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Abstract: In the world of algorithm acceleration and the implementation of deep neural networks’
recall phase, OpenCL based solutions have a clear tendency to produce perfectly adapted kernels
in graphic processor unit (GPU) architectures. However, they fail to obtain the same results when
applied to field-programmable gate array (FPGA) based architectures. This situation, along with an
enormous advance in new GPU architectures, makes it unfeasible to defend an acceleration solution
based on FPGA, even in terms of energy efficiency. Our goal in this paper is to demonstrate that
multikernel structures can be written based on classic systolic arrays in OpenCL, trying to extract
the most advanced features of FPGAs without having to resort to traditional FPGA development
using lower level hardware description languages (HDLs) such as Verilog or VHDL. This OpenCL
methodology is based on the intensive use of channels (IntelFPGA extension of OpenCL) for the
communication of both data and control and on the refinement of the OpenCL libraries using register
transfer logic (RTL) code to improve the performance of the implementation of the base and activation
functions of the neurons and, above all, to reflect the importance of adequate communication between
the layers when implementing neuronal networks.

Keywords: OpenCL; neural networks; systolic arrays; FPGA

1. Introduction

Currently, the field of learning machines and, more specifically, of deep neural net-
works is currently rife with acceleration environments. Those try to bring electronic
technologies of a certain complexity closer to engineers and researchers who make use of
powerful and versatile artificial intelligence (AI) frameworks such as Tensorflow, Caffe,
and PyTorch.

These environments are usually oriented toward the determination of the network
topology and its subsequent training with learning samples. However, when you want to
use that trained network in the inference phase, the hardware that carries out the training
phase required to create this artificial intelligence is hardly adequate due to size, price, or
power limitations. An evaluation of different available electronic technologies is required
to efficiently perform these tasks. This is the point where different implementation options
such as application-specific integrated circuits (ASICs) and field-programmable gate arrays
(FPGAs) are able to provide competitive solutions compared to today’s predominant central
processing units (CPUs) and graphical processing units (GPUs). As a consequence, a second
wave of applications and languages in search of fast implementation and optimal results
has appeared. These applications focus on the inference phase of artificial neural networks.
Although they communicate easily with training environments and allow the heterogeneity
of technological alternatives (CPU, GPU, FPGA), they lack architectural vision when
dedicated to FPGA solutions. For instance, OpenVINO and the Xilinx Machine Learning
Suite provide direct implementation for FPGA and GPU based solutions, but on the other
hand, oneAPI aims at providing a new language for machine learning hardware design.
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Finally, the goal of this work is to find a middle abstraction point of implementation
for deep neural networks. A trade off is made between designing with the applications
described above and the classic microelectronic workflow based on hardware description
languages (HDLs, such as VHDL and Verilog) and register transfer logic (RTL) synthesizers.
We will focus first on the implementation of autoencoders, which are the simplest example
of dense layer stacking. Autoencoders rely on unsupervised training, which enables them
to automatically learn from data examples. This implies that it is easy to train specialized
instances of the algorithm that will match a specific type of input and will not require
any new engineering but the appropriate training data. Its features for data denoising
and dimensionality reduction [1–5] are very useful to us for our data streams of signals
acquired for medical imaging instrumentation.

This middle point approach is required since it is necessary to accelerate the microelec-
tronic design beyond the possibilities of RTL synthesis and also make it more accessible to
systems engineers. However, from our point of view, in order to improve the performance
of the tools that try to automate the entire process, the architectural control of the obtained
implementations must be guaranteed. This new methodological solution must satisfy
the temporary requirements of our applications dedicated to medical imaging, with very
demanding throughputs below 10 µs. These kinds of requirements are the ones that have
mainly motivated this new way of approaching the inference phase of artificial neural
networks proposed by this paper.

The rest of this paper is organized as follows: The machine learning design infras-
tructures currently used with FPGA as the target technology are reviewed in Section 2.
In Section 3, the elements used in the proposed methodology are determined. In Section 4,
the obtained implementation results for an autoencoder are analyzed, comparing them
with other available environments. The conclusions are presented in Section 5.

2. Autoencoder Implementation Review

Since few pure autoencoder implementations have been found in the bibliography [6–8],
we will focus on networks with the same characteristics as autoencoders. A sufficient
number of implementations were selected to draw some conclusions about our starting
hypothesis on the trade off between high level synthesis (HLS) and register transfer logic
(RTL) with HDLs.

The set of neural networks under study includes multilayer perceptrons and convolu-
tional neural networks (CNNs). Many implementations of the former have been described
and developed in the past, but currently, the latter draws all the attention of the different
research groups working in this field using FPGAs.

Extensive CNN implementations on FPGAs were fully covered in [9,10]. The first
review reported up to 30 different implementations, 18 of which were based on HLS
and 9 on RTL synthesis. Unfortunately, there are no data about the design time of such
implementations since research articles do not usually include it, and it is practically
impossible to compare the performance due to the lack of a uniform example since they
work with different precision levels. For example, the concept of GOPS/W (giga operations
per second/Watt) is meaningless due to of the differences in the computed operations.

The second review was chosen based on the use of dedicated training tools such as
Caffe, Tensorflow, PyTorch, and Theano. These packages allow fast implementations of
CNN on different hardware platforms. Since the results obtained with these tools are quite
heterogeneous, the review aimed at throughput and latency when evaluating their quality.

A detailed examination of the aforementioned reviews sheds light on the usage of an
intermediate level of implementation. The meet in the middle approach shown in [11,12] is
a trade off between high level and RTL synthesis workflows. A combination of OpenCL
and systolic architectures was also shown in [12].

Regarding autoencoder implementations, HLS based ones [6] and others directly
obtained from HDL were shown in [7,8,13].
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As expected, HLS implementations are flexible and may also include a training phase.
However, from a performance point of view, such implementations are only slightly opti-
mized. Their throughput measured in terms of frames per second (fps) is very low. In [6],
a deep network implementation based on stacked sparse autoencoders was discussed. This
implementation is a multilayer perceptron-type network created by stacking trained au-
toencoders without supervision; thus, a 3072-2000-750-10 topology network is constructed
(3072 nodes in the first layer, 2000 nodes in the first hidden layer, 750 nodes in the second
hidden layer, and 10 nodes in the output layer).

HDL based implementations are more efficient, improving throughput by two or-
ders of magnitude. However, the design process is complex and has a limited flexibility.
In [7,8,13], proposals for traditional neural networks using autoencoders were introduced.
Suzuki et al. [7] proposed, in addition to the traditional autoencoder architectures, a struc-
ture with two chained autoencoders (4-2-1-2-4) inside a Xilinx Virtex-6 XC6VLX240T.
Medus et al. [13] proposed a systolic architecture for different neural networks, highlight-
ing an autoencoder implementation (784-196-784) in fixed-point arithmetic, with 3.24 µs
of throughput inside a Xilinx Virtex-7 XC7VX485T. In [8], a hardware implementation
proposal of a deep neural network based on the stacked sparse autoencoder technique
was presented. The hardware was developed for the feedforward phase, adopting the
systolic array technique, which allowed them to use multiple neurons and several layers.
Data regarding hardware occupancy rate and processing time were presented for a Xil-
inx Virtex-6 XC6VLX240T-1FF1156 FPGA. This implementation can reach throughputs of
26,000 images/s.

In this paper, the proposed implementation is an attempt to combine the virtues of
both trends. We aim at exploiting OpenCL’s flexibility for describing systolic architectures.
The latter ones are implemented using multikernel structures of the single-work-item
type. Each kernel is tuned with SystemVerilog based RTL libraries, which were added
to the OpenCL compiler to improve the performance in two fundamental aspects: the
implementation of activation functions and better usage of the ARRIA 10 architecture’s
floating point digital signal processors (DSPs), especially when they execute the Accu =
A × B + Accu equation.

The main underlying idea of a trade off between HLS and RTL has already been
proposed in previous works [11], and the use of systolic architectures was also fundamental
in [12], although it was performed in a less customized way.

3. Methodologies Used

Methodologically, the following aspects must be described:

1. The generation of the systolic architectures: from this point of view, a classic systoliza-
tion system is used;

2. The transfer of the obtained architecture to OpenCL code; and
3. Kernel implementation refinement using RTL libraries.

Fundamental contributions in these three areas have already been provided by our
group, as follows:

1. Systolic generation:

� The most important contribution is the implementation of the dense layers by
pairs, not individually. An autoencoder is a perfect choice for demonstrating this
idea, since it is made of two dense layers named the encoder and decoder.

� Projections are needed in order to allow several processing elements (PEs) to
be executed by the same kernel. This fact will help in saving resources in the
hardware implementation of the systolic array generation. The best projections
are chosen based on their efficiency in layer-to-layer communication.

2. Conversion of the systolic architecture to OpenCL:
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� The use of a multikernel implementation, in which the projected processing units
are assumed by a single-work-item kernel with autorun; this element will be
referred to as the projected processing element (PPE);

� The use of kernels for data entry and data extraction based on two techniques:
buffers and queues;

� The use of two control techniques: distributed control allocated inside the pro-
cessing unit kernel or centralized control;

� The use of control flow and channel data flow, which will play a key role in the
synchronization of all processing units.

3. RTL refinement:

� The implementation of the activation functions by means of embedded memo-
ries; and

� The implementation by direct instantiation of the operations’ output = A × B +
C and Accu = A × B + Accu using the embedded DSPs.

3.1. Systolic Generation

A systematic method was applied for the design of systolic arrays [14] in order to
obtain the architecture of two adjacent dense layers. This method is suitable for algorithms
that can be expressed as a set of uniform recurrent equations on a convex set of whole D
coordinates [14]. Once the recurring equations have been obtained, the method follows
two steps: (1) finding a plan for the operations (schedule) that is compatible with the
dependencies introduced by the equations and, then, (2) mapping the D domain within
another finite set of coordinates. Each of these coordinates will represent a processor of the
systolic array. As a consequence, the concurrent operations are mapped within different
processors (allocation). The schedule and allocation functions must fulfill conditions that
allow the method to be fully automated. This fact enables the transition to a systolic array
of equations that intervene in the operation of the multilayer perceptron.

One of the main issues when designing neural network architectures is the ability to
share memory, hardware resources, and the array configuration in both training mode and
already-trained work mode (“recall” phase) computations. This fact avoids the difficult
task of transferring synaptic weights between the recall and training phases, carrying the
same memory elements used to store weights along all the computations. Our example
makes use of backpropagation training algorithm.

The resulting architecture was obtained using different procedures to the ones shown
in [15–17]. The latter procedures start from the dependency network and conduct a
mapping operation on a systolic array. Projection operations in a certain direction are
carried out for each PPE. The proposed architecture is called “alternative orthogonal
systolic array”, and the complete method of extraction can be seen in [18], though it is not
systematic and therefore difficult to transfer to other cases. In the case presented herein,
the systematic procedure seen in [14] is used. Even though the same configuration already
obtained by Murtagh, Tsoi, and Bergmann is achieved here, this methodology can be
executed for the computation of different configurations and can be applied to other types
of problems (algorithms).

3.1.1. Encoder

An autoencoder with the same layer structure as the one shown in Figure 1 is used.
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j (1 to M Neurons plus Bias)

i (1 to N Neurons plus Bias)

k (1 to M Neurons)

Figure 1. Autoencoder.

Domain Definition

Here, the encoder layer connection between j (neuron source layer) and i (neuron
destination layer) is discussed (Figure 2).
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Figure 2. Encoder layer interconnection.
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1. Uniform Recurrence Equations

From Equations (1) and (2), uniform iterative Equations (3) and (4) can be obtained:

ul
i =

M+1

∑
j=0

wl
ijy

l−1
j (1)

yl
i = f (ul

i) (2)

1 ≤ i ≤ N, 1 ≤ l ≤ L,

where y stands for activation, w for weight, f for the non-linear function, and j, i for the
indexes in the source and destination layer.

layer l


xl(i, j) = xl(i, j − 1) + wl(i, j) · yl−1(i − 1, j)
yl−1(i, j) = yl−1(i − 1, j)
yl(i, M + 2) = f (xl(i, M + 1))
1 ≤ i ≤ N
1 ≤ j ≤ M + 1

, (3)

and the boundary conditions:

layer l


yl−1(0, j) = f (xl−1(j, L + 1)) for j = 1 . . . M
yl−1(0, M + 1) = 1 Bias
xl(i, 0) = 0 for i = 1 . . . N

. (4)

2. ∆ = dependence vectors = { (0,1)d1
(1,0)d2

}
3. D = {(i,j) N ≥ i ≥ 1 M + 1 ≥ j ≥ 1 }
4. Domain geometry.

The geometry of the domain is shown in Figure 3.

 

V={(1,1), (M+1,1), (M+1,N), (1,N)} 

without rays 

(1,N) 

(M+1,1) (M+1,N) 

(1,1) i

j

Figure 3. Domain geometry in the encoder layer.

Resulting Systolic Array

The final result of the systolization procedure with a direction (1,0) projection is
the systolic array shown in Figure 4.
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Figure 4. Systolic array encoder layer.

The fundamental characteristics of this projection in a interconnection layer are:

� The number of functional blocks, called “vertical synapses”, equals the number of
neurons in the source layer. Those functional blocks basically perform the function
F = A × B + C; and

� The number of functional blocks (neurons) is 1. This functional block implements the
activation function.

3.1.2. Decoder

An autoencoder with the same layer structure as the one shown in Figure 1 is used.
In this section, the decoder layer connection between i (neuron source layer) and k

(neuron destination layer) is discussed (Figure 5).
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Figure 5. Decoder–layer interconnection.

1. Uniform recurrence equations.

From Equations (5) and (6), uniform iterative Equations (7) and (8) can be obtained:

ul
k =

N+1

∑
i=0

wl
kiy

l−1
i (5)

yl
k = f (ul

k) (6)

1 ≤ k ≤ M, 1 ≤ l ≤ L,

where y stands for activation, w for weight, f for a the non-linear function, and i, k for the
indexes in the source and destination layer.

layer l


xl(k, i) = xl(k, i − 1) + wl(k, i) · yl−1(k − 1, i)
yl−1(k, i) = yl−1(k − 1, i)
yl(k, N + 2) = f (xl(k, N + 1))
1 ≤ k ≤ M
1 ≤ i ≤ N + 1

, (7)

and the boundary conditions:

layer l


yl−1(0, i) = f (xl−1(i, L + 1)) for i = 1 . . . N
yl−1(0, N + 1) = 1 Bias
xl(k, 0) = 0 for k = 1 . . . M

. (8)

2. ∆ = dependence vectors = { (0,1)d1
(1,0)d2

}
3. D = {(k,i) M ≥ k ≥ 1 N + 1 ≥ i ≥ 1 }
4. Domain geometry.

The geometry of the domain is shown in Figure 6.
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Figure 6. Domain geometry in the decoder layer.

Resulting Systolic Array

The final result of the systolization procedure with a direction (0,1) projection is
the systolic array shown in Figure 7.
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Figure 7. Systolic array decoder layer.

The fundamental projection characteristics for an interconnection layer are:

� The number of functional blocks, called “horizontal synapses”, equals the number of
neurons in the target layer. Those functional blocks basically perform the function
Accu = A × B + Accu; and

� The number of functional blocks (neurons) equals the number of neurons in the target
layer. This functional block implements the activation function.



Electronics 2021, 10, 70 10 of 20

3.1.3. Alternative Architecture

The same study can be repeated by choosing the projection direction (0,1) for the
encoder layer and the projection (1,0) for the decoder layer. This choice was made in order
to enable an efficient communication between layers.

3.2. Conversion of the Systolic Architecture to OpenCL

The first proposed architecture (called the V-H architecture here) is shown in Figure 8.

Vertical
Synapse

Vertical
Synapse

Vertical
Synapse

Synapsys
Bias

Neuron

ProducerA

Neuron 
Bias

Horizontal

Synapse

Horizontal

Synapse

Horizontal

Synapse
Neuron

Neuron

Neuron

ConsumerC

channel

ProducerB1 ProducerB2

Vertical
Synapse

0

1

Bs-1

...

Horizontal

Synapse
Neuron

Bs-1

...

1

0

yN-1 ... y1 y0

Figure 8. Systolic architecture data flow with the vertical–horizontal combination.

The second proposed architecture (called the H-V architecture here) is shown in
Figure 9.
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Vertical
Synapse

Vertical
Synapse

Vertical
Synapse

Synapsys
Bias

Neuron

Horizontal

Synapse

Horizontal

Synapse
Neuron

Neuron

Neuron

ConsumerC

channel

ProducerB2ProducerB1

Vertical
Synapse

0

1

Bs-1

...

Horizontal

Synapse
Neuron

yN-1 ... y1 y0

ProducerA

Neuron 
Bias

yN-1 ... y1 y0

Horizontal

Synapse

Figure 9. Systolic architecture data flow with the horizontal–vertical combination.

As already shown, these architectures are the combination of the encoder and decoder
layers discussed in the previous subsection:

� All the data streams were implemented through channels. Those channels perform two
important tasks: the transmission of data and control signals and the synchronization
of the systolic architecture. Each processing unit (synapses and neurons) can only
operate when all of the data and control channels have data available. Otherwise, these
processing units are blocked while the queues (channels) are empty. Therefore, all of
the processing units (synapses and neurons) act autonomously and do not need to be
commanded from the host. The difficulty in this approach lies in making the systolic
network adaptable to different numbers of inputs, outputs, and neurons in the hidden
layer without having to recompile the OpenCL code. This task is performed by the
control generation units, which distribute control commands through the associated
channels. Alternative to the latter scheme, in order to improve the performance of
the systolic architecture, a distributed control scheme located at each processing unit
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can be used instead of a centralized one. This results in a loss of flexibility. Since
the processing units do not have direct connectivity to the host, it cannot modify the
properties of the implemented network by means of arguments.

� The two encoder and decoder layers are constructed based on a BLOCK-SIZE parame-
ter (Bs in Figures 8 and 9). The BLOCK-SIZE parameter is used several times to cover
the number of inputs and outputs, as shown in Figure 8, or to cover the number of
hidden neurons, as shown in Figure 9. In the cited experiments, BLOCK-SIZE values
of 16, 32, 64, and 128 were considered, which respectively provides 32, 64, 128, and
256 floating point DSPs.

� All the operations are in single precision format.
� Theoretically, an interconnection layer systolic architecture in which the source layer

number of neurons is higher than that in the target layer is more efficient when
horizontal projection is used. On the other hand, a vertical projection is more efficient
when the number of neurons in the target layer is larger than that in the source
layer. As a consequence, the architecture shown in Figure 9 was expected to be more
efficient with autoencoders whose hidden layer is smaller than the input layer. This
last assumption is experimentally corroborated by means of a 640-256-640 (inputs-
hidden-outputs) topology autoencoder configuration in the following sections.

3.3. RTL Refinement
3.3.1. Introduction of the Nonlinear Function inside the Kernel

Our experience in designing backpropagation (BP) algorithm accelerators [19,20]
along with other works [21] indicates that one of the most effective means of achieving
acceleration is usually to replace the software implementation of the hyperbolic tangent
with a hardware one.

The processing units depicted in Figure 8, called neurons, necessarily include the
nonlinear activation function in OpenCL based implementations. The proposed hardware
implementation makes use of lookup tables (LUTs) with a memory capacity that could be
implemented using the Arria 10 devices’ embedded memories. An organization of 210 × 20
is used in the proposed implementation.

For instance, when the hyperbolic tangent is used as the activation function, a direct
implementation through OpenCL is highly unsatisfactory in terms of area and speed, as
shown in Table 1.

As seen in Equation (9), the substitution of the hyperbolic tangent by some of its equiv-
alent formulas can be a better implementation. Results from Expression 3 are shown in the
second row of Table 1. Bearing in mind that a systolic architecture with BLOCK-SIZE = 16
would need to replicate 17 times the results shown in Table 1, the final area would be
unacceptable. 

Expression1 : (ex − e−x)/(ex + e−x)

Expression2 : (1 − (2/(e2x + 1))

Expression3 : (e2x − 1)/(e2x + 1)

(9)

Our results regarding the resources being used and speed performance (latency) are
shown in the row labeled “RTL tanh IP” in Table 1. This approach is outstanding in terms
of area and speed; moreover, it has no impact on the recall work mode of the trained
autoencoder from the precision point of view.

Therefore, we attempted to insert our own Verilog RTL code in place of the current
standard implementation of the hyperbolic tangent function in OpenCL (see Figure 10).
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Module
32 bits 

IEEE 754
Float to 

Fix

Function
i n FIX

memory

2
10

x20

Fix to 
Float

32 bits 

 IEEE 754

Verilog generated manually

Module ModuleModule

Figure 10. Structure of the RTL tanh implementation.

Table 1. Comparison between the implementations of neurons. DSP, digital signal processor.

ALMs Registers Memory MLABs DSP Latency Initiation
20 kb Blocks Blocks Cycles Interval

OpenCL tanh 22,123 15,295 23 69 33 129 1
OpenCL equation 1817 177 7 22 12 64 1

RTL IP tanh 40 66 0 3 0 11 1
Without tanh 30 19 0 1 0 6 1

3.3.2. Instantiation of DSPs versus Direct Inference

The same procedure used for the implementation of hyperbolic tangent functions
inside PPE neurons was applied to PPE synapses in order to achieve further refinement
based on register transfer logic (RTL) libraries written in Verilog-SystemVerilog.

Results in Table 2 demonstrate that for the F = A × B + C function’s implementation,
the RTL code based instantiation versus OpenCL code inference has no remarkable impact
in terms of efficiency. However, in the case of function Accu = A× B+ Accu, the amount of
resources saved by using direct instantiations of horizontal synapses is remarkable (Table 3).
An overall improvement in both area and performance can be observed for autoencoder
implementations with 256-640-256 and 640-256-640 topologies (Tables 4 and 5).

Table 2. Comparison between F = A × B + C implementations of vertical synapses.

ALMs Registers Memory MLABs DSP Latency Initiation
20 kb Blocks Blocks Cycles Interval

OpenCL equation 451 765 8 8 1 34 1
RTL IP instantiation 443 729 8 8 1 34 1

Table 3. Comparison between Accu = A × B + Accu implementations of horizontal synapses.

ALMs Registers Memory MLABs DSP Latency Initiation
20 kb Blocks Blocks Cycles Interval

OpenCL equation 776 1331 8 9 1 36 6
RTL IP instantiation 374 569 8 8 1 31 1

Table 4. Comparison between two implementations of an autoencoder (256-640-256) with architecture
V-H and BLOCK-SIZE = 64.

ALMs Registers Memory MLABs DSP Latency Throughput
20 kb Blocks Blocks µs fps

OpenCL equation 107,155 163,976 601 1822 136 370 13,082
RTL IP instantiation 77,595 108,766 569 1822 136 236 60,716
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Table 5. Comparison between two implementations of autoencoder (640-256-640) with architecture
H-V and BLOCK-SIZE = 64.

ALMs Registers Memory MLABs DSP Latency Throughput
Blocks 20-kb Blocks µs fps

OpenCL equation 98,938 153,048 566 1516 136 400 12,891
RTL IP instantiation 68,938 98,145 566 1452 136 376 55,555

4. Performance Evaluation

The Arria 10 family was specifically introduced as the technological answer of the
FPGA world (by the manufacturer IntelFPGA) to manage floating point operations and
that could compete with GPUs. It is important to demonstrate in our article that the
DSPs of this technological family can be handled more efficiently than the automatic
inference performed by the OpenCL base compiler. This led to the development of their
own libraries based on Verilog RTL code and the management of their development tools
for new compilation libraries provided by the manufacturer. Of course, the development
of these libraries requires being able to demonstrate with different devices of the same
family that this proposed refinement is still working without problems. That is why we
carried out an intensive study of the behavior of several boards with this technological
family of FPGAs (Sections 4.1–4.3). It is also important to demonstrate the importance of
communication between layers (observed mainly in the throughput study in Section 4.2)
and host communication with the existing multikernel inside the FPGA (observed mainly
in the latency study in Section 4.3).

4.1. Throughput and Latency Measurements

The process performance can be measured in two different inference ways: syn-
chronous or asynchronous. In the asynchronous case, multiple requests are typically
executed asynchronously, and the performance is measured in frames per second (fps), di-
viding the number of images being processed by the processing time. For latency-oriented
tasks, the time to process a single frame is more important.

These measures offer comparative information between architectures and are usually
provided by environments like OpenVINO as standard performance measurements.

However, it is important to clarify the following points regarding these results:

1. The autoencoder topology being used is 640-256-640. The sizes of the input and output
are determined by our needs in medical imaging application where autoencoders
are required.

2. Four board support packages (BSPs) for the IntelFPGA Arria 10 family of devices
were used. The manufacturers of these BSPs and boards are:

� Alaric Arria 10 (Reflex CES) and Alaric Arria 10 (Reflex CES) with the support of
host pipes [22].

– 4 GB DDR3 on-board memory.
– PCIe Gen3 x4.
– FPGA: Arria 10 SX: 660 K logic elements, 1688 hardened single-precision

floating-point multipliers/adders (MACs), speed grade-2.

� A10sa4 (Bittware) [23].

– 8 GB DDR4 on-board memory.
– PCIe Gen3 x8. PCI passthrough.
– FPGA; Arria 10 GX: 1150 K logic elements, 1518 hardened single-precision

floating-point multipliers/adders (MACs), speed grade-2.

� PAC (Intel) [24]

– 8 GB DDR4 on-board memory.
– PCIe Gen3 x8.
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– FPGA: Arria 10 GX: 1150 K logic elements, 1518 hardened single-precision
floating-point multipliers/adders (MACs), speed grade-2

3. BSPs describe system architectures that include a host and an accelerator connected
through a peripheral component interconnect (PCI) express bus. The host sends the
image matrix (each image occupies a row of the matrix) and receives the reconstructed
images generated by the autoencoder (each row occupies a row of the matrix of
reconstructed images).

4. In our medical imaging applications, a 10 µs throughput specification is required.
This requirement must be fulfilled by a parallel set of six FPGAs. The results obtained
in this work show a 11.13 µs throughput for a single FPGA. Therefore, using a proper
parallelization method, the initial throughput specification could be fulfilled.

5. Networking-type solutions could also be applied to our medical imaging applications.
These solutions can deal with up to 10 G data networking connections in which the
fundamental communication element would be the Standard 10 G low latency MAC
IP (Intel/Altera).

4.2. Throughput Results

A close look at the throughput results (Figure 11a,b) supports our hypothesis that
the H-V architecture represented in Figure 9 is more efficient than the V-H architecture
shown in Figure 8. This is a direct consequence of the underlying architectural properties
inherited by the OpenCL implementation.

To further corroborate this hypothesis, an autoencoder with opposite characteristics to
those required for our experiments was also implemented. The new autoencoder topology
consists of a hidden layer larger than the input and output layer (256-640-256). The through-
put results in Figure 12a show that efficiency with the H-V architecture is higher than with
the V-H architecture for the 640-256-640 topology. As shown in Figure 12b, the efficiency
with the V-H architecture is higher than with the H-V architecture for topology 256-640-256.

For an optimal architecture topology, a higher (BLOCK-SIZE) parameter value im-
proves the throughput. This result was expected as the number of DSPs involved is
increased by the same amount. However, efficiency per DSP shows a falling tendency,
since a higher complexity decreases the maximum frequency of operation.

Regarding the different board support packages (BSPs) being used (associated with
different boards), our intention was to demonstrate the adequacy and robustness of the
systolic architecture rather than to establish a comparison among them. Those systolic
architectures were implemented on different boards with different versions of the OpenCL
compiler. In asynchronous inference mode, the use of host pipes was not decisive.
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Figure 11. Throughput with different boards.
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Figure 12. Throughput with the Alaric_IK board.

4.3. Latency Results

Regarding the latency results, the most remarkable conclusion is that such latency
is hardly dependent on the architecture being used (compare Figure 13a,b) and slightly
dependent on the BLOCK-SIZE parameter value (shown in Figures 14a,b–17a,b).

Communication between the host and kernels, which receive the input data and
transmit the output results back to the host, has the strongest impact on the latency. Some
BSPs are able to implement host pipes, which allow the lowest latencies.
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Figure 13. Latency with different boards.
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Figure 15. Latency with the Alaric_IK board.
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Figure 17. Latency with the PAC board.

4.4. Comparison of the Implementations

In this subsection, our autoencoder based systolic architecture processing speed is
compared to other implementations: CPU, GPU, and FPGA solutions based on the single
float precision general matrix multiply (SGEMM) implementation.

Figure 18a,b shows the speed performance of our proposal compared to other hard-
ware and software implementations. The GPU based implementations are the most efficient
and virtually share the same degree of flexibility with CPU based implementations. The im-
plementation platform was Tensorflow Version 2.2.

Regarding FPGA based hardware accelerators, the differences are no longer so evident
(Tables 6 and 7). Neither of the implementations reach the specified throughput (10 µs
per image or 100,000 fps). However, both reach those specified constraints if we eliminate
the communication times between the host and kernel. The execution time of the internal
kernel of the FPGA is less than 0.96 s in both cases. The performance of the internal kernel
based on single float precision general matrix multiply (SGEMM) (Table 7) is even better
than our implementations. However, the computational efficiency must be taken into
account. In SGEMM based solutions, the number of DSPs used is four times higher than in
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our systolic architecture. Therefore, its computational efficiency (GOP/s/DSP) is worse
than that of our proposal.
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Figure 18. Autoencoder 640-256-640.

Table 6. Comparison between two implementations of autoencoder 640-256-640 with FPGA and
BLOCK-SIZE = 128, processing 96,000 images. SGEMM, single float precision general matrix multiply.

ALMs Registers Memory DSP Frequency
Blocks (20 kb) Blocks (MHz)

OpenCL FPGA SGEMM 82,983 229,383 1866 1062 184
OpenCL FPGA our proposal 244,453 336,898 1528 262 230

Table 7. Performance comparison between two implementations of autoencoder 640-256-640 with
FPGA and BLOCK-SIZE = 128, processing 96,000 images.

Throughput Throughput GOP/s GOP/s/DSP GOP/s/K Cells(fps) Kernel (fps)

OpenCL FPGA SGEMM 82,332 126,315 82.74 0.079 0.996
OpenCL FPGA our proposal 90,107 111,291 72.93 0.278 0.297

Finally, there is another key point regarding both implementations: our proposed
method can work with any number of input images, whereas the SGEMM implementation
must work with a BLOCK-SIZE multiple number of input images (in this case, 128).
In order to get the shortest time in a previously trained neural network recall phase,
implementations that can only work with batches of input images should be avoided.

4.5. Discussion

The following aspects from the obtained results can be highlighted:

� GPU based implementations are difficult to beat in terms of neural network inference.
We do not aim at comparing ours with such implementations, but to use them as refer-
ence points for FPGA based implementations. In terms of throughput performance for
32 bit floating point resolution implementations, GPUs beat FPGAs by a wide margin.

� With OpenCL based hardware implementations on FPGAs, a greater computational
efficiency can be provided by using systolic architectures. We wanted to achieve an
intermediate point between the use of HLS and HLD that would result in a flexibility
close to that of HLS solutions and would improve performance. Although this was
achieved, there is still a long way to go in improving OpenCL compilers, especially
in the resources used for channel synthesis, accumulator synthesis, and non-linear
function synthesis.

� Comparing among the FPGA implementations, we have lower performance when
using HLS. We selected [13] as a reference implementation with similar characteristics
as ours. This reference claims a 3.24 µs throughput autoencoder of size 784× 196× 784
and an 18 bit fixed point resolution. Their authors made use of a ReLU (rectified linear
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unit) for the activation function implementation as a performance enhancement. In our
case, a 9.47 µs throughput was achieved with a 32 bit floating point resolution using a
hyperbolic tangent as the activation function.

� From the point of view of the ease of design, we cannot experimentally quantify this
ease with respect to the use of HDL. We carried out HDL based implementations,
as well as HLS (OpenCL) ones, though it is difficult to get a design time estimation.
Moreover, there is a lack of references in the bibliography regarding this parameter.
However, we claim that the creation of these systolic architectures in OpenCL with
multikernel can even be automated as we already did with experiences starting from
c++ and having as a destination a single-work-item-type kernel [25].

5. Conclusions

In this paper, a workflow for the implementation of deep neural networks was pro-
posed. This workflow tries to combine the flexibility of HLS based networks and architec-
tural control features of HLD based flows. The main tool used along the workflow was
OpenCL. This system level description language allows a structural approach, as well as
a high degree of control from a hardware point of view. This fact is of main importance
when dealing with systolic architectures.

Following the described methodology, the performance obtained is encouraging,
and the design times could be shorter provide that in the future, we could automate the
generation of OpenCL from the frameworks used in machine learning. As far as the
architectures are concerned, the proposed workflow could reuse classic VLSI architectural
solutions or introduce new ones.

The connection between layers was shown to be a crucial issue that must be carefully
studied in deep neural network implementations. A failure in choosing the right combina-
tion of projections may lead to a considerable loss of performance. The challenge is to be
able to work with larger images, trying to process more than 100,000 frames per second,
working with a networking-type source and destination.

Although this work focused on simple neural networks (autoencoders), our intention
for future research is to extend these conclusions to interlayer communication techniques
on higher complexity neural networks such as CNNs.
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