
inversion of scattered data is formulated as a binary classification problem. Accordingly, a
SVM classifier is trained on a set of N known I/O pairs

Ψ = {[ξn; L(ξn)]; n = 1, ..., N}, (2)

where
ξn =

{(
S<uv,n, S=uv,n

)
; u, v = 1, ..., V; u ≤ v

}
(3)

contains the (V + 1)×V measured features (It should be pointed out that any pre-processing
nor cleaning operation (e.g., averaging/filtering) has been performed on the measured
data, except the fact that only the upper-part of the scattering matrix has been exploited by
enforcing S̃uv = S̃vu.), while L(ξn) is the corresponding label indicating the presence (i.e.,
L(ξn) = +1) or absence (i.e., L(ξn) = −1) of a stroke inside D.

Starting from the information in Ψ a fast detector is then built solving—through the
Sequential Minimal Optimization (SMO) algorithm [26]—the following quadratic problem:

minα
1
2 αTQα− 1Tα

subject to LTα = 0
(4)

where α = {(0 ≤ αn ≤ C); n = 1, ..., N}T , C being a regularization parameter,
L = {L(ξn); n = 1, ..., N}T , Q is an N × N matrix with mn-th entry Qmn =

L(ξm)L(ξn)exp
(
−γ‖ξm − ξn‖2

)
, m, n = 1, ..., N, 1 = [1, ..., 1]T , γ is a user-defined pa-

rameter, and .T is the transpose operator. Finally, a diagnosis is immediately obtained
during the on-line phase, starting from a new measurement ξ as

L̂(ξ) = sgn

(
N

∑
n=1
L(ξn)αn exp

(
−γ‖ξn − ξ‖2

)
+ b

)
, (5)
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where b is computed exploiting the Karush-Kuhn-Tucker (KKT) conditions [26].

2.2. Step 2—“Identification”

In those cases where the outcome of Step 1 is positive (i.e., a stroke has been detected),
an immediate feedback to the medical staff is required to determine the type of pathology
and suggest the proper treatment. Accordingly, the goal of the second LBE step is to
discriminate between the ischaemic or hemorrhagic nature of the detected stroke. The
problem is again formulated as a binary classification one and solved in the same manner
as the first step, under an updated assignment of the physical meaning of training labels:
L(ξn) = −1 for ischaemic and L(ξn) = +1 for hemorrhagic, respectively, (n = 1, ..., N).

2.3. Step 3—“Localization”

Once the brain stroke has been detected (Step 1—“Detection”) and classified (Step 2—
“Identification”), a further step to complete the LBE diagnosis and provide a quick feedback
to the medical staff is that of retrieving a guess of the stroke position, rS =

(
xS, yS, zS)

(Figure 1). Towards this end, the inversion of scattering data can be addressed through a
dedicated (a) multi-class classification and/or (b) regression strategy.

Following the solution approach (a), the estimation process is aimed at identifying the
most probable position of the pathology within a predefined set of P candidate locations
rp ∈ D, p = 1, ..., P (Figure 1). Accordingly, a direct position/class correspondence is
considered, by letting

L(ξn) ∈ {p = 1, ..., P}; n = 1, ..., N. (6)

The one-against-one strategy is adopted by building P×(P−1)
2 binary SVM classifiers,

each one trained on scattering data from only two classes [28]. A voting strategy is then
applied to identify the most probable stroke position, designating it as the p-th class with
the maximum number of “votes” among all trained SVM models.

Alternatively, according to (b), the estimation of the stroke coordinates,

ζS ∈
{

xS, yS, zS
}

, (7)

is achieved through a support vector regression (SVR) strategy by solving the following
quadratic problem

minβ,β∗
1
2 (β− β∗)TW(β− β∗) + ε ∑N

n=1(βn + β∗n) + ∑N
n=1 ζS

n(βn − β∗n)

subject to eT(β− β∗) = 0,
(8)

where ε > 0 defines the insensitive tube [14], and the mn-th entry of W is

Wmn = exp
(
−δ‖ξm − ξn‖2

)
; m, n = 1, ..., N, (9)

and
β, β∗ = {(0 ≤ βn, β∗n ≤ A); n = 1, ..., N}T , (10)

with A and δ being user-controlled parameters. Finally, ζS is predicted as

ζ̂S
n(ξ) =

N

∑
n=1

(β∗n − βn) exp
(
−δ‖ξn − ξ‖2

)
+ h, (11)

with h being a bias satisfying the KKT conditions [26].
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3. Experimental Validation

To assess the effectiveness and the potentialities of the proposed multi-step LBE strat-
egy, an experimental validation against laboratory-controlled data has been undertaken, as
described in the following.

In all reported results, an average testing time of ∆ttest = 5× 10−3 s has been recorded
using a standard laptop equipped with 8 GB RAM memory. Moreover, the computational
resources required to train the different models have been always very limited and almost
independent on the considered stage of the proposed multi-step approach, with training
times always ∆ttrain ≤ 5 s, whatever the considered training size.

3.1. Acquisition Set-Up and Experimental Data Analysis

The experimental set-up has been designed and fabricated via 3D printing technology
(Figure 2). It consisted of an octagonal prism sized (L1, L2, L3) = (200, 160, 200) mm
modeling D (Figure 3), which has been filled by a liquid mixture yielding εB = 41.8ε0 and
σB = 0.97 S/m at 20 ◦C and f0 = 900 MHz [29]. The is chaemic and hemorrhagic stroke
phantoms have been realized with circular cylinders having diameter dS = 40 mm, height
hS = 200 mm (Figure 3a), and filled with liquid mixtures providing ε̃S

I = 32.04ε0 − j 0.85
2π f0

and ε̃S
H = 48.63ε0 − j 1.28

2π f0
, respectively.

(a)

(b)

Figure 2. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
)—(a) Detail of the fabricated head/stroke phantoms and (b) experimental

acquisition set-up.
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Figure 3. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
)—(a) Sketch of the fabricated head/stroke phantoms and (b) 2D map of D

showing the P = 25 possible locations of the stroke phantom (α = 45 deg).

Moreover, V = 8 bow-tie antennas printed over Rogers Duroid 4003C substrate of
thickness 1.5 mm have been installed on each face of the prism at constant height (i.e.,
100 mm) to form a 2D observation domain Dobs (Figures 2 and 3). A microwave switching
matrix R&S ZN-Z84 and a vector network analyzer R&S ZNB4 have been exploited to
drive the acquisition process. As for the latter, the measurement of the full scattering
matrix for a given configuration has been performed in about two seconds, thanks to a
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completely automated process, while moving the stroke phantom to a new position was
done manually (due to the early stage of the prototype) in about one minute.

To have a better understanding of the acquired data, Figure 4 reports the coefficient of
variation [30]

ρ(χ) =


√√√√ 1

K

K

∑
k=1

(χk − χ)2

/χ, (12)

where

χ =
1
K

K

∑
k=1

χk, (13)

computed over K = 1000 acquisitions performed at three different day times (i.e., morn-
ing, afternoon, and evening), for both the real (i.e., χ = S<uv, u, v = 1, ..., V, u ≤ v;
Figure 4a) and the imaginary (i.e., χ = S=uv, u, v = 1, ..., V, u ≤ v; Figure 4b) parts of the
scattering coefficients. As it can be observed, larger data fluctuations are generated when
a stroke is present inside the head phantom with respect to the “empty” case (Figure 4).
At the same time, it is worth noticing that similar variations characterize the two stroke
types, suggesting that the second step (i.e., “Identification”) may be a more difficult task
with respect to the preliminary one (i.e., “Detection”). Furthermore, it is interesting to
observe that larger , in general, occur between the three curves in correspondence to the
transmission coefficients (i.e., Suv, u 6= v), rather than the reflection ones (i.e., Suv, u = v),
suggesting that these latter probably carry less information about the status of D (Figure 4).
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Figure 4. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0− j 1.28

2π f0
)—Coefficient of variation of the (a) real and (b) imaginary parts of the scattering

coefficients when considering K = 1000 acquisitions equally subdivided between “empty” and “full”
(ischaemic/hemorrhagic) scenarios.

Finally, a statistical analysis has been performed on the measured scattering coeffi-
cients for both ischaemic (Figure 5a) and hemorrhagic (Figure 5b) strokes. As it can be
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observed from the plot of the minimum, maximum, and average values for both considered
scenarios (Figure 5), there are fluctuations in the measurements acquired at different hours.
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Figure 5. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
)—Minimum, maximum, and average value of the scattering coefficients

measured in three different moments of a single day (i.e., morning, afternoon, and evening) with (a)
an ischaemic and (b) an hemorrhagic stroke.

Such an outcome can be at least partially motivated by the natural deviations of
the electromagnetic properties of the involved liquid mixtures due to a change of the
surrounding environment (i.e., the temperature). Such an intrinsic variability has been
exploited to enhance the robustness of the LBE algorithms by exploiting during the training
phase measurements randomly chosen from the three data-sets. The same operation has
been performed to build the test data, as well, in order to test the generalization capabilities
of the trained models.

3.2. Inversion Results

Dealing with Step 1 (“Detection”) , training sets of increasing size N have been
generated by collecting data equally distributed between “empty” (i.e., L(ξn) = −1—no
stroke is present in D) and “full” (i.e., L(ξn) = +1—a stroke is present in D) scenarios,
randomly varying both position and type of stroke for the latter class. A careful tuning
has been performed for selecting the optimal SVM control parameters C and γ through a
5-fold cross-validation (CV) strategy [22].

Figure 6a shows the outcome of such a calibration, indicating that a high CV accuracy
(i.e., η > 90%) is yielded over a large portion of the explored (C, γ) space. Accordingly,
in the following the inversion results have been obtained by letting C = 1 and γ = 10−1.
Moving the focus towards the on-line capabilities of the trained detector, Figure 7a shows the
actual versus predicted labels when processing M = 500 previously-unseen measurements
with N = 10 training samples. As it can be observed, such a training configuration is
insufficient for obtaining reliable diagnoses, as verified by the high percentage of false
positives (i.e., ΞN=10

−1→+1 = 24.4%—Figure 7a). On the other hand, it should be noticed that
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only N = 50 training samples are sufficient to completely avoid wrong detections (i.e.,
ΞN=50
−1→+1 = 0%—Figure 7b).
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Figure 6. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500)—Behavior of the CV accuracy as a function of the SVM control

parameters (C, γ) when dealing with (a) Step 1 (“Detection”) and (b) Step 2 (“Identification”).



Electronics 2021, 10, 95 10 of 17

-1

 1

 0  50  100  150  200  250  300  350  400  450  500

C
la

s
s
 L

a
b

e
l,
 L

{ξ
m

}

Test Sample Index, m

Step 1 - ’Detection’, N=10, M=500

Actual Predicted

False Positives

False Negatives

Present

Absent

(a)

-1

 1

 0  50  100  150  200  250  300  350  400  450  500

C
la

s
s
 L

a
b

e
l,
 L

{ξ
m

}

Test Sample Index, m

Step 1 - ’Detection’, N=50, M=500

Actual Predicted

False Positives

False Negatives

Present

Absent

(b)

Figure 7. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500)—Actual vs. predicted labels when dealing with Step 1 (“Detection”)

considering (a) N = 10 and (b) N = 50 training samples.

Moving to the Step 2 (“Identification”), the training set has been generated by consid-
ering an equal subdivision of samples for both ischaemic and hemorrhagic cases. Almost
the same behavior characterizes the CV error, suggesting again a robust and non-unique
choice of the (C, γ) parameters to achieve a high prediction accuracy (Figure 6b). Keeping
the same optimal setting of the first step, the inversion outcomes confirm that this second
task is slightly more difficult than the first one. As a matter of fact, the percentage of false
positives and negatives with N = 10 samples turns out to be almost unacceptable, being
respectively equal to ΞN=10

−1→+1 = 85.6% and ΞN=10
+1→−1 = 52.8% (Figure 8a). Nevertheless,

increasing the training size up to N = 50 leads to an almost perfect discrimination between
the two classes, with ΞN=50

−1→+1 = 0% and ΞN=50
+1→−1 = 0.8% (Figure 8b).
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Figure 8. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0 − j 0.97
2π f0

, ε̃S
I = 32.04ε0 −

j 0.85
2π f0

, ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500)—Actual vs. predicted labels when dealing with Step 2

(“Identification”) considering (a) N = 10 and (b) N = 50 training samples.

Finally, let us consider the third stage of the brain stroke diagnosis process (Step
3—“Localization”). Figure 9 summarizes the outcomes for the multi-class SVM strategy,
showing the predicted versus actual classes when considering P = 25 partially-overlapped
stroke positions (Table 1) covering the whole cross-section of D (letting C = 1 and γ = 1,
as indicated by a preliminary CV, and neglecting the z-coordinate, as dictated by the
considered experimental set-up geometry).
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Figure 9. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0− j 0.97
2π f0

, ε̃S
I = 32.04ε0− j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500, P = 25)—Actual vs. predicted labels when solving Step 3 (“Localiza-

tion”) through a multi-class SVM approach with (a) N = 50 and (b) N = 400 training samples.

Table 1. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0 − j 0.97
2π f0

, ε̃S
I = 32.04ε0 −

j 0.85
2π f0

, ε̃S
H = 48.63ε0 − j 1.28

2π f0
)—Coordinates of the P candidate stroke locations within the imaged

head phantom.

Position, p
(

xS
p, yS

p

)
[mm] Position, p

(
xS

p, yS
p

)
[mm]

1 (71, 0) 14 (27, 54)
2 (72, −27) 15 (58, 46)
3 (58, −46) 16 (72, 27)
4 (27, −54) 17 (35.5, 0)
5 (0, −54) 18 (28, −27)
6 (−27, −54) 19 (0, −27)
7 (−58, −46) 20 (−28, −27)
8 (−72, −27) 21 (−35.5, 0)
9 (−71, 0) 22 (−28, 27)

10 (−72, 27) 23 (0, 27)
11 (−58, 46) 24 (28, 27)
12 (−27, 54) 25 (0, 0)
13 (−0, 54) - -
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As expected, given the higher complexity of the classification problem at hand and
the lower separability between data, in this case, N = 50 training samples (i.e., Np = 2
samples for each class/position, p = 1, ..., P) are not sufficient for yielding faithful guesses
of the stroke location (Figure 9a). Such a result is confirmed by the low percentage of
correctly classified samples, which turns out to be equal to ΦN=50 = 6.6% over M = 500
test samples (Table 2).

Table 2. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0 − j 0.97
2π f0

, ε̃S
I = 32.04ε0 − j 0.85

2π f0
,

ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500, P = 25)—Error indexes vs. training size when solving Step 3

(“Localization”) through multi-class SVM and SVR approaches.

Training Size Multi-Class SV M Regression SV R
N Φ [%] N ME

(
xS) [mm] N ME

(
yS) [mm]

50 6.6 3.61× 10−1 3.27× 10−1

100 13.8 1.67× 10−1 1.46× 10−1

250 84.6 4.05× 10−2 2.99× 10−2

400 96.6 1.31× 10−2 7.91× 10−3

As a matter of fact, more samples are required to achieve good predictions, the
accuracy increasing to ΦN=400 = 96.6% for N = 400 samples (i.e., Np = 8 samples for each
class; Figure 9b and Table 2). Nevertheless, it is important to observe that the ratio between
the the number of training samples, N, and the dimension of the input space for the SVM
inversion (i.e., the number of measured features, Q = (V + 1)×V = 72) is always very
limited and lower than N

Q

∣∣∣
N=400

= 5.6. Such an outcome confirms the good prediction
accuracy of the method, even if a quite limited number of training samples has been used
to train the model.

Similar outcomes are observed for the SVR-based solution, as indicated by the scatter
plots of the actual versus predicted x-coordinate (i.e., xS vs. x̂S; Figure 10a,c) and y-
coordinate (i.e., yS vs. ŷS; Figure 10b,d) of the stroke (letting A = 104 and δ = ε =
10−1). In this case, the normalized mean error (defined as in Reference [24]) is reduced by
NME(xS)|N=400

NME(xS)|N=50 = 3.63× 10−2 and
NME(yS)|N=400

NME(yS)|N=50 = 2.42× 10−2, respectively, when passing

from N = 50 to N = 400 training samples (Table 2).
To enable a fair comparison between the multi-class SVM-based approach and the SVR-

based one, Figure 11 reports a direct comparison of the resulting NME values for different
dimensions of the training set. As it can be observed, the proposed regression strategy
yields a remarkable reduction of the prediction error for both x-coordinate (Figure 11a)
and y-coordinates (Figure 11b) of the stroke phantom with respect to the classification
strategy. Moreover, it is worth remarking that such an approach is not limited to predict the
position of the stroke in a set of predefined positions, since it is able to estimate both xS and
yS in a continuous way inside the imaged head domain. For such reasons, the proposed
SVR-based approach should be preferred to implement the last step of the developed
diagnosis procedure.



Electronics 2021, 10, 95 14 of 17

−100

−50

 0

 50

 100

−100 −50  0  50  100

P
re

d
ic

te
d
 x

−
C

o
o
rd

in
a
te

, 
x^

S
 [
m

m
]

Actual x−Coordinate, x
S
 [mm]

Step 3 − ’Localization’, N=50, M=500

−100

−50

 0

 50

 100

−100 −50  0  50  100

P
re

d
ic

te
d
 y

−
C

o
o
rd

in
a
te

, 
y^

S
 [
m

m
]

Actual y−Coordinate, y
S
 [mm]

Step 3 − ’Localization’, N=50, M=500

(a) (b)

−100

−50

 0

 50

 100

−100 −50  0  50  100

P
re

d
ic

te
d

 x
−

C
o

o
rd

in
a

te
, 

x^
S
 [

m
m

]

Actual x−Coordinate, x
S
 [mm]

Step 3 − ’Localization’, N=400, M=500

−100

−50

 0

 50

 100

−100 −50  0  50  100

P
re

d
ic

te
d

 y
−

C
o

o
rd

in
a

te
, 

y^
S
 [

m
m

]

Actual y−Coordinate, y
S
 [mm]

Step 3 − ’Localization’, N=400, M=500

(c) (d)

Figure 10. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0 − j 0.97
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2π f0
, M = 500, P = 25)—Actual vs. predicted (a,c) x-coordinate and (b,d)

y-coordinate of the stroke when solving Step 3 (“Localization”) though a SVR approach with (a,b)
N = 50 and (c,d) N = 400 training samples.
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Figure 11. Experimental Assessment. (V = 8, f0 = 900 MHz, ε̃B = 41.8ε0 − j 0.97
2π f0

, ε̃S
I = 32.04ε0 −

j 0.85
2π f0

, ε̃S
H = 48.63ε0 − j 1.28

2π f0
, M = 500, P = 25)—Comparison of the normalized mean error (NME) vs.

training size (N) when predicting (a) the x-coordinate and (b) the y-coordinate of the stroke phantom
through the proposed multi-class SVM and SVR approaches.

4. Conclusions

A multi-step LBE strategy has been proposed to address the real-time inversion
of microwave scattering data for brain stroke detection, identification, and localization.
The presented methodology is general and meets the clinical need for an immediate and
continuous monitoring of the patient’s head. The experimental validation carried out
against laboratory-controlled data verified its high reliability and robustness, indicating
its suitability as a decision support tool for a more rapid intervention and treatment.
Moreover, as concerns the last stage of the multi-step approach, the reported validation has
demonstrated the superior performance of a novel SVR-based approach over a multi-class
SVM strategy to achieve robust and accurate predictions of the stroke location inside the
imaged head.

Future work will be aimed at further investigating the potentialities and effectiveness
of the developed multi-step LBE strategy, verifying, for instance, its generalization capa-
bilities when considering a variation of (i) the liquid mixture inside the phantoms and (ii)
different-shape testing profiles. The extension to a fully three-dimensional imaging system
enabling estimations of the z-coordinate of the strokes will be carefully considered, as well.
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