
electronics

Article

Mutual Impact between Clock Gating and High Level
Synthesis in Reconfigurable Hardware Accelerators

Francesco Ratto 1 , Tiziana Fanni 2 , Luigi Raffo 1 and Carlo Sau 1,*

����������
�������

Citation: Ratto, F.; Fanni, T.; Raffo, L.;

Sau, C. Mutual Impact between Clock

Gating and High Level Synthesis in

Reconfigurable Hardware

Accelerators. Electronics 2021, 10, 73.

https://doi.org/10.3390/electronics

10010073

Received: 16 November 2020

Accepted: 30 December 2020

Published: 3 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Piazza d’Armi snc,
09123 Cagliari, Italy; francesco.ratto@unica.it (F.R.); raffo@unica.it (L.R.)

2 Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
tfanni@uniss.it

* Correspondence: carlo.sau@unica.it

Abstract: With the diffusion of cyber-physical systems and internet of things, adaptivity and low power
consumption became of primary importance in digital systems design. Reconfigurable heterogeneous
platforms seem to be one of the most suitable choices to cope with such challenging context. However,
their development and power optimization are not trivial, especially considering hardware acceleration
components. On the one hand high level synthesis could simplify the design of such kind of systems,
but on the other hand it can limit the positive effects of the adopted power saving techniques. In
this work, the mutual impact of different high level synthesis tools and the application of the well
known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is
to optimize a clock gating application according to the chosen high level synthesis engine and target
technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)).
Different levels of application of clock gating are evaluated, including a novel multi level solution.
Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for
future design automation of low power reconfigurable accelerators through high level synthesis are also
derived.

Keywords: high level synthesis; power management; clock gating; hardware acceleration; reconfig-
urable computing; design automation

1. Introduction

With the advent of Internet of Things (IoT) and wearable devices, connectivity and
portability became core features for numerous embedded systems. Connectivity and
system integration led to an explosion of the amount and complexity of functionalities that
can be potentially supported, while portability often implies stringent constraints on power
consumption, which need to be tackled since the first design steps to be met. Cyber-Physical
Systems (CPS) era brought sensors and actuators within embedded and IoT systems in
many different markets [1], making them interactive with physical processes, environment,
and humans, as well as reactive to their status/requirements [2,3]. Application Specific
Integrated Circuits (ASICs) constitute one of the best options to tackle CPS performance
constraints as area reduction, energy consumption minimization and speed maximization,
but they generally lack in flexibility/adaptivity. Latest Field Programmable Gate Arrays
(FPGAs) constitute a valuable alternative, embedding on the same chip flexible general
purpose processing resources and efficient programmable logic. In any case, to meet the
adaptivity needs of CPS, heterogeneous and flexible platforms where different kinds of
processing elements, interconnects and memories can be exploited, became the preferred
choice. However, from the designer perspective, heterogeneity does not come for free and
multiple complementary competencies, ranging from hardware (HW) to software (SW)
skills, are required to develop such systems.

Electronics 2021, 10, 73. https://doi.org/10.3390/electronics10010073 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5756-5879
https://orcid.org/0000-0002-4301-6497
https://orcid.org/0000-0001-9683-009X
https://orcid.org/0000-0003-0436-2706
https://www.mdpi.com/2079-9292/10/1/73?type=check_update&version=1
https://doi.org/10.3390/electronics10010073
https://doi.org/10.3390/electronics10010073
https://doi.org/10.3390/electronics10010073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010073
https://www.mdpi.com/journal/electronics


Electronics 2021, 10, 73 2 of 20

On the application side there is also an increasing demand for execution efficiency.
In video technology, resolution is constantly augmenting, for example, going from 4 K to
8 K format required 24.9 M more pixels (+300%), with common rates that go from 60 to
120 fps. The information growth and the stringent time constraints are translated into an
increased complexity for video algorithms, for example, video codecs. Dedicated HW has
become an appealing solution for such issues, where computation intensive applications
lie under strict constraints. Thus, heterogeneous adaptive CPS often involve dedicated
HW accelerators to efficiently tackle onerous and constrained tasks within applications.
However, designing dedicated HW requires advanced digital design skills and longer
development time with respect to the standard SW design flow, and it is even harder when
reconfigurable computing is adopted within HW accelerators to achieve the adaptivity
required by CPS.

Design automation has been conceived to simplify the design process when complexity
and time are raised up, and High Level Synthesis (HLS) has become very popular in the
last years—starting from a high level description of a functionality, HLS tools derive
HW specifications, usually in terms of Hardware Description Language (HDL), ready to
be processed by digital design tools for FPGA or ASIC design. The increased need for
HW acceleration pushed the main FPGA and ASIC stakeholders to put huge effort in
HLS tools [4,5], and the number of HLS solutions has growth in the last years also on
the academical side [6]. It is true though that HLS-derived solutions are not as good as
manually optimized ones, neither in terms of timing performance nor in terms of consumed
power. Often, designers are required to make code refactoring or to use specific pragmas
in the input high level specification to get better solutions. Moreover, the adopted HLS tool
has a great impact on the resulting HW specification in terms of adopted resources and
performance, and it is strictly related to the targeted technology.

HLS usually does not provide any support for adaptivity/reconfiguration, nor for
system-level low power management. Power consumption is managed at physical level,
through the power management features provided by digital design tools. Moreover, in HW
design it is not possible to know the optimal trade-off among different metrics a priori,
and design iterations in the implementation steps might be necessary to meet the desired
performance. System-level power management would help when a low power accelerator
is needed, but it requires to be aware of the effectiveness of the applied technique, which in
turn may depend on the adopted HLS tool. Some works tried to address the power
management at system-level [7–9] and in some cases they also tackled design automation
for HW acceleration and adaptivity [10,11]. However, to the best of our knowledge,
there are no works in the literature that study the mutual impact of the chosen HLS and
the adopted the power management strategy.
Within this context, focusing on reconfigurable accelerators, the main contributions of this
work are:

• the analysis of the effectiveness of several HLS tools in the implementation of low-
power HW accelerators for heterogeneous and adaptive systems;

• the exploration of the mutual impact between different HLS strategies and a simple
low power technique, clock gating, applied at various levels. As far as we know, this is
the first time that a similar study, investigating HLS and clock gating peculiarities
together, is proposed in literature. Traditionally, clock gating is either applied at
region or actor level, as it will be better explained in Section 3. Nevertheless, to cover
a wider range of possibilities, in this paper we also propose a novel multi level clock
gating approach for dataflow based reconfigurable HW accelerators;

• the assessment and comparison of the different clock gating solutions, including the
new one, on a video coding use case while adopting multiple HLS tools and target
technologies;

• the derivation of hints and guidelines for an optimal application of clock gating
and for its future integration on an automatic design flow for dataflow based HW
accelerators.



Electronics 2021, 10, 73 3 of 20

The main objective of this work is to understand the relationships between HLS
tools and CG application at different levels considering dataflow based reconfigurable
accelerators. In particular, on one hand peculiarities related to HLS tools are considered,
like implemented models of computation, hardware communication protocols, latency of
the generated hardware, while on the other CG related aspects, such as level of application
and target technology, are considered. The conducted study is intended as a preliminary
work under the view of a future design automation for the addressed devices, so that
hints and guidelines for driving the process in order to achieve an optimal behavior
under different metrics, namely resource occupancy, maximum frequency and power, are
investigated and highlighted.

From the conducted study and experiments it will be clear as the new proposed multi
level clock gating technique ensures optimal performance in ASIC independently from the
adopted HLS tool. However, when resources are strictly constrained, other techniques, such
as region level clock gating, could be better solutions since they trade resources at the price
of higher power consumption. In FPGA actor level clock gating is instead outperforming
the other techniques for most of the cases. Nevertheless, in this case the adopted HLS
tool is important, since results may change depending on the generated code complexity
and on the activity percentage of the design. Generally speaking, HLS and its user driven
aspects (pragmas and code shaping) determine differences in implementation which bias
clock gating effectiveness and, thus, should be taken into consideration when applying the
same clock gating techniques.

The rest of the paper is organised as follows—Section 2 describes the background of
the proposed work. Section 3 shows the details of the conducted study including the new
proposed clock gating solution. Section 4 extensively analyses the obtained experimental
results, deriving hints and guidelines for future design automation. Section 5 concludes
the work with some final remarks.

2. Background

This section illustrates the background of the proposed work, giving an overview on
how the challenging design of reconfigurable HW accelerators is tackled through model-
based approaches (Section 2.1) and introducing the power issue in modern embedded
systems and CPS, together with the techniques commonly used to face it (Section 2.2).

2.1. Model-Based Design for Reconfigurable HW Accelerators

Several works in the literature have addressed the issue of providing efficient support
for acceleration and reconfigurability. HLS seemed to be an extremely valuable solution to
tackle acceleration support, and many commercial and academical solutions proliferated
over the years [12]. Nevertheless, HLS tools do not effectively support reconfiguration
by construction [13]. Other solutions have also been studied to address the problem,
but it has been just partially solved and widely acknowledged standard solutions are
not yet there. Indeed, many aspects bias the solution to be adopted: the chosen target,
the reference domain, the purpose for reconfiguration. For instance, if reactivity is crucial,
a fast coarse-grain reconfiguration is optimal due to the low configuration change overhead,
while if higher flexibility is more important and resources are strongly constrained, a fine-
grain solution, such as dynamic and partial reconfiguration on FPGAs, would be more
suitable [14]. Independently from the kind of desired reconfiguration and the related
features, the design of HW accelerators remains challenging and approaches leveraging on
HLS, but with reconfiguration and power management support, might be crucial to push
for the wider adoption of such kind of devices in modern systems.

In this regard, model-based design already proved to be extremely useful for abstract-
ing low level details through models, allowing a faster automated design flow. Due to
their intrinsic modularity dataflows revealed to be particularly suitable as input models
for HW accelerators design, even when reconfigurability is required. Dataflows are direct
graphs where nodes are processing units, called actors, while edges are point-to-point



Electronics 2021, 10, 73 4 of 20

buffered communication channels between actors. Communication is managed as a First-
In-First-Out (FIFO) queue and it is asynchronous. Actors do not talk each other, but execute
(actions firing) when data chunks (tokens) are available at their inputs. Depending on
the way actors consume and produce tokens (token rate), several dataflow Models of
Computation (MoCs) are defined—from extremely predictable MoCs, with constant token
rate, to unpredictable ones, with arbitrary token rate.

Please, notice that HLS itself is somehow a model-based approach: the input specifi-
cation, usually described with a programming language function, can be seen as a model
of the desired HW. Sometimes dataflows have been adopted as input specifications for
HLS to derive HW accelerators [6,15], and they turned out to be extremely effective for
highlighting modularity and parallelism of the application, aspects that are directly re-
flected in the generated HW. However, just few works exploited such models to achieve
also reconfiguration. A first attempt has been made by Beaumin et al. [16], whose reconfig-
urable coprocessor customizes a substrate of generic processing units (SW cores executing
actors) and HW FIFOs. A more resolute step towards a complete dataflow based recon-
figurable accelerators design support is the Multi-Dataflow Composer (MDC) (Available
Open Source at: https://github.com/mdc-suite/mdc), capable of automatically generating
a reconfigurable accelerator starting from the dataflow models of the desired functionalities
by multiplexing in time common actors among them. MDC only provides dataflow models
combination and system-level optimization but, along the years, it has been coupled with
HLS tools to derive the complete HW specification in a totally automated way.

2.2. Automated Power Optimization and Clock Gating

Power has historically been one of the main constraints to be considered in digital sys-
tems development and, with the advent of IoT and portability, it became even more crucial
to save the available power budget. As a result, holistic power minimization approaches
across the whole design stack are necessary to design modern embedded systems [17].

Two main terms determine power consumption in digital systems: static and dynamic.
The former comes from physical non-idealities (leakage currents) and it is always present
in a powered-on circuit. The latter depends also on functional aspects, being related to
charging and discharging of capacitors during binary signals flipping. Different techniques
exist for lowering both terms, that is, clock gating [18], voltage/frequency scaling [19],
power shut-off schemes [20]. Clock gating (CG) has been widely adopted, since it is easy to
be applied and has a low overhead, while being very effective. Reductions up to 40% of the
dynamic power, related to clock tree and sequential logic, can be reached [18]. Simplicity
made CG also extremely suitable to be automatically applied. Many computer aided design
tools for HW design, such as Xilinx Vivado Synthesis [21] and Cadence Genus Synthesis
Solution [22], have CG as a built-in feature. Vivado and Genus can analyze the HDL of the
system to identify potential clock enables for performing the gating. They apply gating at
the sequential resource level, that is, a single bit FF in the worst case.

The latest FPGA devices have resources with built-in low power features, that is, FFs
and BRAMs provide dedicated clock enable inputs in order to perform CG. These inputs
are automatically driven by the FPGA synthesizer exploiting signals recognized as enables
for such resources during synthesis. For example, when an if condition is used in the
HDL code to determine whether a register should be updated or not, the condition is
directly used to drive the clock enable port of the FF employed to implement such register,
as depicted in Figure 1. Please, note that these built-in low power features have an impact
on both resource utilization and power consumption points of view, since combinatorial
resources are needed to implement the gating logic, while the register is shut down to
avoid useless power consumption due to refresh.

The saving reachable with CG can vary depending on the chosen CG level of appli-
cation, which can range from the already mentioned logic gate level [21] to the clock tree
one [23]. Different works focused on the application of CG at a high level. If reconfigurable
systems are considered, time multiplexing of resources among different configurations

https://github.com/mdc-suite/mdc


Electronics 2021, 10, 73 5 of 20

increases the possibility of shutting down unused Logic Regions (LRs), that is, sets of
resources not involved in the running configuration [24,25]. In Reference [26] authors
described a systematic approach for computing the CG logic of synchronous sub-circuits
described in HDL. Bezati et. al [11] developed a dataflow based HLS tool capable of deriv-
ing HDL code from a dataflow specification, and to automatically apply CG at the dataflow
actors level. Fanni et al. [27] studied the application of power saving techniques at actor
level, performing a combination of CG and frequency scaling solutions. This approach has
been extended by Li et al. [28], who studied the application of power saving techniques
at higher level, considering hierarchical actors that abstract part of the design. However,
these works target FPGAs only.

reg state, state_next;
always @(posedge clock)

if (cond)
state <= state_nxt;

D

CE

Qstate_nxt

cond

clock

state

FDCE
Figure 1. Example of how the synthesizer converts a simple Verilog code in a physical circuit. Notice that the clock-enable
port available on the FFs allows to realize a if condition without any LUT.

Other works tackled the application of power saving techniques, including CG,
to ASIC designs, mainly exploiting the power format files adopted by electronic design
automation companies. A power format file allows the designers to specify the power
intent early in the design flow and without any direct modification of the HDL code. The
implementation, simulation and verification of low power designs adopting power format
files have been widely studied in the last years. In Reference [29] authors studied the
advantage of multi-VDD power reduction technique, while in Reference [9] a power gated
reconfigurable computing array for biological signal processing has been presented. In
these works the power format file is manually defined, which is an error prone and time
consuming process, and also not easily applicable to automatically generated systems.
On the contrary, other studies opted for the automatic generation of the power format
file. Qamar et al. [30] presented a methodology that considers the application of CG and
power gating techniques to an HLS-derived HDL. Designers define the power intent at
system-level and, then, add power management control logic to implement the low power
methodology. However, this work still requires handwork. Indeed, it mainly moves the
definition of the power intent at a higher level, but designers have to specify it through the
insertion of pragmas into the input SystemC code. Furthermore, the logic to be switched
off is not automatically identified. Macko [8] proposed a method for automation of power
management specification. The input of the method is a functional model of the system in
SystemC and the switching activity of the same system during simulations. The output
is an enriched system model, which includes the power management specification using
SystemC. However, this method is limited to SystemC high level description, and it is not
applicable to reconfigurable systems.

The main drawbacks of most of the above mentioned works is that they still need
handwork, requiring designers to identify the logic to be switched off and/or to specify the
power intent. The previously cited MDC tool is capable of automatically applying power
saving techniques, including CG, on different LRs [31] of dataflow based HW accelerators.
In the case of CG, the target can be both ASIC and FPGA, and the necessary logic is added
directly on the generated HDL specification. However, at the moment, MDC only supports
region level CG application; while other works [11,27,28] proved that different CG levels,
as the actor level one, are valid as well. Therefore, it might be interesting to allow different,
and also combined, CG levels to be available in an automated tool. This motivated our



Electronics 2021, 10, 73 6 of 20

effort into carrying out a comprehensive study of the CG solutions within the context of
reconfigurable accelerators, to determine whether an optimal solution could be found,
given a certain HLS flow and target technology. The purpose of the proposed exploration
is also to determine some guidelines for a perspective future design automation.

3. Materials & Methods

The current literature does not offer a completely automated support for reconfig-
urable HW accelerators where optimal power management is provided on the basis of the
adopted HLS tool. In this work we explore, on the one hand, the correlation between the
adopted HLS tool and CG effectiveness. At this purpose, in Section 3.1 different HLS tools
are considered and analyzed, trying to highlight all the peculiarities which may play a
role when CG is applied on top of them, such as target technology, latency, implemented
communication protocol or the adopted model of computation. While, on the other hand,
the mutual impact between HLS tools and different CG strategies (Section 3.2), applied at
different levels. In this case, the peculiarities of the HLS tools are reflected to the specific
considered CG strategy, discussing if they have an impact or not. Being the region level and
the actor level already know, we will introduce also a novel multi level solution, to cover all
the possible ranges of application.

3.1. HLS Tools

The HLS tools may differ for several aspects. A first difference lays on the adopted
input specifications, which can be mainly classified as imperative or functional languages/
frameworks. Imperative specifications describe functionalities as a sequence of instruc-
tions, such as in a C program. They are very common, especially in commercial HLS,
since imperative languages are extremely diffused, thus can reach a wider public. Func-
tional specifications refer to modular descriptions where modules describe operations,
while connections define the data communication between modules. Functional HLS, like
dataflow based ones, already revealed to be more suitable for generating reconfigurable
HW [13]. Nevertheless, imperative HLS tools can still be exploited within functional based
designs to selectively generate the HDL corresponding to the actors, while leaving to
the functional specification the connections description. On top of that, imperative HLS
tools make user control points (i.e., preferences for HLS flow or pragmas to be inserted
within the original input specification) available to the developer, to optimize the gener-
ated HW. Being compliant also with imperative HLS tools, we target functional, dataflow
based designs.

Another difference among HLS tools is related to the target technology: there are
target-agnostic and vendor-specific HLS tools. These latter are usually capable of generating
efficient HDL specifications for the targets they are conceived for. From the implementation
point of view, a different internal description of the actors is translated in different commu-
nication protocols and latency. At last, the generated HDL could be easily readable or not.
When it is, designers could attempt further optimizations after the HLS generation process.

According to their features, different HLS tools may have a different impact on the
effectiveness of CG. To provide a representative exploration we consider three different
HLS tools:

• CAPH [6], an academic HLS tool based on dataflow specifications, to be provided in
CAPH language, and capable of generating generic target-agnostic HDL code;

• STRATUS [5], the Cadence official HLS engine based on classical imperative C code
specifications, generating target-agnostic HDL code for dataflow actors;

• VIVADO [4], or more precisely Vivado HLS, Xilinx official HLS engine based on clas-
sical imperative C specifications, generating vendor-specific HDL code for dataflow
actors to be implemented over Xilinx FPGAs boards.

By considering three different ways of generating actors (see Table 1 for a summary
of the HLS tools features) we ensure a robust assessment of the studied approach. All the
actors generated with the considered HLS tools implement FIFO based communication



Electronics 2021, 10, 73 7 of 20

protocols, which differ for the kind of signals and handshake implemented on the interface
between actors and FIFOs. In particular, CAPH and VIVADO provide classical empty/full
signals on the FIFO side and write/read signals on the actor side. STRATUS, instead,
adopts a protocol based on valid and busy signals present either on actors and FIFOs,
depending on the interface (input or output), and performing data transmission when
valid is asserted and busy is not asserted. Dealing with actor latency, CAPH and VIVADO
generate actors that perform actions in one single clock cycle, while STRATUS actors may
require more than one clock cycle (a busy signal is used to indicate that the processing is
still ongoing).

Table 1. Comparison of the High Level Synthesis (HLS) tools considered in this work. Comm. is
Communication protocol, CCpA is Clock Cycle per Action.

HLS Input Comm. Target CCpA Type

CAPH [6] CAPH language empty/full target-agnostic 1 Academic
write/read (FPGA/ASIC)

STRATUS [5] C code valid target-agnostic Variable Commercial
busy (FPGA/ASIC)

VIVADO [4] C code empty/full vendor-specific 1 Commercial
write/read (Xilinx FPGA)

3.2. Clock Gating Application Levels

CG acts on the dynamic power performing a logic AND between an enable signal
and the clock signal in order to shut it off when the driven logic is unused. To avoid
glitches on the resulting gated clock, the enable signal goes throughout a clock falling edge
sensitive FF before driving the AND gate [32]. So that, one single two-input AND gate
and one FF are sufficient to implement CG. Here comes the simplicity of such kind of low
power technique.

Dataflow based HW accelerators have a data driven execution, meaning that action
firing depends on tokens availability in the incoming FIFOs and on free slots availability,
to store the produced data, in the outgoing FIFOs. According to this, it is straightforward
to define the first possible level for the application of CG: the actor level one. CG at actor
level can be performed by considering as enable signals the complementary of empty and
full status flags of the incoming and outgoing FIFOs. This is the kind of approach already
used in the works of Bezati et al. [11] and Fanni et al. [27]. A higher level CG can be applied
at the region level. LRs can be defined as sets of processing elements in a digital design that
are always active/inactive at the same time, and could be enabled/disabled to optimize
power consumption. Such kind of approach has been already successfully adopted in the
work of Palumbo et al. [10]. In this paper we consider both actor level and region level CG to
investigate the impact of the specific adopted HLS on it. Moreover, a novel CG technique,
named below as multi level, is presented.

One of the objectives of the proposed work is gathering hints and guidelines for a
perspective design automation of CG within the considered context. In References [10,11]
design automation for actor level and region level CG has already proven to be feasible. Thus,
once a strategy for obtaining optimal CG efficiency according to the chosen HLS tool and
target technology will be defined, the design automation of its application is straightfor-
ward. This is true also considering multi level CG, since it is basically a combination of actor
level and region level CG, so that its support in design automation, which will be performed
in future works, should be feasible as well.

3.2.1. Actor Level

Actor level CG operates over actors, switching them off to avoid useless refresh of
internal registers. More precisely, when an actor is inactive, then also the read logic of the
incoming FIFOs and the write logic of the outgoing FIFOs are inactive. For this exploration



Electronics 2021, 10, 73 8 of 20

we consider designs in which the FIFOs, based on the ones presented in Reference [11], are
implemented as asynchronous FIFOs, with disjointed clock ports for the read and write
logic, so that they can be gated together with the corresponding actor.

Figure 2 shows the main scheme of the actor level CG implemented in this work.
The clock signal actor_clk, driving the actor, the incoming FIFOs and the outgoing FIFOs,
is provided by the gate module that derives it by performing the logic AND between the
main clock source, clock, and an enable obtained as the NOR between empty and full
flags of the involved FIFO buffers. The adopted HLS tool may impact on different aspects
of such CG application level:

• Communication Protocol: the communication protocol among actors of the chosen
HLS can play a role in the way gating is performed. If the actor and/or the FIFOs
need more than one clock cycle to check the firing conditions, read data and finalize
transmission, such delay has to be taken into consideration when gating the logic.
In this case, a state machine is necessary inside the gate module to properly manage
the gating process [11]. For instance, if a communication protocol takes different
clock cycles to read a token (check the conditions, read the data, and acknowledge
the reception), then the gate module has to wait for the completion of the reading
operation before shutting down the clock.

• Dataflow MoC: the adopted dataflow MoC impacts on which FIFO flags have to be
considered to provide the enable signal for the gate module. In deterministic MoCs,
the token production and consumption rates are constant, and it is simple to derive
the clock enable, thus the logic necessary to implement it can be smaller. For instance,
if an actor always reads one token from port A and then one from port B, the gating
logic can be built taking into consideration subsequently and disjointedly the empty
signals of port A and port B.

• Actions Latency: the time required by actors to fire actions and process data impacts
on the gate module. A busy condition due to ongoing actions has to be generated and
considered to avoid switching off an actor while computing. For instance, an actor
taking 5 clock cycles to produce one output token after consuming one input token
should be kept on for all the 5 cycles, even if the input FIFO goes empty after the
token consumption.

FIFO
async

FIFO
asyncActor

Gate 

data
empty

clock

actor_clk

read
data
full

write

Figure 2. Actor level clock gating of an actor and related FIFOs.

In this work we adopt communication protocols that always require one single clock
cycle for data transfer, so that the state machine inside the gate module of Bezati et al. [11]
is no longer necessary and simple gates performing a logic AND between the clock signal
and a registered enable are employed. The adopted MoC is Cyclo Static DataFlow [33],
meaning that the consumption/production rates of the actors on the surrounding FIFOs
change cyclically among a finite set of possibilities. However, for the sake of simplicity,
all the FIFOs are always taken into consideration and the corresponding empty and full



Electronics 2021, 10, 73 9 of 20

signals are used to derive the CG enable. In particular, all empty and full signals related
to each actor are put in AND together and then negated to derive the clock enable. So that,
as long as data/free space are present in at least one FIFO around the actor, the clock
will be kept valid and the computation will not be corrupted. In some of the considered
designs, the enable also depends on actions latency, since certain actors take more than
one clock cycle to process data and to finalize firings. In such cases, empty and full
signals are combined with a busy signal, coming from the actor, to generate the CG enable.
In particular, busy signal, when present, is put in OR with the negated AND of empty and
full signals of FIFOs surrounding the actor.

3.2.2. Region Level

LRs, as already introduced, contain sets of processing elements that can be enabled/
disabled together. These LRs are highly common in coarse-grained reconfigurable systems,
in which different functionalities share common resources. The kind of adopted reconfig-
uration is virtual, since functionalities are enabled by multiplexing resources over time.
For this peculiarity, they can be implemented on different technologies (FPGA and ASIC),
thus allowing for a certain degree of flexibility, limited by the functionalities specified at
design time. LRs not involved in the current computation can be switched off. To guarantee
a high presence of LRs and a wider case study with respect to the one of Reference [28],
in which reconfiguration was not tackled, we select coarse-grained reconfigurable sys-
tems, leveraging also on the availability of the open source MDC tool that automatically
implements such kind of systems, and that is already capable of identifying the LRs and
implementing CG on top of them [10].

Each LR is driven by a gated clock whose enable is derived directly by the current
configuration of the system. Figure 3 depicts an example of region level CG implementation
for dataflow based reconfigurable accelerators. The system is composed by five actors,
A, B, C, D and E, and two different functionalities can be performed (Func1 and Func2):
actors A, B, C and E are used by Func1, while actors A, D and E by Func2. According to
this composition of the system, three LRs can be identified: reg0 shared between the two
functionalities (actors A and E); reg1 involving actors adopted only by Func1 (B and C); and
reg2 involving actors adopted only by Func2 (D). As a result, three gates are necessary to
apply region level CG in such a system. The enable signals of such gates are derived by a
Clock Configurator module according to the currently executed functionality: for Func1, reg0
and reg1 are enabled, while for Func2, reg0 and reg2 are enabled. Please, notice that reg0 is
always on when one of the two functionalities is enabled. However, it can be gated when
the accelerator is in idle, for example, when a full SW part of the application is executed.

Differently from actor level CG, region level CG is not influenced by the chosen HLS,
nor by the adopted dataflow MoC. Indeed, in this case CG is applied at a higher level of
abstraction, far from implementation details such as the FIFOs signals or actors communi-
cation protocol.

3.2.3. Multi Level

Region level CG can save the power consumed by those LRs not involved in the current
computation, which means that if a LR is necessary for the selected operation, its actors
are active for the whole computation regardless of their actual activity. On the other
hand, actor level CG, taking into consideration the individual activity condition of each
actor (empty, full and, optionally, busy signals), is capable of saving power in any part
of the system and in each moment of the execution. In fact, if a certain actor is involved
in the current computation, but it has not received tokens yet, it can be switched off to
save power. Actor level CG has a higher resource overhead since it requires one different
gate for each actor within the system, while region level CG requires one gate per LR,
which are normally less than the number of actors, plus the Clock Configurator that is a quite
simple module. A combination of these two CG levels could potentially bring additional
benefits by switching off the LRs not involved in the current functionality and, at the same



Electronics 2021, 10, 73 10 of 20

time, by switching on/off the individual actors of the active regions according to their
actual activity.

Starting from the region level CG example of Figure 3, Figure 4 illustrates the combi-
nation of actor level and region level CG. A hierarchy of gate modules is needed. The outer
clock gates derive a clock for each identified LR (reg0_clk, reg1_clk, reg2_clk). These
clock signals, instead of directly driving the logic within their respective LRs, drive the
second level of clock gates connected to each actor and related FIFOs. In this way, when
Func2 is enabled, reg1 is disabled since the beginning of the execution through region level
CG, while the rest of the actors is enabled/disabled according to their activity, by means of
actor level CG. The same occurs for reg2 and the rest of the actors when Func1 is enabled.

en_reg1

en_reg2

clk_reg1

clk_reg2

clock

Gate 
reg1

Gate 
reg2

Gate 
reg0

en_reg0 clk_reg0

A SB

SB

B C

D

E

Clock
Configuratorconfiguration

Figure 3. Region level clock gating of a dataflow based reconfigurable system.

A SB

SB

B C

D

E

clock

en_reg1

en_reg2

reg1_clk

reg2_clk

empty/fullA

empty/fullB

empty/fullC

empty/fullD

actA_clk

actB_clk

actC_clk

actD_clk

Gate 
actA

Gate 
actB

Gate 
actC

Gate 
actD

region level CG actor level CG

Gate 
reg1

Gate 
reg2

empty/fullE
actE_clkGate 

actE

Gate 
reg0

en_reg0 reg0_clk

Figure 4. Multi level clock gating of a dataflow based reconfigurable system.



Electronics 2021, 10, 73 11 of 20

Being multi level CG a combination of actor and region level CG, it inherits their
dependencies from the selected HLS and dataflow MoC. In particular, the same HLS
aspects impacting on actor level CG are valid here too. Moreover, of course, it will consume
more resources than the single strategies applied in a standalone manner.

4. Results

For the proposed analysis we adopted a video processing application (Section 4.1).
As already said, the aim is to investigate the mutual impact between different HLS tools
and the CG technique applied at different levels, and then derive some guidelines for per-
spective automation of power management in coarse-grained reconfigurable accelerators,
enabling the selection of the optimal CG approach given the selected target and HLS flow.
Besides three different HLS tools (CAPH, STRATUS and VIVADO), we also explored two
different technologies: ASIC (Section 4.2) and FPGA (Section 4.3).

Besides a comparison between the different HLS tools and CG application levels, in the
FPGA case a deep dive into HLS user knobs, specifically pragmas and code refactoring,
their consequences on generated code and, in turn, their impact on the CG effectiveness
is also proposed. Please note that CG in such technologies implies extremely different
aspects: while in ASIC it is possible to build from scratch the entire clock tree, in FPGA
the clock tree is already there, and it is recommended to modify it only through dedicated
resources, that is, the clock buffers (BUFG) for Xilinx devices. Moreover, as explained
in Section 2.2, modern FPGAs have already available resources with clock enables for
safe and efficient CG application, avoiding common issues related to clock slack and
synchronization. These CG compliant resources are considered in the proposed study
(more details are provided in Section 4.3).

For an easier reading of the main findings related to the conducted analysis, a summary
with hints for future design automation, highlighted through a square containing the text,
is provided for each subsection.

4.1. Designs Under Test

As test case for the proposed analysis we adopted a video coding application: an inter-
polation filter for luma color components adopted in the motion estimation/compensation
of the High Efficiency Video Coding (HEVC) standard [34]. The effect of the filtering
is basically a two dimensional FIR filter performing a shift of the input image block by
fractional pixel positions. A HW accelerator capable of adapting the interpolation quality
and energy consumption has been developed. Dataflow models of the interpolator with
8, 5 and 3 tap FIR filters have been combined together using the MDC tool, so that the
generated reconfigurable accelerator can change its configuration among the different
configurations (8, 5 and 3 tap), executing them one at a time (see Figure 5). HDL code
corresponding to the dataflow actors has been derived through the three considered HLS
tools. Trade-offs are there: processing is more precise but more energy consuming with
8 taps, and less precise but less energy consuming with 3 taps, while 5 taps provides
intermediate behavior for both metrics. Such a reconfigurable HW interpolator constitutes
an example of an adaptable component for heterogeneous CPS.

filtered

pixel
pixel

S
T
A

G
E
 6

S
T
A

G
E
 7

...

... S
T
A

G
E
 0

+

0

0

0

shift 

& clip*

adder treemultipliers
previous line 

FIFOs

current line

register

horizontally

(not clipped)

filtered

pixel

Figure 5. Overview of the reconfigurable interpolators architecture.



Electronics 2021, 10, 73 12 of 20

Table 2 depicts the composition of the dataflow models corresponding to the available
interpolator configurations. Five different LRs have been identified, partitioning the set of
61 involved actors. As expected, the most precise and power hungry configuration, 8 tap,
is also the one employing more actors, 51. On the contrary, the less precise and consuming
configuration, 3 tap, is using only roughly one third of the available actors, 21.

Table 2. Composition of the dataflow models of the interpolator and characterization of the related
LRs with the corresponding number of actors and their usage in each configuration. In brackets the
percentage of actors involved in the configuration with respect to the overall number (61).

LR # of Actors
Configuration

8 tap 5 tap 3 tap

0 16 x x x
1 5 – – x
2 5 – x –
3 12 x x –
4 23 x – –

all 61 51 (84%) 33 (54%) 21 (34%)

Four designs have been developed for each adopted HLS engine:

• base: the baseline reconfigurable HW interpolator without any CG strategy;
• actor: the reconfigurable HW interpolator with actor level CG as described in Section 3.2.1;
• region: the reconfigurable HW interpolator with region level CG as described in

Section 3.2.2;
• multi: the reconfigurable HW interpolator with the new proposed multi level CG as

described in Section 3.2.3.

In summary, 16 designs will be considered in the following: 4 per each HLS, 3 HLS
tools overall, one of them adopted twice (STRATUS and STRATUSr) to provide a focus
on some implementation details which can play an important role within the presented
analysis (see Section 4.4). Table 3 provides a complete overview of the designs under test,
showing also how they cover the two considered target technologies (only CAPH and
STRATUS designs target also ASIC). The table adopts the just defined labels (base is the
design without CG, actor with actor level CG, region with region level CG, and multi with
multi level CG) to concisely present the designs developed for each considered HLS and
target technology.

Table 3. Designs developed per each HLS tool and covered target technology by each of them. base is
the design without CG, actor with actor level CG, region with region level CG, and multi with multi
level CG.

HLS
Design Technology

base actor region multi ASIC FPGA

CAPH x x x x x x
STRATUS x x x x x x
STRATUSr x x x x x
VIVADO x x x x x

CG at different levels has been applied by hand on the reconigurable HW interpolators
provided by MDC and involving actors HW specifications generated by the different HLS
tools. In all the considered cases, the manual nature work does not causes subjective biases
on the obtained design, meaning that having done it automatically would have led to the



Electronics 2021, 10, 73 13 of 20

same result. This is because, once the CG logic and the CG application levels are defined,
they can be implemented in a unique way for the considered context.

For the assessment phase, and in particular dealing with power numbers which
consider real switching activity gathered during post-synthesis simulations, the same
testbench has been adopted for all the designs. The interpolator elaborates a 16 × 16
monochromatic image surrounded by a zero padding frame to allow the computation of
border pixels, since the output image has the same size of the input one. Data are provided
in the input FIFOs one per clock-cycle (according to FIFOs full condition), so that each
design elaborates inputs at its maximum achievable rate.

4.2. Assessment on ASIC

Assessment on ASIC has been performed on a CMOS 45 nm technology library
(Cadence 45 nm generic standard cell database, GSCLIB045), for the CAPH and STRATUS
derived designs, while VIVADO is not usable in the ASIC flow. Since memories in the
design are limited and, as it will be clearer in Section 4.4, concurrent read and write accesses
are required in some actors, specific memory library and compilers have not been adopted
but all the sequential logic is implemented through FFs. Resource occupancy, frequency
and power estimation data (see Table 4) refer to post-synthesis designs and have been
obtained with the Cadence Genus Synthesis Solution. For accurate power estimation,
real post-synthesis switching activity has been retrieved using Cadence Xcelium Parallel
Logic Simulation. Resource and power numbers are gathered at 100 MHz for all the
designs to provide a fair comparison with FPGA ones, whose maximum frequency is
slightly above 100 MHz. Applying different CG strategies resulted in a negligible resource
overhead, always below 0.25%. Please note that in the region case it is more than one order
of magnitude lower than the others. When STRATUS is used to generate the actors, due to
additional busy signals and logic in the actor level gates (see Section 3.2.1), actor and multi
CG require more resources.

Table 4 shows also that CG never impacts on the maximum achievable frequency for
both the considered HLS, independently from the entity of such frequency. Indeed, STRA-
TUS designs are twice faster than CAPH ones: shorter critical paths are there since STRA-
TUS actors require several clock cycles to fire, thus involving less combinatorial logic within
sequential one. In particular, STRATUS designs have the combinatorial datapath broken
by registers, resulting in slower execution (it requires more than one clock cycle) but at a
higher maximum achievable frequency.

Table 4. Area occupancy (in terms of Gate Equivalent, GE), maximum achievable frequency and
dynamic power consumption results for the considered designs targeting an ASIC technology.
% refers to the percentage of variation with respect to the base design.

HLS Design
Area Fmax Dynamic Power (mW)

(GE) (MHz) 8 tap 5 tap 3 tap

CAPH

base 371,593 208.3 23.99 23.46 23.09
actor +0.11% +0.0% −34.5% −46.7% −59.9%

region +0.01% +0.0% −15.1% −35.4% −51.5%
multi +0.11% +0.0% −34.5% −46.8% −60.1%

STRATUS

base 428,929 555.6 29.98 29.81 29.70
actor +0.24% +0.0% −58.9% −73.2% −81.7%

region +0.00% +0.0% −8.2% −27.5% −66.2%
multi +0.24% +0.0% −59.2% −75.4% −85.3%

Power data reveal the benefits of applying CG strategies on such kind of systems.
As expected, since every CG strategy is acting on the number of unused resources, the more
the number of taps are, the larger the used resources and power consumption are. Compar-
ing the different CG strategies, we can notice how region CG designs are almost always the



Electronics 2021, 10, 73 14 of 20

less efficient ones, since they are capable of acting only on the inactive LRs of the system.
Actor and multi CG designs, instead, are capable of saving power also in the active LRs,
where they act basically in the same way. The multi CG approach seems to be the best choice
for both CAPH and STRATUS. This means that the application of the region CG on top of
the actor one makes it possible to save more power due to the clock tree, and it is mostly
due to the inactive LRs where multi and actor behave differently. In general, the bigger the
inactive LR is, the higher the power saving is with both actor and multi solutions. Actor CG
approach acts on the inactive actors and related FIFOs, thus shutting down entire inactive
LRs since all the FIFOs are empty there. While multi CG gates the whole region clock tree,
which is wider for bigger LRs.

We can notice as the benefits of multi CG approach with respect to the actor one depend
on the considered HLS engine. While for STRATUS the benefit is almost tangible for all the
configurations, this is not in the CAPH case. This fact comes from the higher complexity of
the gate modules adopted for STRATUS designs (that have to consider the busy signal too)
with respect to the ones used for CAPH ones. In fact, shutting off also the gate modules
results in a larger saving when they are more complex.

Summary and Hints
When an ASIC technology is targeted, multi level CG is always the most effective choice to optimize power, even if the
resulting additional saving with respect to a simpler actor level CG strategy is not always appreciable. Nevertheless,
going from actor to multi, the resource overhead increment is extremely low and there is no frequency drop, thus multi
level CG should always be applied. Considering a future automation of the optimal CG application, the multi shall be
to be considered in all cases, but when the area occupancy is critical, meaning that by looking at the base design the
area is already close to the constraint. In this last case a trade-off which leads to sub-optimal power efficiency but
with smaller area overhead (actor or region CG) could be preferable.
Considering different HLS engines and, in turn, different HDL descriptions for actors and gates, simpler combinatorial
actors, such as in CAPH case, lead to smaller savings when actor level CG (actor or multi designs) is adopted. On the
contrary, region level CG is more effective with such kind of HLS tools. Moreover, region level CG can reach similar
savings than other solutions but employing less resources when most of the design is often inactive (as in the 3 tap
case), if a CAPH-like HLS is adopted. If a STRATUS-like HLS is used, instead, actor or multi solutions are always
significantly better options than the simple region one, regardless the configurations usage frequency.

4.3. Assessment on FPGA

FPGA assessment has been conducted on all the three considered HLS tools (CAPH,
STRATUS and VIVADO) targeting an Artix-7 XC7A50TCSG324 28 nm device. Resource
occupancy data have been gathered by means of Vivado and refer to post-synthesis (out of
context) designs. Frequency data are instead obtained through complete implementation
of the designs with Vivado, using different timing constraints. Power data have been
extracted with Vivado Power Estimator, using real post-synthesis switching activity (Vivado
Simulator has been used for simulations). Resource and power numbers are gathered
at 100 MHz, which is a bit lower than the minimum among the maximum achievable
frequencies of the FPGA designs.

As we said, in the latest FPGA devices, FFs and BRAMs provide dedicated clock
enable inputs for performing CG. To exploit such features, it is necessary to let synthesis
tools know which are the gated clocks, so that they can use the gating logic to drive the
clock enable inputs, instead of acting directly on the clock in a less efficient manner. In
the proposed exploration, this option has been enabled according to the process described
by the considered FPGA and synthesis tool vendor in Reference [35]. According to this
process, by properly setting the gated_clock_conversion Vivado synthesis parameter
and by accordingly introduce gated_clock attributes for the clocks to be gated in the HDL
descriptions, Vivado identifies the gating logic to drive the FFs and BRAMs clock enables.

In Table 5 it is observable the same trend of ASIC assessment in terms of resources
utilization. CG requires a very low overhead, up to 6.2% of LUTs and up to 1.3% of FFs
overall. DSPs and BRAMs, employed only for complex arithmetical operations and big data



Electronics 2021, 10, 73 15 of 20

storing, are not affected by CG. It is possible to notice that STRATUS designs experience
a larger resource overhead due to CG than other HLS tools. While in the ASIC case this
behaviour was simply caused by the more complex gating logic that involves also the actors
state in the actor and multi designs, in FPGA this is not the only reason. In fact, the larger
overhead is appreciable in the region designs too, where the CG strategy does not consider
the actor state. The premise we made on how the synthesizer uses the clock enable ports
can explain this different behaviour. Since every CG strategy acts on the clock enable port,
which is also used in base designs for automatic CG synthesis by Vivado, the combination
of automatic and explicit CG leads to a different resource overhead with respect to the
expected one.

Table 5. Resource occupancy and maximum achievable frequency for the considered designs target-
ing a FPGA technology. % refer to percentage of variation with respect to the base design.

HLS Design
Resources Fmax

LUTs FFs DSPs BRAMs (MHz)

CAPH

base 11,404 11,887 8 0 102.0
actor +1.6% +1.1% +0.0% +0.0% +0.0%

region +0.4% +0.0% +0.0% +0.0% −1.0%
multi +1.8% +1.2% +0.0% +0.0% −2.0%

STRATUS

base 8324 5067 32 7 111.1
actor +5.3% +1.2% +0.0% +0.0% +0.0%

region +5.4% +0.1% +0.0% +0.0% −2.2%
multi +6.2% +1.3% +0.0% +0.0% −6.3%

VIVADO

base 10,669 11,975 16 0 101.0
actor +0.7% +1.4% +0.0% +0.0% +0.0%

region +0.5% +0.2% +0.0% +0.0% +0.0%
multi +1.5% +1.3% +0.0% +0.0% −1.0%

In terms of frequency, CG can cause a drop due to additional delays coming from
the overhead logic. This drop is always present in the multi designs and it is maximum
using STRATUS HLS (−6.3% with respect to base), since it is the one with the biggest LUT
overhead overall. The actor designs do not present any additional frequency drop since the
added gating logic is driven by signals close to the gated sequential resources. Differently,
in region and multi designs, the gating modules consider top level signals, far from the
gated resources.

Power results, reported in Table 6, show as the effectiveness of the considered CG
strategies varies depending on the interpolator configuration and on the used HLS tool.
Indeed, CAPH and STRATUS designs are not able to save any power for the 8 tap configu-
ration, that has the highest amount of active resources. In such cases, the region CG strategy
is the one behaving worst, since the saving depends on the inactive logic (minimal in this
case). On the contrary, VIVADO CG designs save up to 6.3% of power with respect to the
base one, for all the considered CG strategies. Considering the 5 and 3 tap configurations,
CG designs are always capable of saving power. As in ASIC, the larger the inactive region is,
the higher the saving is. This means that going from 84% to 54% active actors (see Table 2),
that means going from 16% to 46% inactive actors, all the CG strategies for all HLS cases
start saving power. For all the considered HLS engines the lowest consuming design is a
CG solution running the 3 tap configuration, whose range of saving goes from the 8% in
CAPH to the 18.3% in STRATUS. Differently from ASIC results, the multi solution is not the
best option, apart from the STRATUS case in 3 tap configuration. In all the other cases, actor
CG achieves always the highest power saving. Such trend is due to the flattening of the CG
logic hierarchy operated by the synthesizer to optimize the resulting logic used to drive
clock enable ports. Thus, the multi advantages, due to clock tree and inactivity of actors



Electronics 2021, 10, 73 16 of 20

within regions, are often nullified by the synthesizer optimization. To better understand
these results, both base resource utilization and resource overhead due to CG have to be
considered. In particular, STRATUS designs behave worse than the others in the 8 tap
configuration, but better in the 3 tap configuration. The negative behavior in the 8 tap
case can be attributed to the larger resource overhead with respect to other HLS engines,
which prevent any power saving when most of the logic is on. On the other hand, as will
be extensively discussed in Section 4.4, most of the STRATUS power saving is obtained
from BRAMs, which are not used in the other designs. Since this saving happened to
be significant, it leads to a greater effectiveness of CG strategies in the 3 tap case, but is
nullified in the 8 tap, when all the BRAMs are active (since they are used by line_buffer
actors, which are all active in this case).

Summary and Hints
In summary, actor level CG is almost always the best choice on FPGA, guaranteeing the best power saving with limited
resource overhead and without frequency drop. However, when actors take more than one clock cycle to fire and
additional busy signals are necessary, multi CG could outperform actor CG in terms of power if most of the design is
inactive (such as for STRATUS in 3 tap configuration). More studies on these aspects are necessary to model and
automate CG application, due to the additional impact of the FPGA synthesizer choices/options.

Table 6. Dynamic power results for the considered designs targeting a FPGA technology. % refer to
the percentage of variation for with respect to the base design.

HLS Design
Dynamic Power (mW)

8 tap 5 tap 3 tap

CAPH

base 131 104 75
actor +0.0% −4.8% −8.0%

region +0.8% −2.9% −8.0%
multi +0.8% −3.8% −8.0%

STRATUS

base 107 80 60
actor +0.0% −6.3% −15.0%

region +1.9% −5.0% −16.7%
multi +0.0% −6.3% −18.3%

VIVADO

base 128 99 70
actor −6.3% −8.1% −11.4%

region −2.3% −6.1% −11.4%
multi −5.5% −6.1% −10.0%

4.4. Impact of Implementation Choices: The STRATUS HLS Case

STRATUS designs seem to behave differently from the others in the FPGA assessment.
As described in Section 4.1, such HLS generates actors employing more than one clock
cycle to fire and demanding a busy signal to drive the clock. In addition to the larger
number of clock-cycles to fire, STRATUS presents another relevant difference with respect
to the other HLS engines: by default, it considers only single port RAMs in the HLS process.
In the evaluated test case, the line_buffer actor, that is in charge of storing one row of the
horizontally interpolated image, writes a new element in its memory while reading the
old one during each action-firing. Concurrent write/read accesses imply that if a RAM
resource is adopted, then it should be double port. To overcome this issue, two possibilities
have been explored:

• a bank of registers instead of a RAM for implementing the actor;
• two single-port RAMs with complementary read/write;

Both the possibilities require to act on the HLS with pragmas or code refactoring. Data
reported in Tables 5 and 6 labeled as STRATUS refer to the second possibility, the one
employing two single port RAM resources. For this reason the STRATUS trend in FPGA is



Electronics 2021, 10, 73 17 of 20

different from the other HLS tools, and a deeper investigation of implementation aspects
was needed to analyze the impact of the possible choices.

The following discussion compares the solution which uses two single-port RAMs
(STRATUS in Table 5) with the register bank solution (STRATUSr in Table 7). In the
STRATUSr base design, LUTs and FFs are almost doubled with respect to the STRATUS ones,
meaning that implementation moved from coarser-grain storing (BRAMs) and computing
(DSPs) resources to finer-grain ones (FFs and LUTs respectively). It is interesting what
happens in the CG STRATUSr solutions: the amount of LUTs explodes, so that the resulting
designs exceed the available resources on the target device. When registers are gated,
each of them is driven by a separated clock enable coming from dedicated gating logic.
When BRAMs, instead of FFs, are employed for implementing the memories (STRATUS
design), less LUTs are necessary to gate them, since more than one register and more than
one bit is fitting in one single BRAM resource, thus requiring less gating logic. Due to
the target device fitting issue, the frequency analysis for the STRATUSr designs has been
carried out only in the base case. The achievable frequency is 111.1 MHz, as in the STRATUS
base design.

Table 7. Comparison of the resource occupancy for STRATUS and STRATUSr designs. % column
indicates the percentage of variation with respect to the base design. * exceeds the available resources
in the target device (32,600 for LUTs).

HLS Design LUTs FFs DSPs BRAMs

STRATUS

base 8324 5067 32 7
actor +5.3% +1.2% +0.0% +0.0%

region +5.4% +0.1% +0.0% +0.0%
multi +6.2% +1.3% +0.0% +0.0%

STRATUSr

base 14,322 13,121 24 0
actor +144.0% * +0.2% +0.0% +0.0%

region +144.4% * -0.1% +0.0% +0.0%
multi +144.6% * +0.3% +0.0% +0.0%

The huge amount of LUTs necessary to gate the equally large number of sequential
resources is reflected directly on power performance as shown in Table 8. From the
STRATUSr 8, 5 and 3 tap total entries, none of the proposed CG solutions is capable of
providing power saving. Rather, every CG solution is consuming more power than the
base one, from +30% of the actor CG design in the 3 tap configuration, to the +54% of the
multi one in the 8 tap configuration. Looking more in detail at the different contributions
of the dynamic power consumption in the STRATUSr designs, it is possible to observe
a saving in terms of clock related power, that is the contribution due to clock buffers
and sequential logic. Thus, the desired saving is present also in STRATUSr, since clock
related power is always decreased in CG designs with respect to the base one. However,
such saving is not visible on the total dynamic power amount due to power overheads
in other contributions. A power overhead is present in signal and logic terms, which are
related to signal propagation and logic resources within slices (including LUTs) respectively.
Signal and logic terms for actor, region and multi CG designs have a considerable increase
from a minimum of +39% for signal in the 3 tap configuration to a maximum of +153% for
logic in the 8 tap one. Please, notice that, even if it is not visible in Table 8, the increase
is due to the higher number of signal and resources, not to an increase on the power
consumption of each of them. In summary, the observed behavior is directly connected
to the specific implementation of CG STRATUSr designs, where a big number of FFs
requires a big number of gating signals and logic. Taking a look at STRATUS 8, 5 and 3 tap
entries of Table 8 it is possible to appreciate how, also in this case, CG designs have an
overhead in terms of signal and logic contributions, since additional logic and signals are
present with respect to the base design. However, in the STRATUS case, the overheads



Electronics 2021, 10, 73 18 of 20

are lower (up to +7% in the logic 8 tap case) and do not overcome the benefits obtained
by other contributions. These latter are clock, as for STRATUSr designs, and BRAM, not
present before.

Table 8. Dynamic power results focus for the two alternative STRATUS designs: with RAM based
line_buffer actors (STRATUS) or with register based line_buffer actors (STRATUSr). Actor, region and
multi columns report the percentage of variation with respect to the base design.

Power

STRATUS STRATUSr

ba
se

ac
to

r

re
gi

on

m
ul

ti

ba
se

ac
to

r

re
gi

on

m
ul

ti

8 tap

total 107 +0 +2 +0 116 +54 +50 +56
clock 19 −5 +0 −5 34 −21 −21 −21
signal 39 +3 +0 +3 46 +48 +43 +50
logic 28 +7 +4 +7 32 +150 +141 +153
dsp 7 +0 +0 +0 4 +0 +25 +25

bram 14 −21 +0 +0 0 +0 +0 +0

5 tap

total 80 −6 −5 −6 85 +46 +42 +47
clock 18 −11 −6 −11 30 −17 −17 −17
signal 26 +0 +0 +0 30 +47 +43 +50
logic 19 +5 +5 +5 21 +148 +138 +148
dsp 5 +0 +0 +0 3 +0 +0 +0

bram 13 −46 −38 −46 0 +0 +0 +0

3 tap

total 60 −15 −17 −18 60 +33 +30 +33
clock 16 −6 −6 −6 28 −14 −14 −14
signal 16 +0 +0 +0 18 +39 +39 +39
logic 12 +0 +0 +0 13 +123 +115 +123
dsp 3 +33 +0 +33 2 +0 +0 +0

bram 16 −69 −75 −75 0 +0 +0 +0

Summary and Hints
From the provided focus on implementation aspects it is clear how the behaviour of the applied CG strategy is
strongly related to the specific implementation. This latter not only depends on the adopted HLS engine, despite all
the examples in this section are focused on the usage of the STRATUS HLS engine, but also on code refactoring and
pragmas employed for code generation. Both functional aspects, that is, number of clock-cycles required for actor
firings, and non-functional aspects, that is, target technology resources employed to realize actors, are important.
To model these aspects and take them into account when applying CG automatically, back annotated synthesis data
could be considered, that is, the target resources employed to realize actors.

5. Conclusions

Embedded electronics has entered in the era of cyber physical systems and internet
of things. Adaptivity and heterogeneity turned out to be useful to cope with such an
extremely challenging context. At the same time, power optimization and design effort
minimization are crucial, and should be both met, to speed-up time to market without
compromising performance. Dataflow based reconfigurable HW accelerators constitute
a suitable solution for the addressed scenario, delivering heterogeneity and adaptivity,
while being supported by tools to relieve designers from low level details definition.

In this work we investigated the mutual impact between different clock gating strate-
gies and some high level synthesis tools that can be adopted to derive the HW specifications,
under the perspective of future automation of the optimal clock gating for the chosen tar-
get and design environment. The investigated clock gating strategies involve literature
solutions and a new proposed one, each of them acting at a different level, while the consid-



Electronics 2021, 10, 73 19 of 20

ered high level synthesis engines come from both industry and academia, and evaluated
targets are both ASIC and FPGA. The final aim of the conducted study is to understand
if useful hints for future design automation, optimally applying CG on the addressed
devices, can be retrieved by the proposed preliminary work. Results show that, for ASIC
target technologies the new proposed multi level clock gating seems to be always the best
choice, but when resources are critical. In case of FPGAs, instead, actor level clock gating
seems to be preferable, but for complex actors and when most of the design is inactive.
However, as deeply discussed, high level synthesis knobs produce implementation differ-
ences, which have an impact on the clock gating effectiveness, thus the back annotation of
implementation details could be useful to pursue optimal automated system generation.

Future studies will be directed towards a deeper characterization of the implemented
actors and the definition of models to automate the process and support designers in the
definition of the proper clock gating strategy to be selected, according to the addressed
targeted technology, the chosen high level synthesis flow and the application configurations
usage frequency. In particular, the plan is to implement an initial automated strategy from
the outcomes of the proposed work, to test it on a wider set of applications, and to validate
and refine the same strategy in order to achieve the optimal performance.

Author Contributions: Individual contributions are divided as follows: conceptualization, all;
methodology, all; validation, F.R.; investigation, F.R.; data curation, F.R. and C.S.; writing—original
draft preparation, F.R., T.F. and C.S.; writing—review and editing, F.R., T.F. and C.S.; visualization,
F.R., T.F. and C.S.; supervision, L.R. and C.S.; project administration, L.R. and C.S.; funding acquisition,
L.R. and C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is part of the FitOptiVis project funded by the ECSEL Joint Undertaking under
grant number H2020-ECSEL-2017-2-783162.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grand View Research FPGA Market. Available online: https://www.grandviewresearch.com/industry-analysis/fpga-market

(accessed on 2 January 2021).
2. Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the Symposium on Object and Component-Oriented

Real-Time Distributed Computing, Orlando, FL, USA, 5–7 May 2008; pp. 363–369.
3. Dutt, N.; Jantsch, A.; Sarma, S. Toward Smart Embedded Systems: A Self-Aware System-on-Chip (SoC) Perspective. Trans. Embed.

Comput. Syst. 2016, 15, 1–27. [CrossRef]
4. Xilinx. Vivado Design Suite User Guide—High-Level Synthesis, UG902. Available online: https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf (accessed on 2 January 2021).
5. Pursley, D.; Yeh, T. High-level low-power system design optimization. In Proceedings of the Symposium on VLSI Design,

Automation and Test, Hsinchu, Taiwan, 24–27 April 2017; pp. 1–4.
6. Sérot, J.; Berry, F. High-Level Dataflow Programming for Reconfigurable Computing. In Proceedings of the Symposium on

Computer Architecture and High Performance Computing Work, Paris, France, 22–24 October 2014; pp. 72–77.
7. Gagarski, K.; Petrov, M.; Moiseev, M.; Klotchkov, I. Power specification, simulation and verification of SystemC designs.

In Proceedings of the 2016 IEEE East-West Design Test Symposium (EWDTS), Yerevan, Armenia, 14–17 October 2016; pp. 1–4.
[CrossRef]

8. Macko, D. Contribution to Automated Generating of System Power-Management Specification. In Proceedings of the 2018
IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Budapest, Hungary,
25–27 April 2018; pp. 27–32.

9. Lopes, J.; Sousa, D.; Ferreira, J.C. Evaluation of CGRA architecture for real-time processing of biological signals on wearable
devices. In Proceedings of the 2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun,
Mexico, 4–6 December 2017; pp. 1–7.

10. Palumbo, F.; Fanni, T.; Sau, C.; Meloni, P.; Raffo, L. Modelling and Automated Implementation of Optimal Power Saving
Strategies in Coarse-Grained Reconfigurable Architectures. J. Electr. Comput. Eng. 2016, 2016, 4237350. [CrossRef]

https://www.grandviewresearch.com/industry-analysis/fpga-market
http://dx.doi.org/10.1145/2872936
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
http://dx.doi.org/10.1109/EWDTS.2016.7807731
http://dx.doi.org/10.1155/2016/4237350


Electronics 2021, 10, 73 20 of 20

11. Bezati, E.; Casale-Brunet, S.; Mattavelli, M.; Janneck, J.W. Clock-Gating of Streaming Applications for Energy Efficient Implemen-
tations on FPGAs. Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 36, 699–703. [CrossRef]

12. Nane, R.; Sima, V.M.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey and
Evaluation of FPGA High-Level Synthesis Tools. Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 35, 1591–1604. [CrossRef]

13. Rubattu, C.; Palumbo, F.; Sau, C.; Salvador, R.; Sérot, J.; Desnos, K.; Raffo, L.; Pelcat, M. Dataflow-Functional High-Level Synthesis
for Coarse-Grained Reconfigurable Accelerators. Embed. Syst. Lett. 2019, 11, 69–72. [CrossRef]

14. Fanni, T.; Rodríguez, A.; Sau, C.; Suriano, L.; Palumbo, F.; Raffo, L.; de la Torre, E. Multi-Grain Reconfiguration for Advanced
Adaptivity in Cyber-Physical Systems. In Proceedings of the 2018 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Cancun, Mexico, 3–5 December 2018; pp. 1–8.

15. Bezati, E.; Casale-Brunet, S.; Mosqueron, R.; Mattavelli, M. An Heterogeneous Compiler of Dataflow Programs for Zynq
Platforms. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 1537–1541.

16. Beaumin, C.; Sentieys, O.; Casseau, E.; Carer, A. A coarse-grain reconfigurable hardware architecture for RVC-CAL-based design.
In Proceedings of the 2010 Conference on Design and Architectures for Signal and Image Processing (DASIP), Edinburgh, UK,
26–28 October 2010; pp. 152–159.

17. Puri, R.; Stok, L.; Bhattacharya, S. Keeping hot chips cool. In Proceedings of the 42nd Annual Design Automation Conference,
San Diego, CA, USA, 13–17 June 2005; pp. 285–288.

18. Zhang, Y.; Roivainen, J.; Mammela, A. Clock-Gating in FPGAs: A Novel and Comparative Evaluation. In Proceedings of the 9th
EUROMICRO Conference on Digital System Design (DSD’06), Dubrovnik, Croatia, 30 August–1 September 2006; pp. 584–590.

19. Eyerman, S.; Eeckhout, L. Fine-grained DVFS using on-chip regulators. Trans. Arch. Code Opt. 2011, 8, 1–24. [CrossRef]
20. Fanni, T.; Sau, C.; Raffo, L.; Palumbo, F. Automated Power Gating Methodology for Dataflow-Based Reconfigurable Systems. In

Proceedings of the 12th ACM International Conference on Computing Frontiers, Ischia, Italy, 18–21 May 2015.
21. Xilinx. Vivado Design Suite User Guide—Synthesis, UG901. Available online: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf (accessed on 2 January 2021).
22. Cadence. Genus Synthesis Solution. Available online: https://www.cadence.com/en_US/home/tools/digital-design-and-

signoff/synthesis/genus-synthesis-solution.html (accessed on 2 January 2021).
23. Donno, M.; Ivaldi, A.; Benini, L.; Macii, E. Clock-Tree Power Optimization Based on RTL Clock-Gating. In Proceedings of the

DAC03: 2003 40th Annual Design Automation Conference, Anaheim, CA, USA, 2–6 June 2003; pp. 622–627.
24. Osborne, W.G.; Luk, W.; Coutinho, J.G.; Mencer, O. Reconfigurable design with clock gating. In Proceedings of the 2008

International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Samos, Greece, 21–24 July
2008; pp. 187–194.

25. Palumbo, F.; Sau, C.; Raffo, L. Power-awarness in coarse-grained reconfigurable designs: A dataflow based strategy. In Proceed-
ings of the 2014 IEEE Workshop on Signal Processing Systems (SiPS), Belfast, UK, 20–22 October 2014; pp. 1–6.

26. Özbaltan, M.; Berthier, N. Exercising Symbolic Discrete Control for Designing Low-power Hardware Circuits: An Application to
Clock-gating. IFAC-PapersOnLine 2018, 51, 120–126. [CrossRef]

27. Fanni, T.; Li, L.; Viitanen, T.; Sau, C.; Xie, R.; Palumbo, F.; Raffo, L.; Huttunen, H.; Takala, J.; Bhattacharyya, S.S. Hardware design
methodology using lightweight dataflow and its integration with low power techniques. J. Syst. Arch. 2017, 78, 15–29. [CrossRef]

28. Li, L.; Sau, C.; Fanni, T.; Li, J.; Viitanen, T.; Christophe, F.; Palumbo, F.; Raffo, L.; Huttunen, H.; Takala, J.; et al. An integrated
hardware/software design methodology for signal processing systems. J. Syst. Arch. 2019, 93, 1–19. [CrossRef]

29. Musab, M.; Yellampalli, S. Study and implementation of multi-VDD power reduction technique. In Proceedings of the 2015
International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 8–10 January 2015; pp. 1–4.
[CrossRef]

30. Qamar, A.; Muslim, F.B.; Iqbal, J.; Lavagno, L. LP-HLS: Automatic power-intent generation for high-level synthesis based
hardware implementation flow. Microprocess. Microsyst. 2017, 50, 26–38. [CrossRef]

31. Fanni, T.; Sau, C.; Meloni, P.; Raffo, L.; Palumbo, F. Power and Clock Gating Modelling in Coarse Grained Reconfigurable Systems.
In Proceedings of the CF’16: Computing Frontiers Conference, Como, Italy, 16–19 May 2016; pp. 384–391.

32. Xilinx. Analysis of Power Savings from Intelligent Clock Gating. 2012. Available online: https://www.xilinx.com/support/
documentation/application_notes/xapp790-7-series-clock-gating.pdf (accessed on 2 January 2021).

33. Bilsen, G.; Engels, M.; Lauwereins, R.; Peperstraete, J. Cyclo-static data flow. Acoust. Speech Signal Process. 1995, 5, 3255–3258.
34. Sau, C.; Palumbo, F.; Pelcat, M.; Heulot, J.; Nogues, E.; Menard, D.; Meloni, P.; Raffo, L. Challenging the Best HEVC Fractional

Pixel FPGA Interpolators With Reconfigurable and Multifrequency Approximate Computing. Embed. Syst. Lett. 2017, 9, 65–68.
[CrossRef]

35. Xilinx. Gated Clock Conversion in Vivado Synthesis. Available online: https://forums.xilinx.com/t5/Design-and-Debug-
Techniques-Blog/Gated-Clock-Conversion-in-Vivado-Synthesis/ba-p/982650 (accessed on 2 January 2021).

http://dx.doi.org/10.1109/TCAD.2016.2597215
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1109/LES.2018.2882989
http://dx.doi.org/10.1145/1952998.1952999
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
http://dx.doi.org/10.1016/j.ifacol.2018.06.289
http://dx.doi.org/10.1016/j.sysarc.2017.06.003
http://dx.doi.org/10.1016/j.sysarc.2018.12.010
http://dx.doi.org/10.1109/ICCCI.2015.7218149
http://dx.doi.org/10.1016/j.micpro.2017.02.002
https://www.xilinx.com/support/documentation/application_notes/xapp790-7-series-clock-gating.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp790-7-series-clock-gating.pdf
http://dx.doi.org/10.1109/LES.2017.2703585
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Gated-Clock-Conversion-in-Vivado-Synthesis/ba-p/982650
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Gated-Clock-Conversion-in-Vivado-Synthesis/ba-p/982650

	Introduction
	Background
	Model-Based Design for Reconfigurable HW Accelerators
	Automated Power Optimization and Clock Gating

	Materials & Methods
	HLS Tools
	Clock Gating Application Levels
	Actor Level
	Region Level
	Multi Level


	Results
	Designs Under Test
	Assessment on ASIC
	Assessment on FPGA
	Impact of Implementation Choices: The STRATUS HLS Case

	Conclusions
	References

