
electronics

Article

Layer-Wise Network Compression Using Gaussian Mixture Model

Eunho Lee and Youngbae Hwang *

����������
�������

Citation: Lee, E.; Hwang, Y.

Layer-Wise Network Compression

Using Gaussian Mixture Model.

Electronics 2021, 10, 72. https://

doi.org/10.3390/electronics10010072

Received: 10 November 2020

Accepted: 30 December 2020

Published: 3 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics Engineering, Chungbuk National University, Cheongju-si 28644, Chungbuk, Korea;
ehlee@cbnu.ac.kr
* Correspondence: ybhwang@cbnu.ac.kr; Tel.: +82-43-261-3641

Abstract: Due to the large number of parameters and heavy computation, the real-time operation
of deep learning in low-performance embedded board is still difficult. Network Pruning is one
of effective methods to reduce the number of parameters without additional network structure
modification. However, the conventional method prunes redundant parameters up to the same
rate for all layers. It may cause a bottleneck problem, which leads to the performance degradation,
because the minimum number of optimal parameters is different according to the each layer. We
propose a layer adaptive pruning method based on the modeling of weight distribution. We can
measure the amount of weights close to zero accurately by applying Gaussian Mixture Model (GMM).
Until the target compression rate is reached, the layer selection and pruning are iteratively performed.
The layer selection in each iteration considers the timing to reach the target compression rate and
the degree of weight pruning. We apply the proposed network compression method for image
classification and semantic segmentation to show the effectiveness of the proposed method. In the
experiments, the proposed method shows higher compression rate during maintaining the accuracy
compared with previous methods.

Keywords: network pruning; network compression; Gaussian mixture model

1. Introduction

Since the growth of Deep Neural Networks (DNNs), significant performance has been
achieved in a variety of applications, such as image classification [1,2], object detection [3,4],
and semantic segmentation [5–8]. In general, recent DNNs have been very deep and
have tremendous parameters to consider large-scale datasets. This makes DNNs more
computationally expensive and memory inefficient. Thus, it is hard to implement in
resource limited systems, such as mobile devices or self-driving vehicles.

To address this problem, there are various efforts to reduce the computation and mem-
ory size. In image classification, from the conventional convolution network, there are some
remarkable ways by proposing the network structure modification or the approximated
computation of convolution [9–12]. Even though they have shown comparable classifica-
tion accuracy to the state of the art methods with much reduced number of parameters,
this approach is not directly adjustable to control the relationship between the number of
parameters and the accuracy. In terms of compatibility, it is better to remain the current
network structure and make it efficiently. For that purpose, network compression is a pop-
ular way to reduce the computation without changing the network structure. Knowledge
distillation which transfers the knowledge of big network to small target network [13–16],
bit quantization for saving the memory by quantizing the weight (‘Weight’ in this paper in-
dicates the coefficient of filters using the convolution operation, which is usually trained by
the learning process.) of model [17–20] and network pruning that removes the redundant
portion of the network have been studied in the field of network compression.

Network pruning can be categorized into structured and unstructured pruning. Struc-
tured pruning removes the channel level of the network [21,22] so that it directly decreases
computation complexities of network. Consequently, it brings the speed up; however, it

Electronics 2021, 10, 72. https://doi.org/10.3390/electronics10010072 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3400-0493
https://doi.org/10.3390/electronics10010072
https://doi.org/10.3390/electronics10010072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010072
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/72?type=check_update&version=3

Electronics 2021, 10, 72 2 of 16

does not reduce memory relatively much. On the other hand, unstructured pruning can
save the large memory size without an accuracy drop by removing the weight level of the
network [23,24]. Although unstructured pruning needs the special libraries that can skip
the computation for pruned weights, it has the advantage that saves the large memory by
removing considerable number of weights. Since a mobile phone or a resource-limited
embedded system usually has the limited memory, it is more important to compress the
amount of weights as much as possible with the minimum accuracy drop that can allow a
porting to those systems. In this paper, we try to have this advantage so that we mainly
focus on the unstructured pruning method.

Han et al. proposed pruning methods based on weight magnitude, which remove
weights lower than the specific threshold [23,25]. Since selecting the threshold affects the
performance of the pruned network directly, it is important to determine the appropriate
threshold to achieve the target compression rate without performance degradation. As-
signing the same threshold through all the layers may prune almost all weights for some
layers, which causes failure to train the network or a severe accuracy drop. Another option
for removing weights is pruning up to the same rate for all layers. However, it may not be
the optimal solution because each layer has a different number of weights and the weight
distribution. Because each layer in the deep learning network has the fundamental role
that generates a relevant output from an input data, it requires the sufficient number of
weights to accommodate the diversity of the target dataset. If most of weights in a specific
layer are pruned, that layer cannot be trainable due to incapacity of transferring important
information into the next layer. We can regard this problem as one of bottleneck problems,
which should be taken into account by network pruning methods.

For example, the first and the last convolution layer of VGG-16 has 1728 and
2.35 M weights, respectively. If we prune all layers with the same rate of 90 percents,
the first convolution layer remains only 172 weights that can cause this bottleneck problem,
while the last layer remains sufficient weights to be trained as explained in Reference [26].
Figure 1 shows the weight histogram of several convolution layers in VGG-16 network.
Figure 1a has a maximum magnitude about 0.4, while Figure 1c has about 0.01. This
implies that, when pruning each layer with the same rate, in some layers, relatively large
magnitudes are also removed, which leads to the loss of important information. In addition,
we can notice that the same threshold cannot be used because some layers are not pruned
at all with large thresholds, and some layers are pruned up to the whole weights with small
thresholds, as shown in Figure 1.

(a) Conv Layer 1 (b) Conv Layer 5 (c) Conv Layer 9
Figure 1. Weight histograms of some layers in a VGG-16 network. It shows that each layer has different weight distribution:
(a) has the maximum weight magnitude around 0.4; (b) has the maximum magnitude about 0.05; and (c) has the maximum
magnitude about 0.01.

In this paper, we propose a layer-wise pruning method. To prune each layer adaptively,
we should determine the optimal threshold for each layer. In a VGG-16 network, for
example, there are 13 convolutional layers and 3 fully connected layers so that we consider
16 threshold values. Our main idea is to use an intuitive idea that the more small magnitude

Electronics 2021, 10, 72 3 of 16

of weights in the layer, the more prune that layer. On this basis, we propose three steps in
the pruning procedure. First, the quantity of small magnitude of weights in each layer is
estimated using Gaussian Mixture Model (GMM). Second, the target layers to be pruned
are selected based on this estimation. The last, the selected layers are pruned with specific
compression rate. We repeat these three steps until we achieve the target compression rate.
By selecting the target layers with more small weights, the proposed not only can prune
relatively small weights effectively but also can alleviate the bottleneck problem.

2. Related Works

Recently, there have been various works on making the DNNs more efficient with
respect to the memory and computation. One of common ways is to modify the net-
work structure or to approximate the convolution computation. SqueezeNet [9] reduced
the network size using fire module which is composed of a squeeze convolution layer
and an expand convolution layer. It achieves better performance by downsampling later.
MobileNet [10] decreased the number of parameters using depth-wise and point-wise con-
volutions. ShuffleNet [11] reduced the computational cost without accuracy drop through
a point-wise group convolution and a channel shuffle. EfficientNet [12] simultaneously
considered the model’s depth scaling, width scaling, and resolution scaling. Then, it found
the optimal rat by experiment. Even though their trained models have much smaller net-
work sizes during maintaining the recognition performance, these methods are not easy to
apply another domain directly, for example, in object detection or semantic segmentation.

Instead, there is a way to compress the network. Knowledge distillation compresses
the network by transferring the knowledge of the teacher, a big network, to student
network, a small network. Hinton et al. [27] showed that a small network imitates the soft
max of a large network so that knowledge can be transferred. For better generalization and
faster execution, Fitnets suggested that not only outputs but also intermediate layers can
be resembled to a big network [13]. Due to the characteristic of sequential layer in DNNs,
Yim et al. [14] transferred the distilled knowledge considering the flow between layers.
However, it is not easy to transfer the knowledge if a gap between teacher and student is
large. Mirzadeh et al. [15] alleviated this gap by introducing a teacher assistant so that they
achieved better performance. Because the teacher’s performance should be guaranteed
for this teacher-student distillation network, Zhang et al. [16] suggested self knowledge
distillation without the teacher network. For more detailed surveys of different knowledge
distillation methods, we refer the readers to Reference [28].

Another way to reduce the network resource is a network pruning which removes
less meaningful connection from the trained network. Network pruning can be classified
into structured and unstructured pruning. Structured pruning removes less important
or redundant filters so that it reduces each layer’s channel size. Unstructured pruning
removes less meaningful or redundant weights during remaining the original structure.
Both methods can be directly applied to other existing networks, such as a classification
network [1,10,29] or semantic segmentation network [6,30].

To prune redundant channels or filters, structured pruning has been usually ap-
proached as an optimization problem. ThiNet (Thin Net) [31] used statistic information
computed from its next layer for the filter level pruning. NISP (Neuron Importance Score
Propagation), in Reference [32], measures the importance of the final response layer and
formulates network pruning as a binary integer optimization problem. Wen et al. [33]
compressed the network by applying group Lasso regularization in training. Li et al. [21]
selected unimportant filters via L1-norm. Then, they adopted a one-shot pruning and
retraining strategy. As adopting the regularization at batch normalization, Liu et al. [34]
made scaling factors in batch normalization to zero using L1 regularization that can remove
unnecessary channels. FPGM [22] pruned the filter that can be replaced other filters via
a Geometry median. Although structured pruning methods simultaneously reduce the
computation and the number of weights by removing filters, they cannot prune redundant

Electronics 2021, 10, 72 4 of 16

weights at all. There may be unremoved filters because some weights have important
information by applying the filter.

Unstructured pruning aims to remove the weight as much as possible by minimiz-
ing an accuracy drop. Optimal Brain Damage (OBD) [35] was proposed to remove the
unimportant weights using second-derivative information. Han et al. [23] pruned the
network based on weights magnitude and deep compression [25] applied quantization and
Hoffman coding for further network efficiency. Net-trim [36] learned sparse parameters
for each layer by minimizing reconstructed error. However, this method failed to achieve
high compression rate due to difficulty in optimization induced from an l0-norm or an l1
norm regularization term. Dong et al. [37] overcame this problem based on second order
derivatives of a layer-wise error function. Tartaglione et al. [38] proposed the method
that quantifies the output sensitivity to the parameters and lowers the absolute value of
parameters gradually. AutoPrune [24] automatically eliminated network redundancy with
recoverability, relieving the complicated prior knowledge required to design thresholding
functions.

3. The Proposed Method

The method for pruning the weight in the DNN is based on the magnitude of weights.
Simply, we can remove weights that are smaller than the specific threshold. Since the
weight distribution may be different according to the layer as in Figure 1, the weights can
be over- or under-pruned using a single threshold. Another way for weight pruning is
reducing the pre-defined percentage of weights for each layer [23,25]. Even though these
methods with the same rate for each layer guarantee the number of remaining weights to
some extent, they can suffer from the bottleneck problem due to extremely small number
of weights for the specific layer.

To solve the limitation of previous methods, we propose a layer-wise pruning method
that removes more weights for the layer including smaller weights close to zero. First, we
fit Gaussian Mixture Model (GMM) to the distribution of weights for each layer. Then,
layers are selected according to the probability that weights are zero. Finally, weights are
pruned with the specific rate in the selected layers.

3.1. Estimating the Weight Distribution Using the GMM

For layer-wise pruning, the evaluation for each layer should be done by counting the
number of weights close to zero. Intuitively, after constructing a histogram of weights, the
value corresponding to zero can be counted as the number of zeros in the layer. However,
as shown in Figure 1, a bin width in the histogram is not easy to determine due to the scale
variation in each layer. Instead of using the histogram, the Gaussian Mixture Model (GMM)
is used to fit the distribution of weights in the layer. To initialize parameters of Gaussian
distributions, a K-means clustering algorithm is used to minimize the objective function as:

arg max
S

K

∑
i=1

∑
w∈Si

∥∥w− µi
∥∥2, (1)

where S = {S1, S2, ..., SK} is a set of K clusters that have a mean µi, respectively. After
random initialization, associating all weights and computing centroids for each cluster are
alternately repeated until convergence.

A GMM model that represents a distribution of weights in a layer can be written as:

f (w) =
K

∑
i=1

πiN (w|µi, σi), (2)

Electronics 2021, 10, 72 5 of 16

where πi is the mixing coefficients, where:

K

∑
i=1

πi = 1 and πi ≥ 0, ∀i. (3)

N (·|µi, σi) is an i-th Gaussian distribution with mean µi and standard deviation σi. To
estimate more accuracy parameters in each Gaussian distribution from the initial values,
the Expectation and Maximization (EM) algorithm is applied to find maximum likelihood
solutions. In E-step, given the current estimate of the parameters, the conditional proba-
bility of a latent variable z which represents the assignment to one of Gaussians can be
computed by:

p(z = i|w) = p(z|w) =
πiN (w|µi, σi)

∑K
j=1 πjN (w|µj, σj)

. (4)

In M-step, the parameters of Gaussians are re-estimated given the current assignments as:

µi =
1
Ni

N

∑
n=1

p(z(n)|w)w(n), (5)

σi =
1
Ni

N

∑
n=1

p(z(n)|w)(w(n) − µi)(w(n) − µi)
T , (6)

πi =
Ni
N

where Ni =
N

∑
n=1

p(z(n)|w), (7)

where w(n) and z(n) indicate n-th weight and its assignment, respectively. N is the total
number of weights.

Figure 2 shows the modeling results for convolution layer 1 and fully connected layer
using the proposed GMM model and the conventional normal distribution. It is shown that
the distributions of weights cannot be modeled by a single Gaussian distribution due to
their non-symmetric and one-sided properties. The weight distribution is well fitted by the
proposed GMM model based on the initialization and iterative parameter estimation using
the K-means clustering and EM algorithm, respectively. From this accurate fitting results of
weight distributions, we can estimate the probability of weights on the value of zero.

(a) Convolution layer 1 (b) Fully connected layer 3

Figure 2. Modeling the weight of convolution layer 1 and fully connected layer 3 using Gaussian mixture model (GMM)
and Normal distribution: (a) shows that GMM modeling is better than Normal distribution in terms of sharpness at 0. And,
when using GMM, we can also model the complex weight shape, as shown in (b).

Electronics 2021, 10, 72 6 of 16

3.2. Layer Selection According to Redundancy

Instead of pruning all the layers in each step, the layers to be pruned in this step are
selected according to the probability of zero weights because the layer that the number
of weights close to zero is larger can have more redundant weights. However, the deter-
mination how many layers are selected in a single step is the corresponding problem. If
the number of selected layers is too small, it will take a long time to achieve the target
compression rate or fail to reach it. On the other hand, if the number of selected layers is
too large, it can achieve the target compression rate quickly, but our layer-wise pruning
scheme according to redundancy become less effective. To solve this issue, we determine
the number of selected layers as:

Ls = 1− eλ×Rc

eλ
. (8)

Ls is the rate of layers to be selected, which is determined by current compression rate,
Rc. Rc is a value between 0 and 1. In the earlier step, the large number of layers are selected.
This ensures that it prunes all the layers in the early steps to achieve the target compression
rate efficiently. As the steps go by, the number of selected layers decreases gradually to
remove weights only at the relatively more redundant layers. λ determines the steepness
of decreases, as shown in Figure 3. It controls the trade-off between the training time to
reach the target compression rate and the rapid consideration of more redundant layers.

(a) (b) (c)
Figure 3. LS Graph according to λ value. It determines the number of selected layers. (a) is Ls at λ = 6. (b,c) shows Ls

at λ = 8 and λ = 10, respectively. If current compression rate Rc is small, Ls is close to 1, which means almost all layers
are selected. Thus, it can reach the target compression rate quickly. And, when Rc is larger, Ls drop to zero. It means if
compression rate is sufficient to target, layers are selected in more detail.

3.3. Pruning of Selected Layers

The last procedure of our method is pruning selected layers. We chose the large
number of layers to be pruned in earlier steps to reach the target compression rate rapidly.
Because the distribution in each layer is different, applying a large compression rate at this
step would remove important weights at once, which results in performance degradation.
To prevent this problem, we apply a small compression rate at earlier step and gradually
increase the compression rate to reach the target compression rate as:

Ps = 1− e−k×Rc . (9)

Ps is a pruning rate in the current step and k is the parameter that control the steepness
to reach the target compression rate. Ps is also determined by the current compression rate
Rc. When the network is extremely compressed, the pruning rate in some layers would be
up to 100 percent, which means all weights are removed. However, applying Equation (9)
in each step, we can prevent this problem.

In Figure 4, the graph of Ps according to Rc and k. As the current compression rate
increases, the value of pruning rates increases gradually. By changing the value of K,

Electronics 2021, 10, 72 7 of 16

the momentum close to the higher pruning rate can be adjusted. The control parame-
ters, λ and k, should be considered simultaneously for the final compression rate and
classification accuracy.

(a) (b) (c)
Figure 4. Graph of PS according to k value. It determines each layers pruning rate. (a) is Ps at k = 4.0. (b,c) shows Ps

at k = 5.5 and k = 7.0, respectively. When the current compression rate Rc is small, almost all layers are selected in the
previous step. In this case, a small value of pruning rate Ps prevents the vanishing of large weights. Unlike this, when Rc is
large, only a few layers which has many small weight value are selected. Thus, the large value of Ps helps to significantly
reduce the redundancy and reach the target compression rate.

4. Experiments

In this section, we apply our layer-wise pruning algorithm not only to image classifica-
tion, which is usually utilized by other network compression methods, but also to semantic
segmentation, which shows that our method can be used in other deep learning networks.

4.1. Image Classification

We apply our method to a VGG network [1], which is one of representative networks
in image classification. The VGG network is the standard DNN that consists of convolution
layer and FC (fully connected) layer. In particular, VGG-16 is a very heavy network
consisting of 13 convolution layers and 2 FC layers, and it has 134M of parameters. Many
researches have attempted to compress this large-size network because it is not easy to
operate in the resource limited devices.

We use the CIFAR10 dataset to evaluate the classification performance. For implemen-
tation, we use the pytorch library (1.5.0 verison). The reference model trained with a SGD
(Stochastic Gradient Descent) optimizer with decaying learning rate starting from 0.01 and
achieved 7.03% error. The target compression rate is over 98%, which is the same as 50 times
(×50) by the pruning process. For the comparison, we refer the performance of other meth-
ods in AutoPrune [24]. In Table 1, when we use the same rate to compress VGG-16 to the
×50, an error rate increased from 7.03% to 10.99%. This accuracy drop is rather severe
to employ it practically. Because the methods in Zhuang et al. [39] and Zhu et al. [40]
can be categorized as channel pruning, their performance in terms of compression rate is
comparably lower than other methods. However, they have another advantage of reducing
computational cost effectively due to direct removal of channels. Sparse VD to the ×65
with no accuracy drop. In case of AutoPrune [24], they compressed VGG-16 up to ×75
with little accuracy drop, 0.22%. Applying the proposed layer-wise method to compress
VGG-16, the network is shrunk up to ×225, and the error rate decreases to 6.89%. The
proposed method can generate the highly efficient network where remaining weights are
less than 1% of total weights with accuracy improvement from the baseline, as in Table 1.
It validates that the proposed pruning strategy based on GMM-based weight modeling
is effective.

Electronics 2021, 10, 72 8 of 16

Table 1. Comparison of different unstructured pruning method applying to VGG -16.

Methods CR Error Rate

Zhuang et al. [39] ×15.58 6.42% −→ 6.69%
Zhu et al. [40] ×8.5 6.01% −→ 5.43%
Sparse VD [41] ×65 7.55% −→ 7.55%
AutoPrune [24] ×75 7.60% −→ 7.82%

GMM-Based-Layerwise [Ours] ×225 7.03% −→ 6.89%

The remaining weight and compression rate for each layer is shown in Table 2. In
VGG-16, from Conv 1 to Conv 8 are compressed at a relatively small rate. This means that
there are relatively larger magnitude in the front side of the network with less redundancy.
The layers in the back side of convolution layers from Conv 9 to Conv 12 and the FC layers 1
and 2 are massively pruned due to the large portion of small weights. Even though the huge
number of parameters are pruned, it does not have a significant impact on performance.
Interestingly, the compression rate of the final FC layer is comparably low. It means that
the final layer includes important information that has weights of large magnitude.

Table 2. Remaining weights and compression rate for each layer in VGG-16.

Layer Weight Remaining Weight Rate of Remainder

Conv 1 1728 124 7.18%
Conv 2 37 K 2.6 K 7.14%
Conv 3 74 K 5.2 K 7.14%
Conv 4 147 K 11 K 7.14%
Conv 5 294 K 21 K 7.14%
Conv 6 590 K 42 K 7.14%
Conv 7 590 K 42 K 7.14%
Conv 8 1.18 M 84 K 7.14%
Conv 9 2.36 M 3.5 K 0.15%
Conv 10 2.36 M 3.5 K 0.15%
Conv 11 2.36 M 3.5 K 0.15%
Conv 12 2.36 M 3.5 K 0.15%
Conv 13 2.36 M 169 K 7.14%

FC 1 102.76 M 154 K 0.15%
FC 2 16.78 M 25 K 0.15%
FC 3 41 K 26 K 62.3%

Total 134 M 596 K 0.44%

In Table 2, we can notice that VGG-16 has highly weight redundancy with a meaningful
value of only 0.6 M out of 134 M. Because the rate of remainder is different according to
layers, we can assume that the rate of remainder for a specific layer indicates the importance
of that layer. We select Conv 8 as a more important layer and Conv 12, 13 as less important
layers according to their rates of remainders in Table 2. As in Figure 5, by recovering
Conv 8, which means not compressing Conv 8, we can achieve a more accurate result than
the fully compressed model in Table 2 with 1 M more weights. However, by recovering
Conv 12 or 13, the accuracy is similar or even worse than the fully compressed model even
though they have 2 M more weights. From this experiment, we can notice that, if the rate of
remainder is higher for a layer, i.e., if the layer is less redundant after applying the proposed
layer-wise weight pruning method, we can regard the layer as a more important layer.

Electronics 2021, 10, 72 9 of 16

Figure 5. Comparison between the number of recovered weights and accuracy for selected layers.

Recently, efficient networks have been introduced by modifying the network structure
or approximating the convolution computation, like MobileNet [10]. MobileNet is one of
good options when we develop applications running in a mobile phone or an embedded
board. However, according to target platform, we may need more reduced network due
to the limitation of memory or processing time. As in Table 3, the proposed method can
reduce the number of weights up to less than 20% of original MobileNet network, while an
accuracy drop is less than 0.5%. Because the filter size of VGG-16 and MobileNet is 3× 3,
we applied our method to GoogleNet [29], which has 5× 5 filters. Our method compressed
GoogleNet less than 10% from the original network, while an accuracy drop is less than
1%, as shown in Table 3. From these experiments, we can show that the proposed method
can be applied to various networks, regardless of network efficiency and mask size.

Table 3. The results by applying our method to MobileNetV2 and GoogleNet (CIFAR10 dataset).

Network Method Accuracy CR No. of Weights

MobileNet [42] Original 94.59 - 2.2 M
pruned by our method 94.11 ×6.01 0.36 M

GoogleNet [29] Original 92.63 - 6.14 M
pruned by our method 91.96 ×10.78 0.57 M

To show the limitation of the amount of network size reduction, we have tried to
compress the network as much as possible. As in Figure 6a, a percentage of zeros is from
98.65% to 99.91% when we tried 5 times. Interestingly, the loss is totally not reduced as a
retraining step is processed when a percentage of zeros is the maximum value of 99.91%
in Figure 6b. Consequently, the accuracy is not increased for the case in Figure 6c. When
the network is severely reduced so that a specific layer with significantly small remaining
weights cannot transfer relevant information into the next layer, the training cannot be
proceeded due to the bottleneck problem explained in Section 1. When a percentage of
zeros is not the maximum value, we can see that the loss becomes reduced, and the accuracy
is increased, as shown in Figure 6b,c. There is the limitation of network size reduction,
which the network cannot be trainable due to the bottleneck problem. We should consider
that the compressed network does not reach to this maximum value during the process of
network compression.

Electronics 2021, 10, 72 10 of 16

(a) (b) (c)
Figure 6. The results by compressing the network as much as possible: (a) the minimum, maximum, and mean percentage
of zeros (related with compression rate), (b) corresponding retraining loss, and (c) accuracy for the maximum percentage
and the non-maximum percentage, respectively.

In Equations (8) and (9), there are control parameters, λ and k, which can affect the
performance of the proposed pruning method. Accordingly, we show the compression rate
and accuracy according to varying λ and k values in Figure 7. We tested k from 5.5 to 7
with 0.5 interval, and λ from 6 to 10 with 1 interval. Each value of compression rate and
accuracy is obtained by averaging of performing 5 times. In case of small k, there is no
further compression through λ is increasing. On the other hand, when k is sufficiently large,
the network is more compressed according to the increase of λ, as in Figure 7a. In addition,
in Figure 7b, accuracy decreases relatively slowly at k = 7. Therefore, the compression rate
and accuracy have the trade-off relationship when we select sufficiently large k values. We
select k = 7 and λ = 9 for all of our experiments.

(a) (b)
Figure 7. (a) The value of compression rate according to k and λ. (b) The value of accuracy according to k and λ. If k is
small, the network cannot be compressed more, and performance decreases more, according to changing of λ. On the other
hand, when k is sufficiently large, the network can be compressed with high compression rate, and accuracy drop is not too
severe, according to changing of λ.

As mentioned earlier, the performance could be degraded when the specific layers are
pruned severely due to the bottleneck problem. Figure 8 shows the weight distribution
after the training in the original network, the pruned network using the same rate, and the
pruned network based on GMM, respectively. In the layer of small number of weights, as
shown in Figure 8a,d, the distribution of weights has different profiles from the original or
GMM-based network due to the same rate pruning applied to initially small number of
weights. Furthermore, in FC layer 3, most weights around the zero are pruned. Contrarily,
in the layer of large number of weights in Figure 8b,c, the great number of weights close to

Electronics 2021, 10, 72 11 of 16

zero are remaining redundantly in the same rate pruning method compared with the GMM-
based pruning method. From this layer-level analysis of weight distributions, the proposed
GMM-based pruning method not only preserves the sufficient number of weights in the
small-sized layers to escape from the bottleneck problem but also reduces the redundant
number of weights to compress the network more effectively.

(a) Convolution layer 2 (b) Convolution layer 12

(c) Fully connect layer 1 (d) Fully connect layer 3

Figure 8. Compare the weight distribution between original network, network that pruned with the same rate and network
that pruned based on GMM. On the layers with less weights, like (a,d), a network applying the same rate maintains a few
weights, so it can cause network to suffer to train. However, GMM-based pruning leaves sufficient weights, and the network
can be trained more easily. On the other hand, at the layers with a lot of weights, such as (b,c), a network using same rate
pruning method has more redundancy of weights. But, when adopting the GMM-based pruning method, redundancy
weights are fairly removed.

In Figure 9, we show that the number of remaining weights for each layer in the same
rate pruning and GMM-based pruning methods, respectively. Compared with the same
rate pruning, the proposed layer-wise pruning has more weights from conv5 to conv9
layers but less weights from conv9 to conv12. Because the FC1 and FC2 layers are pruned
considerably, we can notice that these layers have very high redundancy compared with
other layers.

Electronics 2021, 10, 72 12 of 16

Figure 9. The graph of remaining weights of each layer. Difference between each layers weight is
smaller when using GMM-based pruning than applying same rate. It means GMM-based pruning
solves the bottleneck problem which can bring difficulty of training. In addition, it can reduce
considerable redundancy, so it can compress the network significantly.

4.2. Semantic Segmentation

We apply the proposed method to another deep learning network to show the effec-
tiveness of our method. Semantic segmentation is widely used in variety of applications,
such as self-driving. FCN (fully connected network) [5] proposed the 1 × 1 convolution
to enable segmentation through DNNs. However, FCN is hard to run in real-time due to
high computational cost. To reduce the computational cost, SegNet [30] was proposed,
which reduces the trainable parameters to execute in real time on the device with the strong
computing power, such as Nvidia TitanX GPU. But, they still have the 29 M parameter,
which could not run in real-time on the resource limited device.

We pre-trained a SegNet model using NYUv2 Dataset with an SGD optimizer with
decaying learning rate starting from 0.01, which is implemented using the pytorch library
(1.5.0 verison). We attempt to compress the model to the 98% over as in Section 4.1. We
compute the accuracy (pixel-wise accuracy = TN+TP

TN+TP+FN+FP) and mIoU (mean intersection

over union = 1
Nclass

∑Nclass
target∩prediction
target∪prediction) to show our method’s performance. In Table 4,

accuracy and mIoU of the reference model are 57.71 and 20.50, respectively. When com-
pressing this model to ×50 using the same rate pruning method [23], the accuracy and
mIoU drop to 53.64 and 16.90, respectively. Our compression method reduces up to com-
pression rate of ×64, while the accuracy and mIoU are 55.27 and 17.90, respectively. For
semantic segmentation network, the proposed method shows less accuracy drops, as well
as higher compression rate, compared with the conventional pruning method [23]. From
the result, only 0.44 M out of 29 M parameters can be used with moderate accuracy drops.
Because semantic segmentation should compute pixel-level classification labels, it has more
accuracy drops than image-level classification. It means that the weights in the semantic
segmentation have less redundancy.

Table 4. Comparison of unstructured pruning method applying to SegNet.

Methods CR Remaining Weight Accuracy mIoU

SegNet [30] - 29 M 57.71 20.50
Same Rate [23] ×50 0.58 M 53.64 16.90

GMM-Based-Layerwise (Ours) ×64 0.44 M 55.27 17.90

Electronics 2021, 10, 72 13 of 16

In Table 5, the remaining weights and compression rates are shown for each layer
when applying the proposed method. The initial layers in the encoder network are more
relevant than the last layers. Contrarily, the initial layers in the decoder network are
more redundant than the last layers except for the connecting layer between encoder and
decoder networks. This information can be helpful to design an efficient network for
semantic segmentation.

Table 5. Remaining weights and compression rate for each layer in SegNet.

Layer Weight Remaining Weight Rate of Remainder

Encoder 1 1728 1.1 K 66.44%
Encoder 2 37 K 4.2 K 11.27%
Encoder 3 74 K 8.3 K 11.27%
Encoder 4 147 K 16.6 K 11.27%
Encoder 5 295 K 33.3 K 11.27%
Encoder 6 590 K 1.8 K 0.31%
Encoder 7 590 K 1.8 K 0.31%
Encoder 8 1.18 M 3.7 K 0.31%
Encoder 9 2.36 M 7.4 K 0.31%
Encoder 10 2.36 M 7.4 K 0.31%
Encoder 11 2.36 M 7.4 K 0.31%
Encoder 12 2.36 M 7.4 K 0.31%
Encoder 13 2.36 M 7.4 K 0.31%

Decoder 1 2.36 M 266.1 K 11.27%
Decoder 2 2.36 M 7.4 K 0.31%
Decoder 3 2.36 M 7.4 K 0.31%
Decoder 4 2.36 M 7.4 K 0.31%
Decoder 5 2.36 M 7.4 K 0.31%
Decoder 6 1.18 M 3.7 K 0.31%
Decoder 7 590 K 1.8 K 0.31%
Decoder 8 590 K 1.8 K 0.31%
Decoder 9 295 K 0.9 K 0.31%

Decoder 10 147 K 16.6 K 11.27%
Decoder 11 74 K 8.3 K 11.27%
Decoder 12 37 K 4.2 K 11.27%
Decoder 13 7.5 K 0.8 K 11.28%

Total 29 M 0.44 M 1.5%

To show the effectiveness of the propose pruning method, we apply our method to
recent efficient semantic segmentation network, ENet [6]. Although ENet was designed to
achieve more than 10 fps on the low-resource device, Nvidia TX1, the network compression
enables to apply it to the embedded board with lower specification or without GPU.
As shown in Table 6, the proposed method not only reduces the half of weights from
the original ENet [6] but also improves the accuracy of mIoU slightly. This accuracy
improvement might be caused that the pruning method has a similar effect of the dropout
method to generalize the network. If we pruned more than half, for example, 70%, mIoU is
dropped more than 1%. This tendency is due to generalization-stability trade-off [43] and
shows that the redundancy of ENet is not severer than SegNet. The proposed method can
be applied semantic segmentation networks, SegNet and ENet, to reduce the number of
weights during maintaining the accuracy.

Electronics 2021, 10, 72 14 of 16

Table 6. Apply our method on ENet with a CamVid dataset.

Methods mIoU CR Remaining Weight

Original ENet [6] 52.85 - 0.34 M
Pruning 50% 53.04 ×2.35 0.15 M
Pruning 70% 51.52 ×3.51 0.10 M

5. Conclusions

We proposed layer-wise pruning method based on the fact that the layer which has
more small-valued weights are pruned with higher compression rate. The pruning method
has three steps. First, we need to evaluate the redundancy of each layer by estimating
the probability of weights on zero. We applied the Gaussian Mixture Model (GMM) to fit
the distribution of weights accurately. The second step is selecting the number of layers
to be pruned. The selected layers started from all of layers for the fast convergence to
target compression rate in early stage and gradually reduced for careful selection in later
stage. Finally, the pruning is done with applying lower compression rate for almost all
of layers, as well as higher compression rate for carefully selected layers. We applied the
proposed method to the image classification and showed better performance than the
existing methods in terms of compression rate and classification accuracy. We achieved
×255 compression rate, even with slight improvement of accuracy. By applying to semantic
segmentation, our method showed better compression and less accuracy drop compared
with the conventional method with the same rate pruning for all layers. By various
experiments, we validated that the layer-wise pruning can reduce the number of redundant
weights efficiently with the limited accuracy drop.

Author Contributions: Conceptualization, Y.H.; methodology, E.L. and Y.H.; software, E.L.; valida-
tion, E.L. and Y.H.; writing—original draft preparation, E.L. and Y.H.; writing—review and editing,
Y.H.; visualization, E.L.; supervision, Y.H.; project administration, Y.H.; funding acquisition, Y.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by Institute of Information & communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01077,
Development of Intelligent SoC having Multimodal IoT Interface for Data Sensing, Edge computing
analysis and Data sharing) and by the Grand Information Technology Research support program
(IITP-2020-0-01462), and by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1F1A1077110).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
3. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014;
pp. 580–587.

4. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
11–18 December 2015; pp. 1440–1448.

5. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 3431–3440.

6. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

7. Hu, X.; Yang, K.; Fei, L.; Wang, K. ACNET: Attention Based Network to Exploit Complementary Features for RGBD Se-
mantic Segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan,
22–25 September 2019; pp. 1440–1444.

Electronics 2021, 10, 72 15 of 16

8. Yang, K.; Hu, X.; Fang, Y.; Wang, K.; Stiefelhagen, R. Omnisupervised Omnidirectional Semantic Segmentation. IEEE Trans. Intell.
Transp. Syst. 2020, 1–16. [CrossRef]

9. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

10. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

11. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

12. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 11–13 June 2019; pp. 6105–6114.

13. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. arXiv 2014,
arXiv:1412.6550.

14. Yim, J.; Joo, D.; Bae, J.; Kim, J. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HA, USA, 22–25 June 2017;
pp. 4133–4141.

15. Mirzadeh, S.I.; Farajtabar, M.; Li, A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved Knowledge Distillation via Teacher
Assistant. arXiv 2019, arXiv:1902.03393.

16. Zhang, L.; Song, J.; Gao, A.; Chen, J.; Bao, C.; Ma, K. Be your own teacher: Improve the performance of convolutional
neural networks via self distillation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
29 October–1 November 2019; pp. 3713–3722.

17. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

18. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the
International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1737–1746.

19. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 525–542.

20. Park, E.; Ahn, J.; Yoo, S. Weighted-entropy-based quantization for deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HA, USA, 22–25 June 2017; pp. 5456–5464.

21. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
22. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 18–20 June 2019;
pp. 4340–4349.

23. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. Adv. Neural Inf.
Process. Syst. 2015, 28, 1135–1143.

24. Xiao, X.; Wang, Z.; Rajasekaran, S. Autoprune: Automatic network pruning by regularizing auxiliary parameters. Adv. Neural Inf.
Process. Syst. 2019, 32, 13681–13691.

25. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico,
2–4 May 2016.

26. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, Canada, 30 April–3 May 2018.

27. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
28. Wang, L.; Yoon, K.J. Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks.

arXiv 2020, arXiv:2004.05937.
29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
8–10 June 2015; pp. 1–9.

30. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

31. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 24–27 October 2017; pp. 5058–5066.

32. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. Nisp: Pruning networks using neuron
importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 9194–9203.

33. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. Adv. Neural Inf. Process. Syst.
2016, 29, 2074–2082.

34. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 24–27 October 2017; pp. 2736–2744.

http://dx.doi.org/10.1109/TITS.2020.3023331
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704

Electronics 2021, 10, 72 16 of 16

35. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1990, 2, 598–605.
36. Aghasi, A.; Abdi, A.; Nguyen, N.; Romberg, J. Net-trim: Convex pruning of deep neural networks with performance guarantee.

Adv. Neural Inf. Process. Syst. 2017, 30, 3177–3186.
37. Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Proceedings of the

Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–7 December 2017; pp. 4857–4867.
38. Tartaglione, E.; Lepsøy, S.; Fiandrotti, A.; Francini, G. Learning sparse neural networks via sensitivity-driven regularization.

Adv. Neural Inf. Process. Syst. 2018, 31, 3878–3888.
39. Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; Zhu, J. Discrimination-aware channel pruning for deep neural

networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 4–6 December 2018;
pp. 875–886.

40. Zhu, X.; Zhou, W.; Li, H. Improving Deep Neural Network Sparsity through Decorrelation Regularization. In Proceedings of the
International Joint Conferences on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3264–3270.

41. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational Dropout Sparsifies Deep Neural Networks. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 7–9 August 2017; pp. 2498–2507.

42. Ayi, M.; El-Sharkawy, M. RMNv2: Reduced Mobilenet V2 for CIFAR10. In Proceedings of the IEEE 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC), Las Vegas, NE, USA, 6–8 January 2020; pp. 0287–0292.

43. Bartoldson, B.R.; Morcos, A.S.; Barbu, A.; Gordon, E. The generalization-stability tradeoff in neural network pruning. arXiv 2020,
arXiv:1906.03728.

	Introduction
	Related Works
	The Proposed Method
	Estimating the Weight Distribution Using the GMM
	Layer Selection According to Redundancy
	Pruning of Selected Layers

	Experiments
	Image Classification
	Semantic Segmentation

	Conclusions
	References

