
electronics

Article

A Simulation Framework for Developing Autonomous Drone
Navigation Systems

Rafael Casado * and Aurelio Bermúdez

����������
�������

Citation: Casado, R.; Bermúdez, A.

A Simulation Framework for

Developing Autonomous Drone

Navigation Systems. Electronics 2021,

10, 7. https://doi.org/10.3390/

electronics10010007

Received: 25 October 2020

Accepted: 18 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computing Systems Department, Universidad de Castilla–La Mancha (UCLM), Campus Universitario, s/n,
02071 Albacete, Spain; aurelio.bermudez@uclm.es
* Correspondence: rafael.casado@uclm.es; Tel.: +34-967-599200-2479

Abstract: Unmanned aerial vehicles are gaining popularity in an ever-increasing range of applications,
mainly because they are able to navigate autonomously. In this work, we describe a simulation
framework that can help engineering students who are starting out in the field of aerial robotics to
acquire the necessary competences and skills for the development of autonomous drone navigation
systems. In our framework, drone behavior is defined in a graphical way, by means of very intuitive
state machines, whereas low-level control details have been abstracted. We show how the framework
can be used to develop a navigation system proposal according to the rules of the “ESII Drone
Challenge” student competition. We also show how the proposal can be evaluated in different test
scenarios.

Keywords: mobile robots; aerial vehicles; autonomous navigation systems; path planning;
simulation framework

1. Introduction

Unmanned aerial vehicles (or simply drones) have become immensely popular over
the last few years. In addition to the purely recreational use of these devices, there are a
huge range of applications that can benefit from their use. In some of these applications the
flight of the drone is controlled by a human pilot, but it is more and more common for them
to navigate by themselves, in an autonomous way. Therefore, the design of autonomous
navigation systems for drones is a critical technical challenge nowadays.

Autonomous navigation involves different tasks, including drone localization, scenario
mapping, and path planning, without forgetting obstacle avoidance. A wide variety of
techniques for autonomous drone navigation can be found in the literature, ranging from
those based on computer vision systems [1] (supported by cameras) to those based on
the use of laser or LiDAR (light detection and ranging) sensors [2], as well as the use of
GPS (global positioning system) and IMUs (inertial measurement units), and different
combinations of all these types of onboard equipment [3].

It becomes necessary to have development platforms that facilitate the acquisition
of basic competences and skills for programming this kind of systems. For this purpose,
popular drone manufacturers such as DJI and Parrot provide powerful SDKs (Software
Development Kits) for controlling drones that are available for different programming
languages [4,5]. However, the use of these SDKs usually requires a deep knowledge of
the drone platform used as well as advanced programming skills in the corresponding
programming language (Java, Phyton, C++, etc.).

As an alternative, MATLAB [6], Simulink, and Stateflow provide support for deploy-
ing flight control algorithms for commercial drones, from professional devices (such as
“Pixhawk” autopilots [7]) to recreational toys (such as Parrot or DJI Ryze Tello minidrones).
They integrate the well-known “model-based design” methodology [8], which has proven
to be very appropriate for the design of cyber-physical systems. This methodology basically

Electronics 2021, 10, 7. https://doi.org/10.3390/electronics10010007 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5170-5743
https://orcid.org/0000-0002-3313-4078
https://doi.org/10.3390/electronics10010007
https://doi.org/10.3390/electronics10010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010007
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/7?type=check_update&version=3

Electronics 2021, 10, 7 2 of 17

relies on graphical tools to develop a system model whose behavior is simulated before
going into production.

In the context of STEAM (Science, Technology, Engineering, the Arts and Mathematics)
education, some of the initiatives that have emerged for children to get started in program-
ming allow them to easily program drones. In the same way as the quintessential STEAM
language, namely Scratch [9], they are mainly block-based visual programming environ-
ments. This is the case of Tinker [10], DroneBlocks [11], and AirBlock [12]. Card-based
programming has also been proposed for controlling drones [13]. All these initiatives
(mainly aimed at children or teens) logically have many limitations when we wish to define
a precise behavior for the drone.

There are also some high-level mission planning applications for autonomous drones,
such as the popular open-source ArduPilot Mission Planner [14] and the commercial UgCS
solution [15]. These applications allow the user to directly program the route or path to
be followed by the drone, usually by indicating the set of waypoints to cover, but not to
program a strategy for the drone to define its route itself.

In this context, we have deployed a simulation framework for the development and
testing of autonomous drone navigation systems that can help future engineers to acquire
competences and skills in the field of aerial robotics. Basically, the programmer makes use
of Stateflow to define a particular drone behavior, which can then be tested in Gazebo [16],
which is a realistic robotics simulation tool [17,18] included in the popular Robot Operating
System (ROS) [19].

It should be pointed out that in this research field other authors have proposed
similar development frameworks. This is the case of the open-source Aerostack software
framework [20] and the research project introduced in [21]. However, these proposals,
which provide great functionality, usually exhibit a level of complexity not suitable for
students who are new to aerial robotics.

In the last few academic years the School of Computer Science and Engineering of the
University of Castilla-La Mancha [22] has used the framework described in this work to
organize several editions of the “ESII Drone Challenge” [23], which is a drone programming
competition focused on promoting skills related to computer programming and mobile
robotics among secondary school students in the Spanish region of Castilla-La Mancha.
The specific challenge consists in programming a quadcopter (one of the most popular
drone types) so that it can take off from a base, go through several colored floating frames
(see Figure 1) in a specific order, and finally land at the starting point. The navigation
system proposed by each student team is evaluated in different scenarios, in which the
position and orientation of the frames and the drone itself are unknown a priori.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 17

has proven to be very appropriate for the design of cyber-physical systems. This method-
ology basically relies on graphical tools to develop a system model whose behavior is
simulated before going into production.

In the context of STEAM (Science, Technology, Engineering, the Arts and Mathemat-
ics) education, some of the initiatives that have emerged for children to get started in pro-
gramming allow them to easily program drones. In the same way as the quintessential
STEAM language, namely Scratch [9], they are mainly block-based visual programming
environments. This is the case of Tinker [10], DroneBlocks [11], and AirBlock [12]. Card-
based programming has also been proposed for controlling drones [13]. All these initia-
tives (mainly aimed at children or teens) logically have many limitations when we wish
to define a precise behavior for the drone.

There are also some high-level mission planning applications for autonomous
drones, such as the popular open-source ArduPilot Mission Planner [14] and the commer-
cial UgCS solution [15]. These applications allow the user to directly program the route or
path to be followed by the drone, usually by indicating the set of waypoints to cover, but
not to program a strategy for the drone to define its route itself.

In this context, we have deployed a simulation framework for the development and
testing of autonomous drone navigation systems that can help future engineers to acquire
competences and skills in the field of aerial robotics. Basically, the programmer makes use
of Stateflow to define a particular drone behavior, which can then be tested in Gazebo
[16], which is a realistic robotics simulation tool [17,18] included in the popular Robot
Operating System (ROS) [19].

It should be pointed out that in this research field other authors have proposed sim-
ilar development frameworks. This is the case of the open-source Aerostack software
framework [20] and the research project introduced in [21]. However, these proposals,
which provide great functionality, usually exhibit a level of complexity not suitable for
students who are new to aerial robotics.

In the last few academic years the School of Computer Science and Engineering of
the University of Castilla-La Mancha [22] has used the framework described in this work
to organize several editions of the “ESII Drone Challenge” [23], which is a drone program-
ming competition focused on promoting skills related to computer programming and mo-
bile robotics among secondary school students in the Spanish region of Castilla-La Man-
cha. The specific challenge consists in programming a quadcopter (one of the most popu-
lar drone types) so that it can take off from a base, go through several colored floating
frames (see Figure 1) in a specific order, and finally land at the starting point. The naviga-
tion system proposed by each student team is evaluated in different scenarios, in which
the position and orientation of the frames and the drone itself are unknown a priori.

(a) (b)

Figure 1. Drone simulator developed in Gazebo. Two shots taken from different points of view at the moment the quad-
copter goes through the blue frame: (a) lateral view; (b) top view.
Figure 1. Drone simulator developed in Gazebo. Two shots taken from different points of view at the moment the
quadcopter goes through the blue frame: (a) lateral view; (b) top view.

Electronics 2021, 10, 7 3 of 17

As is shown in Figure 2, the autonomous drone navigation system is built on top
of three subsystems integrated into the framework. The location subsystem provides
the position and orientation of the drone in the scenario, for which it uses an ideal IMU.
The vision subsystem provides the relative position of the frames with respect to the drone
itself. This information is extracted from the images obtained by a fixed built-in camera
located on the front of the drone. Finally, the low-level control subsystem acts on the rotors
to keep the drone stabilized in the air, or to execute basic maneuvers.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 17

As is shown in Figure 2, the autonomous drone navigation system is built on top of
three subsystems integrated into the framework. The location subsystem provides the po-
sition and orientation of the drone in the scenario, for which it uses an ideal IMU. The
vision subsystem provides the relative position of the frames with respect to the drone
itself. This information is extracted from the images obtained by a fixed built-in camera
located on the front of the drone. Finally, the low-level control subsystem acts on the ro-
tors to keep the drone stabilized in the air, or to execute basic maneuvers.

Figure 2. Dependences between the subsystems composing the framework.

The rest of this paper is structured as follows. Section 2 presents a general description
of the complete development and test framework, focusing on the interaction between the
navigation system and the location, vision, and control subsystems. The internal imple-
mentation of these subsystems can be found in [24]. Then, and for illustrative purposes,
Section 3 describes the development of a simple navigation system proposal according to
the rules of the above-mentioned student competition, and Section 4 studies its behavior
in various test scenarios. After that, and as a possible practical application of the proposed
simulation framework, Section 5 briefly presents the “ESII Drone Challenge” contest. The
interested reader can find more details about different editions of this competition in [24].
Finally, Section 6 contains our conclusions and lines for future work.

2. Simulation Framework Overview
The development and test framework is supported by two different platforms (see

supplementary materials). Firstly, we have a drone model (Figure 1) based on Gazebo
which incorporates a plugin that implements the low-level control subsystem. The simu-
lator is completed with the scenario, which includes a game tatami, three colored floating
frames and the takeoff and landing base.

Secondly, we have a Simulink component (Figure 3) containing the navigation sys-
tem (implemented by means of a Stateflow state machine) and the vision subsystem,
which continuously processes the images coming from the camera and is implemented by
means of MATLAB functions. The location subsystem does not require complex pro-
cessing, since we work in a simulated scenario and it is only necessary to transmit data
from Gazebo to Simulink.

cameraideal IMU rotor1

LOW LEVEL CONTROL
SUBSYSTEM

LOCATION
SUBSYSTEM

AUTONOMOUS NAVIGATION SYSTEM

VISION
SUBSYSTEM

frames
position

drone
position

drone
movements

rotor2 rotor3 rotor4

Figure 2. Dependences between the subsystems composing the framework.

The rest of this paper is structured as follows. Section 2 presents a general description
of the complete development and test framework, focusing on the interaction between the
navigation system and the location, vision, and control subsystems. The internal imple-
mentation of these subsystems can be found in [24]. Then, and for illustrative purposes,
Section 3 describes the development of a simple navigation system proposal according to
the rules of the above-mentioned student competition, and Section 4 studies its behavior in
various test scenarios. After that, and as a possible practical application of the proposed
simulation framework, Section 5 briefly presents the “ESII Drone Challenge” contest. The
interested reader can find more details about different editions of this competition in [24].
Finally, Section 6 contains our conclusions and lines for future work.

2. Simulation Framework Overview

The development and test framework is supported by two different platforms (see Sup-
plementary Materials). Firstly, we have a drone model (Figure 1) based on Gazebo which
incorporates a plugin that implements the low-level control subsystem. The simulator is
completed with the scenario, which includes a game tatami, three colored floating frames
and the takeoff and landing base.

Secondly, we have a Simulink component (Figure 3) containing the navigation system
(implemented by means of a Stateflow state machine) and the vision subsystem, which
continuously processes the images coming from the camera and is implemented by means
of MATLAB functions. The location subsystem does not require complex processing, since
we work in a simulated scenario and it is only necessary to transmit data from Gazebo
to Simulink.

The two platforms (Gazebo and Simulink) exchange information by means of topics,
which basically are information flows supported by ROS in/from which nodes (executable
code) can publish/receive data by subscription. In the following subsections, we detail the
three framework subsystems and their interfaces with the navigation system.

Electronics 2021, 10, 7 4 of 17
Electronics 2021, 10, x FOR PEER REVIEW 4 of 17

Figure 3. Autonomous navigation system developed in Simulink: the autopilot block is the State-
flow state machine implementing the navigation system; the pilot block manages a joystick in case
of manual navigation; the switch block allows the change between autonomous and manual flight;
and the drone simulator block incorporates the vision subsystem, as well as the interaction with
Gazebo.

The two platforms (Gazebo and Simulink) exchange information by means of topics,
which basically are information flows supported by ROS in/from which nodes (executable
code) can publish/receive data by subscription. In the following subsections, we detail the
three framework subsystems and their interfaces with the navigation system.

2.1. Location Subsystem
Let [XYZ] be the earth coordinate system, where the X and Y axes are located on

the floor (in the center of the simulated scenario), and the Z axis remains vertical, so that X × Y = Z. In the same way, let [XYZ] be the internal quadcopter (body) coordinate
system, equally satisfying X × Y = Z. Let vector 𝐩 = [𝑥 𝑦 𝑧] be the drone position
according to the earth coordinate system, and let vector 𝐨 = [𝜙 𝜃 𝜓] be the drone ori-
entation with respect to the X (roll), Y (pitch) and Z (yaw) axes of the earth. Let 𝐯 =[𝑥 𝑦 𝑧] and 𝛚 = 𝜔 𝜔 𝜔 be, respectively, the linear and angular velocities with re-
spect to the body coordinate system. Thus, the complete state of the drone is defined by
means of the vector 𝐱 = [𝐩 𝐨 𝐯 𝛚].

Gazebo continuously publishes, on an ROS topic, a vector [𝐩 𝜓] containing the
quadcopter position and orientation. Simulink is subscribed to that topic, so that this in-
formation is available for the autopilot Stateflow block through the 𝑖𝑚𝑢 input bus (see
Figure 3). In this way, programmers can use this information to develop their autonomous
navigation systems. This information is also displayed by means of a Simulink viewer
(Figure 4).

Figure 4. Simulink viewer showing IMU information [𝑥 𝑦 𝑧 𝜓]⊺.
2.2. Vision Subsystem

Our simulated drone is equipped with a built-in camera on its front, which provides 320 × 240 images at a refresh rate of 5 𝐻𝑧. The framework processes these images and

Figure 3. Autonomous navigation system developed in Simulink: the autopilot block is the Stateflow
state machine implementing the navigation system; the pilot block manages a joystick in case of
manual navigation; the switch block allows the change between autonomous and manual flight; and
the drone simulator block incorporates the vision subsystem, as well as the interaction with Gazebo.

2.1. Location Subsystem

Let e[XYZ] be the earth coordinate system, where the X and Y axes are located on the
floor (in the center of the simulated scenario), and the Z axis remains vertical, so that eX ×
eY = eZ. In the same way, let b[XYZ] be the internal quadcopter (body) coordinate system,
equally satisfying bX × bY = bZ. Let vector p = e[x y z] be the drone position according
to the earth coordinate system, and let vector o = e[φ θ ψ] be the drone orientation with
respect to the X (roll), Y (pitch) and Z (yaw) axes of the earth. Let v = b[.

x
.
y

.
z
]

and
ω = b[ωx ωy ωz

]
be, respectively, the linear and angular velocities with respect to the

body coordinate system. Thus, the complete state of the drone is defined by means of the
vector x = [p o v ω]. Gazebo continuously publishes, on an ROS topic, a vector e[p ψ]
containing the quadcopter position and orientation. Simulink is subscribed to that topic,
so that this information is available for the autopilot Stateflow block through the imu
input bus (see Figure 3). In this way, programmers can use this information to develop
their autonomous navigation systems. This information is also displayed by means of a
Simulink viewer (Figure 4).

Electronics 2021, 10, x FOR PEER REVIEW 4 of 17

Figure 3. Autonomous navigation system developed in Simulink: the autopilot block is the State-
flow state machine implementing the navigation system; the pilot block manages a joystick in case
of manual navigation; the switch block allows the change between autonomous and manual flight;
and the drone simulator block incorporates the vision subsystem, as well as the interaction with
Gazebo.

The two platforms (Gazebo and Simulink) exchange information by means of topics,
which basically are information flows supported by ROS in/from which nodes (executable
code) can publish/receive data by subscription. In the following subsections, we detail the
three framework subsystems and their interfaces with the navigation system.

2.1. Location Subsystem
Let [XYZ] be the earth coordinate system, where the X and Y axes are located on

the floor (in the center of the simulated scenario), and the Z axis remains vertical, so that X × Y = Z. In the same way, let [XYZ] be the internal quadcopter (body) coordinate
system, equally satisfying X × Y = Z. Let vector 𝐩 = [𝑥 𝑦 𝑧] be the drone position
according to the earth coordinate system, and let vector 𝐨 = [𝜙 𝜃 𝜓] be the drone ori-
entation with respect to the X (roll), Y (pitch) and Z (yaw) axes of the earth. Let 𝐯 =[𝑥 𝑦 𝑧] and 𝛚 = 𝜔 𝜔 𝜔 be, respectively, the linear and angular velocities with re-
spect to the body coordinate system. Thus, the complete state of the drone is defined by
means of the vector 𝐱 = [𝐩 𝐨 𝐯 𝛚].

Gazebo continuously publishes, on an ROS topic, a vector [𝐩 𝜓] containing the
quadcopter position and orientation. Simulink is subscribed to that topic, so that this in-
formation is available for the autopilot Stateflow block through the 𝑖𝑚𝑢 input bus (see
Figure 3). In this way, programmers can use this information to develop their autonomous
navigation systems. This information is also displayed by means of a Simulink viewer
(Figure 4).

Figure 4. Simulink viewer showing IMU information [𝑥 𝑦 𝑧 𝜓]⊺.
2.2. Vision Subsystem

Our simulated drone is equipped with a built-in camera on its front, which provides 320 × 240 images at a refresh rate of 5 𝐻𝑧. The framework processes these images and

Figure 4. Simulink viewer showing IMU information e[x y z ψ]ᵀ.

2.2. Vision Subsystem

Our simulated drone is equipped with a built-in camera on its front, which provides
320× 240 images at a refresh rate of 5 Hz. The framework processes these images and
provides the navigation system with information about the position of the red, green, and

Electronics 2021, 10, 7 5 of 17

blue floating frames, through a 3-component ([r g b]) bus. More specifically, each frame is
given by six components, that is, {r, g, b} = [n s e w d α]. The first components indicate
the horizontal and vertical limits of the projection of the frame on the image. These limits
satisfy {e, w} ∈ [−160,+159] ∪ ±∞ and {n, s} ∈ [−120,+119] ∪ ±∞. If the frame is not
projected on the image, these parameters take the value ∞. If the frame is completely
displayed on the image, then the vision subsystem can estimate its position (since its size
is known), thus providing two additional components, namely the approximate distance
from the camera (d) and the horizontal tilt (α). The details of implementing this process
can be found in [24]. From the autopilot Stateflow block point of view, this information is
encoded and received through the cam input bus (see Figure 3).

Figure 5 shows an example of video processing. The raw image obtained by the drone
camera is shown on the left, and the way in which the vision subsystem isolates the pixels
from the colors of the frames and delimits their position by means of bounding rectangles is
shown on the right. Since in this example the red and blue rectangles are shown completely,
the subsystem calculates and provides their estimated position. The data resulting from
this processing is displayed in Table 1.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 17

provides the navigation system with information about the position of the red, green, and
blue floating frames, through a 3-component ([𝐫 𝐠 𝐛]) bus. More specifically, each frame
is given by six components, that is, {𝐫, 𝐠, 𝐛} = [𝑛 𝑠 𝑒 𝑤 𝑑 𝛼]. The first components indicate
the horizontal and vertical limits of the projection of the frame on the image. These limits
satisfy {𝑒, 𝑤} ∈ [−160, +159] ∪ ±∞ and {𝑛, 𝑠} ∈ [−120, +119] ∪ ±∞. If the frame is not
projected on the image, these parameters take the value ∞. If the frame is completely dis-
played on the image, then the vision subsystem can estimate its position (since its size is
known), thus providing two additional components, namely the approximate distance
from the camera (𝑑) and the horizontal tilt (α). The details of implementing this process
can be found in [24]. From the autopilot Stateflow block point of view, this information is
encoded and received through the cam input bus (see Figure 3).

Figure 5 shows an example of video processing. The raw image obtained by the drone
camera is shown on the left, and the way in which the vision subsystem isolates the pixels
from the colors of the frames and delimits their position by means of bounding rectangles
is shown on the right. Since in this example the red and blue rectangles are shown com-
pletely, the subsystem calculates and provides their estimated position. The data resulting
from this processing is displayed in Table 1.

Table 1. Data obtained by the vision subsystem for the example shown in Figure 5.

 𝑛 𝑠 𝑒 𝑤 𝑑 𝛼
Red 50 40 −53 −72 6.32 −6

Green −∞ ∞ −∞ ∞ - -
Blue 22 −25 61 15 1.87 11

2.3. Low-Level Control Subsystem
The low-level drone control has been implemented by applying the state-space the-

ory of linear time-invariant systems [25]. This control is responsible for turning on and off
the four drone engines and managing their angular velocity to stabilize the drone in the
air, as well as tracking a reference 𝐫 = [𝐯 ω], which corresponds to the drone’s forward
velocity (in all axes) and angular velocity (in the Z axis). In [24] the equations of motion,
their linearization, and the feedback control implemented are described in detail. From
the point of view of the autopilot Stateflow block, this information is encoded and sent
through the cmd output bus (see Figure 3), as well as being displayed by means of a Sim-
ulink viewer (Figure 6).

(a) (b)

Figure 5. Example of video image processing: (a) original image captured by the drone camera; (b)
rectangles delimiting the frames during the processing.

Figure 5. Example of video image processing: (a) original image captured by the drone camera;
(b) rectangles delimiting the frames during the processing.

Table 1. Data obtained by the vision subsystem for the example shown in Figure 5.

n s e w d α

Red 50 40 −53 −72 6.32 −6
Green −∞ ∞ −∞ ∞ - -
Blue 22 −25 61 15 1.87 11

2.3. Low-Level Control Subsystem

The low-level drone control has been implemented by applying the state-space theory
of linear time-invariant systems [25]. This control is responsible for turning on and off
the four drone engines and managing their angular velocity to stabilize the drone in the
air, as well as tracking a reference r = b[vωz], which corresponds to the drone’s forward
velocity (in all axes) and angular velocity (in the Z axis). In [24] the equations of motion,
their linearization, and the feedback control implemented are described in detail. From the
point of view of the autopilot Stateflow block, this information is encoded and sent through
the cmd output bus (see Figure 3), as well as being displayed by means of a Simulink
viewer (Figure 6).

Electronics 2021, 10, 7 6 of 17Electronics 2021, 10, x FOR PEER REVIEW 6 of 17

Figure 6. Simulink viewer showing the commanded velocity reference vector 𝐫 = [𝐯 𝜔].
3. Implementing Autonomous Navigation Systems

After describing our development framework, as an example of its use this section
details the implementation of a relatively simple autonomous navigation system proposal
meeting the goals of the challenge mentioned in the Introduction section.

Figure 7 shows the contents of the autopilot Stateflow block presented in Figure 3.
This state machine is run every 0.05 s, so the navigation system runs at 20 Hz. Consider-
ing that the low-level stability control runs directly on Gazebo (at 100 Hz), the navigation
system execution rate proves to be more than sufficient for our purposes.

Internally, the state machine contains five superstates (so called because they in turn
contain more states). The navigation system starts in the TakeOff superstate, which is re-
sponsible for starting the drone engines and raising it into the air. Later, the system
switches to the RedFrame state, in which the drone locates the red frame in the scenario,
navigates to it, and passes through it. The GreenFrame and BlueFrame states define simi-
lar behaviors. After going through all the frames, the system shifts to the Landing state,
which is responsible for returning the drone to the base and landing it. The diagram in
this figure is completed with three global MATLAB functions that implement basic prim-
itives used in different states. The Hover function keeps the quadcopter suspended in the
air. The Fly2 function implements the navigation to a 3D position. Finally, the
Look2Frame function makes the drone “stare” at a specific frame. All these components
are detailed below.

Figure 7. Detail of the autopilot Stateflow block.

Figure 8 shows the TakeOff superstate. First, the Start state executes the Hover func-
tion. As indicated, this simple function, which is detailed in Figure 9, causes the drone to
remain suspended in the air, in its current position. To do this, it indicates through the

Figure 6. Simulink viewer showing the commanded velocity reference vector r = b[v ωz].

3. Implementing Autonomous Navigation Systems

After describing our development framework, as an example of its use this section
details the implementation of a relatively simple autonomous navigation system proposal
meeting the goals of the challenge mentioned in the Introduction section.

Figure 7 shows the contents of the autopilot Stateflow block presented in Figure 3.
This state machine is run every 0.05 s, so the navigation system runs at 20 Hz. Considering
that the low-level stability control runs directly on Gazebo (at 100 Hz), the navigation
system execution rate proves to be more than sufficient for our purposes.

Internally, the state machine contains five superstates (so called because they in turn
contain more states). The navigation system starts in the TakeOff superstate, which is
responsible for starting the drone engines and raising it into the air. Later, the system
switches to the RedFrame state, in which the drone locates the red frame in the scenario,
navigates to it, and passes through it. The GreenFrame and BlueFrame states define similar
behaviors. After going through all the frames, the system shifts to the Landing state, which
is responsible for returning the drone to the base and landing it. The diagram in this figure
is completed with three global MATLAB functions that implement basic primitives used in
different states. The Hover function keeps the quadcopter suspended in the air. The Fly2
function implements the navigation to a 3D position. Finally, the Look2Frame function
makes the drone “stare” at a specific frame. All these components are detailed below.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 17

Figure 6. Simulink viewer showing the commanded velocity reference vector 𝐫 = [𝐯 𝜔].
3. Implementing Autonomous Navigation Systems

After describing our development framework, as an example of its use this section
details the implementation of a relatively simple autonomous navigation system proposal
meeting the goals of the challenge mentioned in the Introduction section.

Figure 7 shows the contents of the autopilot Stateflow block presented in Figure 3.
This state machine is run every 0.05 s, so the navigation system runs at 20 Hz. Consider-
ing that the low-level stability control runs directly on Gazebo (at 100 Hz), the navigation
system execution rate proves to be more than sufficient for our purposes.

Internally, the state machine contains five superstates (so called because they in turn
contain more states). The navigation system starts in the TakeOff superstate, which is re-
sponsible for starting the drone engines and raising it into the air. Later, the system
switches to the RedFrame state, in which the drone locates the red frame in the scenario,
navigates to it, and passes through it. The GreenFrame and BlueFrame states define simi-
lar behaviors. After going through all the frames, the system shifts to the Landing state,
which is responsible for returning the drone to the base and landing it. The diagram in
this figure is completed with three global MATLAB functions that implement basic prim-
itives used in different states. The Hover function keeps the quadcopter suspended in the
air. The Fly2 function implements the navigation to a 3D position. Finally, the
Look2Frame function makes the drone “stare” at a specific frame. All these components
are detailed below.

Figure 7. Detail of the autopilot Stateflow block.

Figure 8 shows the TakeOff superstate. First, the Start state executes the Hover func-
tion. As indicated, this simple function, which is detailed in Figure 9, causes the drone to
remain suspended in the air, in its current position. To do this, it indicates through the

Figure 7. Detail of the autopilot Stateflow block.

Figure 8 shows the TakeOff superstate. First, the Start state executes the Hover
function. As indicated, this simple function, which is detailed in Figure 9, causes the
drone to remain suspended in the air, in its current position. To do this, it indicates
through the cmd output bus the corresponding commands to turn on the motors (if they
were previously turned on this action has no effect), and restart the reference velocities
r = b[v ωz] described in Section 2.3.

Electronics 2021, 10, 7 7 of 17

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17

cmd output bus the corresponding commands to turn on the motors (if they were previ-
ously turned on this action has no effect), and restart the reference velocities 𝐫 = [𝐯 𝜔]
described in Section 2.3.

Figure 8. TakeOff Stateflow state.

After the activation of the motors, the state machine switches directly to the SetBase
state. The purpose of this state is to assign the initial drone position since this will also be
its return position after completing its mission. As shown in Figure 3, the autopilot State-
flow block receives the current drone position through the imu input bus, which has no
valid information until the second execution of the state machine. Therefore, this assign-
ment cannot be made in the Start state, which explains the existence of this second state.

(a) (b)

Figure 9. Hover MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

From the SetBase state the machine will pass to the End state when the condition
defined in the transition is satisfied, which will require an undefined number of execu-
tions of the state machine. That condition invokes the Fly2 function, which receives the
3D position to which we want the drone to move and returns the distance remaining to
reach this position. Consequently, the navigation system requests that the drone rise from

end

set UAV command

Hover

Figure 8. TakeOff Stateflow state.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 17

cmd output bus the corresponding commands to turn on the motors (if they were previ-
ously turned on this action has no effect), and restart the reference velocities 𝐫 = [𝐯 𝜔]
described in Section 2.3.

Figure 8. TakeOff Stateflow state.

After the activation of the motors, the state machine switches directly to the SetBase
state. The purpose of this state is to assign the initial drone position since this will also be
its return position after completing its mission. As shown in Figure 3, the autopilot State-
flow block receives the current drone position through the imu input bus, which has no
valid information until the second execution of the state machine. Therefore, this assign-
ment cannot be made in the Start state, which explains the existence of this second state.

(a) (b)

Figure 9. Hover MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

From the SetBase state the machine will pass to the End state when the condition
defined in the transition is satisfied, which will require an undefined number of execu-
tions of the state machine. That condition invokes the Fly2 function, which receives the
3D position to which we want the drone to move and returns the distance remaining to
reach this position. Consequently, the navigation system requests that the drone rise from

end

set UAV command

Hover

Figure 9. Hover MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

After the activation of the motors, the state machine switches directly to the SetBase
state. The purpose of this state is to assign the initial drone position since this will also be its
return position after completing its mission. As shown in Figure 3, the autopilot Stateflow
block receives the current drone position through the imu input bus, which has no valid
information until the second execution of the state machine. Therefore, this assignment
cannot be made in the Start state, which explains the existence of this second state.

Electronics 2021, 10, 7 8 of 17

From the SetBase state the machine will pass to the End state when the condition
defined in the transition is satisfied, which will require an undefined number of executions
of the state machine. That condition invokes the Fly2 function, which receives the 3D
position to which we want the drone to move and returns the distance remaining to reach
this position. Consequently, the navigation system requests that the drone rise from its
position over the takeoff and landing base to a height of exactly 1 m. Since the base is a
cube of 60 cm edges, the drone will rise 40 cm above it. When there are less than 10 cm
left to reach the desired height, the condition is satisfied, and the system changes from the
TakeOff superstate to the RedFrame superstate.

Figure 10 shows the implementation of the Fly2 function.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 17

its position over the takeoff and landing base to a height of exactly 1 m. Since the base is
a cube of 60 cm edges, the drone will rise 40 cm above it. When there are less than 10 cm
left to reach the desired height, the condition is satisfied, and the system changes from the
TakeOff superstate to the RedFrame superstate.

Figure 10 shows the implementation of the Fly2 function.

(a) (b)

Figure 10. Fly2 MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

First, the displacement vector 𝐝 = 𝑑 𝑑 𝑑 , from the current position [𝑥 𝑦 𝑧]
(provided by the IMU) to a target position [𝑥 𝑦 𝑧], is computed by means of the ex-
pression 𝐝 = [𝑥 𝑦 𝑧] − [𝑥 𝑦 𝑧] (see lines 4–6 in Figures 10 and 11a). From this vec-
tor, we obtain the three-dimensional distance to the target ‖𝐝‖ (line 9), which will be re-
turned by the function and managed by the navigation system. The displacement vector 𝐝 obtained is expressed in the earth coordinate system, but horizontal movements re-
quire it to be expressed in the quadcopter reference system. For this purpose, the distance
to the target on the plane 𝑑 = 𝑑 𝑑 is obtained (line 12). Next, we compute the an-
gle between the displacement vector 𝐝 and the X axis by applying the expression 𝛼 =atan . Starting from that angle and the course followed by the drone (provided by the

IMU), we can compute the bearing angle 𝛽 = 𝛼 − 𝜓 (line 15 and Figure 11b). Finally, the
above values are used to transform the horizontal displacement vector 𝐝 =𝑑 cos 𝛽 𝑑 sin 𝛽 𝑑 (lines 18–20). Note that the transformation of the horizontal and

end

no

get displacement
(in earth axes)

velocity
overflow?

sí

get target distance

truncate velocity

set UAV command

Fly2

yes

get target distance
(in 2D)

get angle between
drone heading and
target

get displacement
(in body axes)

get velocity vector

Figure 10. Fly2 MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

First, the displacement vector ed =
[
dx dy dz

]
, from the current position e[x y z]

(provided by the IMU) to a target position e[xT yT zT], is computed by means of the
expression ed = e[xT yT zT] − e[x y z] (see lines 4–6 in Figures 10 and 11a). From this
vector, we obtain the three-dimensional distance to the target ‖d‖ (line 9), which will be
returned by the function and managed by the navigation system. The displacement vector
ed obtained is expressed in the earth coordinate system, but horizontal movements require
it to be expressed in the quadcopter reference system. For this purpose, the distance to
the target on the plane dxy = ‖

[
dx dy

]
‖ is obtained (line 12). Next, we compute the angle

between the displacement vector ed and the eX axis by applying the expression α = atan
edy
edx

.

Electronics 2021, 10, 7 9 of 17

Starting from that angle and the course followed by the drone (provided by the IMU), we
can compute the bearing angle β = α− ψ (line 15 and Figure 11b). Finally, the above values
are used to transform the horizontal displacement vector bd =

[
dxy cos β dxy sin β dz

]
(lines 18–20). Note that the transformation of the horizontal and vertical distances is
performed separately, ignoring the fact that the drone is not always fully stabilized. Then,
the commanded velocity vector is obtained directly from the distance vector (line 23), to
which a correction factor of value 0.5 is applied to smooth the maneuver. In addition, the
system limits the commanded velocity to the range ±1. Therefore, the velocity vector is
truncated to that upper bound (lines 24–26). Finally, the velocity vector is dumped to the
corresponding output bus (lines 28–30).

Electronics 2021, 10, x FOR PEER REVIEW 9 of 17

vertical distances is performed separately, ignoring the fact that the drone is not always
fully stabilized. Then, the commanded velocity vector is obtained directly from the dis-
tance vector (line 23), to which a correction factor of value 0.5 is applied to smooth the
maneuver. In addition, the system limits the commanded velocity to the range ±1. There-
fore, the velocity vector is truncated to that upper bound (lines 24–26). Finally, the velocity
vector is dumped to the corresponding output bus (lines 28–30).

(a) (b)

Figure 11. Transformation of (a) position and (b) bearing from the global (earth) reference system
to the local (body) reference system.

Figure 12 shows the behavior implemented in the RedFrame superstate, which can
be summarized as follows. Once the drone is located at the desired height over the base,
the navigation system switches to the Go2Center state. While in this state, the drone nav-
igates directly to the center of the scenario at a height of 2 m, as indicated by the priority
transition 2. When there are 20 cm left to reach the center of the scenario, the system
passes to the Turning state. The drone stops and starts rotating. The implemented behav-
ior assumes that, at some point during the trip to the center or the subsequent rotation,
the drone will detect through its camera the desired frame (in this case the red one), and
will change to the FrameVisible state. This occurs when the cam input bus provides a
finite distance for that frame. Note that in the Go2Center state, the frame detection check
is given higher priority than the center-reach check. Therefore, if during the trip the frame
is discovered, the drone will pay attention to it and stop moving towards the center.

Upon entering the FrameVisible state, the drone interrupts its current movement,
consisting in going to the center of the scenario or rotating, as explained above. It then
begins its approach to the frame, which is broken down into two parts.

Firstly, the Look2Frame function makes the drone keep a colored frame in the center
of the image captured by its camera. Figure 13 shows its implementation. The colored
frame in question is passed as an argument (line 1), and the corresponding bus infor-
mation is selected (lines 3–10). If the frame is displayed on the screen (line 12), the hori-
zontal center of its visible area is calculated (line 13) and a certain Z-rotation speed is ap-
plied to match that center with the center of the image (line 14). In the same way, the
vertical center of the visible area of the frame is calculated (line 15) and a certain displace-
ment velocity in Z is applied to make the drone ascend/descend to the same height (line
16).

target
position

Figure 11. Transformation of (a) position and (b) bearing from the global (earth) reference
system to the local (body) reference system.

Figure 12 shows the behavior implemented in the RedFrame superstate, which can be
summarized as follows. Once the drone is located at the desired height over the base, the
navigation system switches to the Go2Center state. While in this state, the drone navigates
directly to the center of the scenario at a height of 2 m, as indicated by the priority transition
2. When there are 20 cm left to reach the center of the scenario, the system passes to the
Turning state. The drone stops and starts rotating. The implemented behavior assumes
that, at some point during the trip to the center or the subsequent rotation, the drone will
detect through its camera the desired frame (in this case the red one), and will change to
the FrameVisible state. This occurs when the cam input bus provides a finite distance for
that frame. Note that in the Go2Center state, the frame detection check is given higher
priority than the center-reach check. Therefore, if during the trip the frame is discovered,
the drone will pay attention to it and stop moving towards the center. Upon entering the
FrameVisible state, the drone interrupts its current movement, consisting in going to the
center of the scenario or rotating, as explained above. It then begins its approach to the
frame, which is broken down into two parts.

Firstly, the Look2Frame function makes the drone keep a colored frame in the center
of the image captured by its camera. Figure 13 shows its implementation. The colored
frame in question is passed as an argument (line 1), and the corresponding bus information
is selected (lines 3–10). If the frame is displayed on the screen (line 12), the horizontal
center of its visible area is calculated (line 13) and a certain Z-rotation speed is applied to
match that center with the center of the image (line 14). In the same way, the vertical center
of the visible area of the frame is calculated (line 15) and a certain displacement velocity in
Z is applied to make the drone ascend/descend to the same height (line 16).

Electronics 2021, 10, 7 10 of 17Electronics 2021, 10, x FOR PEER REVIEW 10 of 17

Figure 12. RedFrame Stateflow state.

While keeping the camera focused on the frame, the drone tries to approach to within 40 cm of it by applying a certain forward velocity on the front X-axis. If for any reason
the drone should lose sight of the frame, then the navigation system returns to the
Go2Center state to try again. The drone acts in this way until it successfully approaches
to within 45 cm of the frame. After that, the state machine transitions to the FrameClose
state.

In the FrameClose state, the drone stops its forward movement to begin turning
around the frame and get into position to pass through. The camera processing system is
quite rudimentary, and it reports the tilt angle as an absolute value (no sign). Therefore,
the drone does not know, a priori, to which side it should turn. The strategy we adopt is
the following: the drone turns to any side and then checks whether it was right (and con-
tinues), or wrong (and rectifies). The system records the current angle and changes to the
ShiftLeft state.

The ShiftLeft state applies a slight side shift velocity (to the left). At the same time, it
generates corrections so that the drone keeps the frame focused and comes a little closer
to it (at a distance of 30 cm), as explained for the FrameVisible state. If the shift to the left
makes the tilt angle increase, it is because the drone should have turned in the opposite
direction, consequently transitioning to the ShiftRight state. This state is like the previous
one, except that the sideways shift velocity is applied to the right. For both side shift states
it is assumed that, when the angle is less than 3°, the drone is sufficiently aligned with
the frame to be able to pass through it, transitioning to the Crossing state.

Figure 12. RedFrame Stateflow state.

While keeping the camera focused on the frame, the drone tries to approach to within
40 cm of it by applying a certain forward velocity on the front X-axis. If for any reason the
drone should lose sight of the frame, then the navigation system returns to the Go2Center
state to try again. The drone acts in this way until it successfully approaches to within
45 cm of the frame. After that, the state machine transitions to the FrameClose state.

In the FrameClose state, the drone stops its forward movement to begin turning
around the frame and get into position to pass through. The camera processing system is
quite rudimentary, and it reports the tilt angle as an absolute value (no sign). Therefore, the
drone does not know, a priori, to which side it should turn. The strategy we adopt is the
following: the drone turns to any side and then checks whether it was right (and continues),
or wrong (and rectifies). The system records the current angle and changes to the ShiftLeft
state.

The ShiftLeft state applies a slight side shift velocity (to the left). At the same time, it
generates corrections so that the drone keeps the frame focused and comes a little closer
to it (at a distance of 30 cm), as explained for the FrameVisible state. If the shift to the left
makes the tilt angle increase, it is because the drone should have turned in the opposite
direction, consequently transitioning to the ShiftRight state. This state is like the previous
one, except that the sideways shift velocity is applied to the right. For both side shift states
it is assumed that, when the angle is less than 3◦, the drone is sufficiently aligned with the
frame to be able to pass through it, transitioning to the Crossing state.

Electronics 2021, 10, 7 11 of 17Electronics 2021, 10, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 13. Look2Frame MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

In the Crossing state, the quadcopter is correctly oriented in front of the frame, at 30 cm. All lateral movements are stopped, and a moderate forward velocity is applied.
Given the distance to be covered and the speed applied, after 4 s the quadcopter should
have passed through the frame. Note that, if possible, the drone continues to make cor-
rections to keep the frame centered on the camera image. Finally, the frame disappears
from the camera’s field of view, and the drone advances “blindly” for the last stretch.
After crossing, the drone rises for 2 s to move away from the plane of collision with the
frame. The superstate then changes to the End state, and the navigation system moves to
the Landing superstate.

The implementation of the Landing superstate is shown in Figure 14.

Figure 14. Landing Stateflow state.

When the drone is less than 5 cm from its destination, the navigation system stops
the engines so that the drone falls onto the base. This option has been chosen, instead of a

end

no

which frame?

frame
visible?

sí

get green frame data

get frame center

Look2Frame

yes

get red frame data get blue frame data

green bluered

set UAV command

Figure 13. Look2Frame MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

In the Crossing state, the quadcopter is correctly oriented in front of the frame, at 30 cm.
All lateral movements are stopped, and a moderate forward velocity is applied. Given the
distance to be covered and the speed applied, after 4 s the quadcopter should have passed
through the frame. Note that, if possible, the drone continues to make corrections to keep
the frame centered on the camera image. Finally, the frame disappears from the camera’s
field of view, and the drone advances “blindly” for the last stretch. After crossing, the
drone rises for 2 s to move away from the plane of collision with the frame. The superstate
then changes to the End state, and the navigation system moves to the Landing superstate.

The implementation of the Landing superstate is shown in Figure 14.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 13. Look2Frame MATLAB function defined in Figure 7: (a) implementation; (b) flow chart.

In the Crossing state, the quadcopter is correctly oriented in front of the frame, at 30 cm. All lateral movements are stopped, and a moderate forward velocity is applied.
Given the distance to be covered and the speed applied, after 4 s the quadcopter should
have passed through the frame. Note that, if possible, the drone continues to make cor-
rections to keep the frame centered on the camera image. Finally, the frame disappears
from the camera’s field of view, and the drone advances “blindly” for the last stretch.
After crossing, the drone rises for 2 s to move away from the plane of collision with the
frame. The superstate then changes to the End state, and the navigation system moves to
the Landing superstate.

The implementation of the Landing superstate is shown in Figure 14.

Figure 14. Landing Stateflow state.

When the drone is less than 5 cm from its destination, the navigation system stops
the engines so that the drone falls onto the base. This option has been chosen, instead of a

end

no

which frame?

frame
visible?

sí

get green frame data

get frame center

Look2Frame

yes

get red frame data get blue frame data

green bluered

set UAV command

Figure 14. Landing Stateflow state.

Electronics 2021, 10, 7 12 of 17

When the drone is less than 5 cm from its destination, the navigation system stops the
engines so that the drone falls onto the base. This option has been chosen, instead of a soft
landing, since in the said competition the time between the activation and deactivation of
the engines is evaluated, thus gaining a few valuable seconds.

4. Navigation System Testing

Continuing with the same example of applying the framework, we now analyze the
behavior of the navigation system whose implementation we have just described. For
this purpose, we use three test cases in which the position and orientation of the colored
floating frames, as well as the position and initial orientation of the drone, are different.

The first test case is presented in Figure 15. On the left we can see the initial configura-
tion of the scenario, and the right plot shows the trajectory followed by the drone to fulfill
its mission. The initial drone position and orientation allow its camera to capture the red
frame as soon as it takes off. Therefore, the drone discards the option of going to the center
of the scenario, instead navigating directly to the red frame. When the drone is close to
that frame, it begins to turn with the purpose of aligning with it. At angles close to 90◦, the
camera does not perceive the frame tilt well, and the drone ends up choosing to turn to
the right (the longest way). As it passes through the red frame, the camera captures the
green frame and the drone heads towards it. When passing through the green frame, the
camera does not capture the blue frame, so the drone begins to move toward the center
of the scenario. When it is halfway there, the blue frame enters the camera’s field of view
and the drone heads toward it, which is seen on the plot as a change in the direction of the
drone. After passing through the blue frame, it heads for the base and lands.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 17

soft landing, since in the said competition the time between the activation and deactiva-

tion of the engines is evaluated, thus gaining a few valuable seconds.

4. Navigation System Testing

Continuing with the same example of applying the framework, we now analyze the

behavior of the navigation system whose implementation we have just described. For this

purpose, we use three test cases in which the position and orientation of the colored float-

ing frames, as well as the position and initial orientation of the drone, are different.

The first test case is presented in Figure 15. On the left we can see the initial configu-

ration of the scenario, and the right plot shows the trajectory followed by the drone to

fulfill its mission. The initial drone position and orientation allow its camera to capture

the red frame as soon as it takes off. Therefore, the drone discards the option of going to

the center of the scenario, instead navigating directly to the red frame. When the drone is

close to that frame, it begins to turn with the purpose of aligning with it. At angles close

to 90°, the camera does not perceive the frame tilt well, and the drone ends up choosing

to turn to the right (the longest way). As it passes through the red frame, the camera cap-

tures the green frame and the drone heads towards it. When passing through the green

frame, the camera does not capture the blue frame, so the drone begins to move toward

the center of the scenario. When it is halfway there, the blue frame enters the camera’s

field of view and the drone heads toward it, which is seen on the plot as a change in the

direction of the drone. After passing through the blue frame, it heads for the base and

lands.

(a) (b)

Figure 15. Test case 1: (a) simulated scenario (upper view); (b) path followed by the drone.

Figure 16 shows the scenario configuration and the drone trajectory in the second test

case. This time, the initial position and orientation of the drone prevent its camera from

capturing the red frame, so the drone is directed to the center of the scenario. Once there,

it begins to rotate, and when it detects the red frame, the drone heads towards it. The

distribution of the frames causes the drone to link them one after the other with hardly

any need for lateral alignment movements. After passing through the last frame, it heads

for the base and lands.

Figure 15. Test case 1: (a) simulated scenario (upper view); (b) path followed by the drone.

Figure 16 shows the scenario configuration and the drone trajectory in the second
test case. This time, the initial position and orientation of the drone prevent its camera
from capturing the red frame, so the drone is directed to the center of the scenario. Once
there, it begins to rotate, and when it detects the red frame, the drone heads towards it. The
distribution of the frames causes the drone to link them one after the other with hardly any
need for lateral alignment movements. After passing through the last frame, it heads for
the base and lands.

Electronics 2021, 10, 7 13 of 17Electronics 2021, 10, x FOR PEER REVIEW 13 of 17

(a) (b)

Figure 16. Test case 2: (a) simulated scenario (upper view); (b) path followed by the drone.

The third and final test case study is presented in Figure 17. On this occasion, after

passing through the red frame, the drone must navigate to the center of the scenario and

rotate to find the green frame. It is luckier with the blue frame, which enters its camera’s

field of view before it reaches the center.

(a) (b)

Figure 17. Test case 3: (a) simulated scenario (upper view); (b) path followed by the drone.

5. Practical Application

“ESII Drone Challenge” is a contest for high school students. Each team must im-

prove the simple navigation system described in Section 3. Participants are encouraged to

choose their own strategy, stimulating their creativity. To evaluate the quality of the pro-

posals, they are tested in different scenarios, similarly to what has been done in Section 4

for the baseline system.

The contest has an initial phase, which lasts several weeks, in which the enrolled

teams must develop their proposals in their respective schools. Students can access to the

contest “official” blog, which contains a set of video tutorials organized in several catego-

ries (Figure 18). Through these tutorials, the organization provides detailed instructions

Figure 16. Test case 2: (a) simulated scenario (upper view); (b) path followed by the drone.

The third and final test case study is presented in Figure 17. On this occasion, after
passing through the red frame, the drone must navigate to the center of the scenario and
rotate to find the green frame. It is luckier with the blue frame, which enters its camera’s
field of view before it reaches the center.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 17

(a) (b)

Figure 16. Test case 2: (a) simulated scenario (upper view); (b) path followed by the drone.

The third and final test case study is presented in Figure 17. On this occasion, after

passing through the red frame, the drone must navigate to the center of the scenario and

rotate to find the green frame. It is luckier with the blue frame, which enters its camera’s

field of view before it reaches the center.

(a) (b)

Figure 17. Test case 3: (a) simulated scenario (upper view); (b) path followed by the drone.

5. Practical Application

“ESII Drone Challenge” is a contest for high school students. Each team must im-

prove the simple navigation system described in Section 3. Participants are encouraged to

choose their own strategy, stimulating their creativity. To evaluate the quality of the pro-

posals, they are tested in different scenarios, similarly to what has been done in Section 4

for the baseline system.

The contest has an initial phase, which lasts several weeks, in which the enrolled

teams must develop their proposals in their respective schools. Students can access to the

contest “official” blog, which contains a set of video tutorials organized in several catego-

ries (Figure 18). Through these tutorials, the organization provides detailed instructions

Figure 17. Test case 3: (a) simulated scenario (upper view); (b) path followed by the drone.

5. Practical Application

“ESII Drone Challenge” is a contest for high school students. Each team must improve
the simple navigation system described in Section 3. Participants are encouraged to choose
their own strategy, stimulating their creativity. To evaluate the quality of the proposals,
they are tested in different scenarios, similarly to what has been done in Section 4 for the
baseline system.

Electronics 2021, 10, 7 14 of 17

The contest has an initial phase, which lasts several weeks, in which the enrolled
teams must develop their proposals in their respective schools. Students can access to the
contest “official” blog, which contains a set of video tutorials organized in several categories
(Figure 18). Through these tutorials, the organization provides detailed instructions for
installing and configuring the working environment and gives advice and suggestions
for the development of the proposals. Video tutorials are complemented by a traditional
“FAQ” section.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 17

for installing and configuring the working environment and gives advice and suggestions
for the development of the proposals. Video tutorials are complemented by a traditional
“FAQ” section.

(a) (b)

Figure 18. Examples of video tutorials available on the competition website: (a) Horizontal drone movement; (b) How to
cross a frame.

The final phase takes place in the facilities of the School of Computer Science and
Engineering. During the first part of this phase, teams test their navigation systems in
several different scenarios, and they can made last-time tunings to their implementations
(Figure 19).

(a) (b)

Figure 19. Participants tuning their proposals before the evaluation of the judges: (a) laboratory; (b) team working.

Later, all the proposals are frozen, and three of the previous scenarios are randomly
chosen. Student proposals are then tested in the selected scenarios, under the supervision
of the competition judges. A supporting application, the “Game Monitor” (Figure 20a),
allows the judges to measure the time required to complete each try. It is a separated Sim-
ulink application that connects to the drone simulator (in Gazebo) to provide the time the
drone engines are on. This tool is also in charge of checking whether the drone exits the
flying scenario (a 10 × 10 × 4 m cube), since this situation must be penalized, and
whether the try has reached the available time (set to 3 min).

Apart from the “Game Monitor”, a small client-server application (Figure 20b) was
developed for the final phase so that, while the competition judges are assessing proposals
(Figure 21a), participants can check their “virtual” place in an instantaneous ranking (Fig-
ure 20c). To have this ranking updated in real time, each judge uses a smartphone to fill
in a web form with the results of each try and sends this information immediately to the
server.

Figure 18. Examples of video tutorials available on the competition website: (a) Horizontal drone movement; (b) How to
cross a frame.

The final phase takes place in the facilities of the School of Computer Science and
Engineering. During the first part of this phase, teams test their navigation systems in
several different scenarios, and they can made last-time tunings to their implementations
(Figure 19).

Electronics 2021, 10, x FOR PEER REVIEW 14 of 17

for installing and configuring the working environment and gives advice and suggestions
for the development of the proposals. Video tutorials are complemented by a traditional
“FAQ” section.

(a) (b)

Figure 18. Examples of video tutorials available on the competition website: (a) Horizontal drone movement; (b) How to
cross a frame.

The final phase takes place in the facilities of the School of Computer Science and
Engineering. During the first part of this phase, teams test their navigation systems in
several different scenarios, and they can made last-time tunings to their implementations
(Figure 19).

(a) (b)

Figure 19. Participants tuning their proposals before the evaluation of the judges: (a) laboratory; (b) team working.

Later, all the proposals are frozen, and three of the previous scenarios are randomly
chosen. Student proposals are then tested in the selected scenarios, under the supervision
of the competition judges. A supporting application, the “Game Monitor” (Figure 20a),
allows the judges to measure the time required to complete each try. It is a separated Sim-
ulink application that connects to the drone simulator (in Gazebo) to provide the time the
drone engines are on. This tool is also in charge of checking whether the drone exits the
flying scenario (a 10 × 10 × 4 m cube), since this situation must be penalized, and
whether the try has reached the available time (set to 3 min).

Apart from the “Game Monitor”, a small client-server application (Figure 20b) was
developed for the final phase so that, while the competition judges are assessing proposals
(Figure 21a), participants can check their “virtual” place in an instantaneous ranking (Fig-
ure 20c). To have this ranking updated in real time, each judge uses a smartphone to fill
in a web form with the results of each try and sends this information immediately to the
server.

Figure 19. Participants tuning their proposals before the evaluation of the judges: (a) laboratory; (b) team working.

Later, all the proposals are frozen, and three of the previous scenarios are randomly
chosen. Student proposals are then tested in the selected scenarios, under the supervision
of the competition judges. A supporting application, the “Game Monitor” (Figure 20a),
allows the judges to measure the time required to complete each try. It is a separated
Simulink application that connects to the drone simulator (in Gazebo) to provide the time
the drone engines are on. This tool is also in charge of checking whether the drone exits
the flying scenario (a 10 × 10 × 4 m cube), since this situation must be penalized, and
whether the try has reached the available time (set to 3 min).

Apart from the “Game Monitor”, a small client-server application (Figure 20b) was
developed for the final phase so that, while the competition judges are assessing proposals

Electronics 2021, 10, 7 15 of 17

(Figure 21a), participants can check their “virtual” place in an instantaneous ranking
(Figure 20c). To have this ranking updated in real time, each judge uses a smartphone to
fill in a web form with the results of each try and sends this information immediately to
the server.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 17

(a) (b) (c)

Figure 20. Competition supporting applications: (a) scenario top view with statistics; (b) judge view; (c) ranking view.

Finally, although student proposals are developed and tested by simulation, the
prize is a commercial drone for each one of the components of the winner team (Figure
21b). It is worth mentioning that the results of the survey conducted after the second edi-
tion of the competition [24] indicate that participant students had a very positive opinion
about the simulation framework.

(a) (b)

Figure 21. Different moments of the competition: (a) judges evaluating student proposals; (b) award ceremony.

6. Conclusions and Future Work
In this work, we have described a simulation framework for the development and

testing of autonomous drone navigation systems. We consider that this tool can greatly
facilitate the acquisition of competences and skills for engineering students who are start-
ing out in the field of aerial robotics. This is because, unlike similar tools, the framework
does not require an in-depth knowledge of robotics or programming, and drone behavior
is mainly defined in a graphical way, by means of very intuitive state machines. Addition-
ally, low-level control details have been abstracted, so that the programmer is only re-
quired to be familiar with a simple interface for receiving drone states and camera infor-
mation and for sending navigation commands.

We have also shown, through a simple example, how we can use this framework to
develop a navigation system proposal. In particular, the example presented is inspired by
the “ESII Drone Challenge” student competition. A possible (and non-optimized) imple-
mentation for a navigation system meeting the objectives of this competition has been

Figure 20. Competition supporting applications: (a) scenario top view with statistics; (b) judge view; (c) ranking view.

Finally, although student proposals are developed and tested by simulation, the prize
is a commercial drone for each one of the components of the winner team (Figure 21b). It is
worth mentioning that the results of the survey conducted after the second edition of the
competition [24] indicate that participant students had a very positive opinion about the
simulation framework.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 17

(a) (b) (c)

Figure 20. Competition supporting applications: (a) scenario top view with statistics; (b) judge view; (c) ranking view.

Finally, although student proposals are developed and tested by simulation, the
prize is a commercial drone for each one of the components of the winner team (Figure
21b). It is worth mentioning that the results of the survey conducted after the second edi-
tion of the competition [24] indicate that participant students had a very positive opinion
about the simulation framework.

(a) (b)

Figure 21. Different moments of the competition: (a) judges evaluating student proposals; (b) award ceremony.

6. Conclusions and Future Work
In this work, we have described a simulation framework for the development and

testing of autonomous drone navigation systems. We consider that this tool can greatly
facilitate the acquisition of competences and skills for engineering students who are start-
ing out in the field of aerial robotics. This is because, unlike similar tools, the framework
does not require an in-depth knowledge of robotics or programming, and drone behavior
is mainly defined in a graphical way, by means of very intuitive state machines. Addition-
ally, low-level control details have been abstracted, so that the programmer is only re-
quired to be familiar with a simple interface for receiving drone states and camera infor-
mation and for sending navigation commands.

We have also shown, through a simple example, how we can use this framework to
develop a navigation system proposal. In particular, the example presented is inspired by
the “ESII Drone Challenge” student competition. A possible (and non-optimized) imple-
mentation for a navigation system meeting the objectives of this competition has been

Figure 21. Different moments of the competition: (a) judges evaluating student proposals; (b) award ceremony.

6. Conclusions and Future Work

In this work, we have described a simulation framework for the development and
testing of autonomous drone navigation systems. We consider that this tool can greatly
facilitate the acquisition of competences and skills for engineering students who are starting
out in the field of aerial robotics. This is because, unlike similar tools, the framework does
not require an in-depth knowledge of robotics or programming, and drone behavior is
mainly defined in a graphical way, by means of very intuitive state machines. Additionally,
low-level control details have been abstracted, so that the programmer is only required to
be familiar with a simple interface for receiving drone states and camera information and
for sending navigation commands.

Electronics 2021, 10, 7 16 of 17

We have also shown, through a simple example, how we can use this framework to
develop a navigation system proposal. In particular, the example presented is inspired
by the “ESII Drone Challenge” student competition. A possible (and non-optimized)
implementation for a navigation system meeting the objectives of this competition has
been detailed. Additionally, we have outlined how this simple proposal could be evaluated
in different test scenarios.

Future work can be undertaken along many different lines. One such line is related to
enhancing the proposed navigation system. Firstly, it is necessary to improve the scenario
exploration process, as inspecting the environment from its center is a very limited behavior
that presents problematic situations. For example, the desired frame may be in the center,
but at a different height. Instead, the drone could memorize the regions it has inspected
and those that are still pending. Furthermore, the drone is currently only aware of the
relative position of its target (either the center of the scenario or a colored frame). It would
be useful to consider the possible need to avoid an obstacle (another frame) in the attempt
to reach its destination. In general, it would be more appropriate to perform a collective
analysis of the frames, and even to memorize the position of non-target frames, with the
purpose of speeding up their localization when they have to be passed through later.

Secondly, improvements could be made to the quadcopter model. The image process-
ing system could study the perspective of the captured frames, thus improving the accuracy
of their estimated position and orientation to avoid unnecessary lateral displacements.
A more thorough analysis of the image could also be carried out to identify and locate
various types of targets to be reached or hazards to be avoided. In addition, apart from the
basic IMU, the drone could incorporate a LiDAR sensor [26], which would help to estimate
the position of the obstacles around it. This type of systems is supported natively in Gazebo,
so its incorporation would be relatively simple. All this would allow us to consider more
complex and realistic scenarios for the development of autonomous navigation systems
with greater applicability.

Finally, it is desirable to complement the simulator with real drones moving through
real scenarios, validating the developed navigation system. The model-based design
methodology supported in MATLAB/Simulink simplifies this process, culminating in the
development of the final product. In this way, the proposed framework would acquire a
much more attractive dimension that would encourage the research spirit in the students
and promote technical curricula in the development of autonomous navigation systems.

Supplementary Materials: Interested readers can access to MATLAB/Simulink and ROS/Gazebo
implementations in GitHub: https://github.com/I3A-NavSys/drone-challenge.

Author Contributions: Conceptualization, R.C. and A.B.; data curation, R.C. and A.B.; formal
analysis, R.C. and A.B.; funding acquisition, R.C. and A.B.; investigation, R.C. and A.B.; methodology,
R.C. and A.B.; project administration, R.C. and A.B.; resources, R.C. and A.B.; software, R.C. and
A.B.; validation, R.C. and A.B.; visualization, R.C. and A.B.; writing—original draft, R.C. and A.B.;
writing—review & editing, R.C. and A.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Spanish Ministerio de Ciencia, Innovación y Univer-
sidades (MCIU) and the European Union (EU) under grant RTI2018-098156-B-C52, and by the
Junta de Comunidades de Castilla-La Mancha (JCCM) and the EU through the European Regional
Development Fund (ERDF-FEDER) under grant SBPLY/19/180501/000159.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://github.com/I3A-NavSys/drone-challenge

Electronics 2021, 10, 7 17 of 17

References
1. Aguilar, W.G.; Salcedo, V.S.; Sandoval, D.S.; Cobeña, B. Developing of a Video-Based Model for UAV Autonomous Navigation.

Cyberspace Data Intell. Cyber Living, Syndr. Health 2017, 720, 94–105. [CrossRef]
2. Hu, X.; Wang, M.; Qian, C.; Huang, C.; Xia, Y.; Song, M. Lidar-based SLAM and autonomous navigation for forestry quadrotors. In

Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018;
pp. 1–6.

3. Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M.; Savvaris, A. LIDAR-inertial integration for UAV localization and mapping
in complex environments. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS),
Arlington, VA, USA, 7–10 June 2016; pp. 649–656.

4. DJI, DJI Developer. Available online: https://developer.dji.com/mobile-sdk/ (accessed on 19 October 2020).
5. Parrot, “Parrot SDK”. Available online: https://developer.parrot.com/ (accessed on 19 October 2020).
6. MathWorks, “MATLAB”. Available online: https://www.mathworks.com/products/matlab.html. (accessed on 19 October 2020).
7. MathWorks. PX4 Autopilots Support from UAV Toolbox. Available online: https://www.mathworks.com/hardware-support/

px4-autopilots.html (accessed on 29 November 2020).
8. Jensen, J.C.; Chang, D.H.; Lee, E.A. A model-based design methodology for cyber-physical systems. In Proceedings of the 2011

7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 1666–1671.
9. MIT Media Lab. Scratch Website. Available online: https://scratch.mit.edu/ (accessed on 19 October 2020).
10. Tinker. Tinker Website. Available online: https://www.tynker.com/ (accessed on 19 October 2020).
11. DroneBlocks. DroneBlocks Website. Available online: https://www.droneblocks.io (accessed on 19 October 2020).
12. Makeblock. Makeblock Education. Available online: https://www.makeblock.com/ (accessed on 19 October 2020).
13. Ismail, S.; Manweiler, J.G.; Weisz, J.D. CardKit: A Card-Based Programming Framework for Drones. arXiv 2018, arXiv:1804.08458.

Available online: https://arxiv.org/abs/1804.08458 (accessed on 21 December 2020).
14. ArduPilot Dev Team. ArduPilot Mission Planner. Available online: https://ardupilot.org/planner/ (accessed on 19 October 2020).
15. SPH Engineering. UgCS. Available online: https://www.ugcs.com/ (accessed on 19 October 2020).
16. Open Source Robotics Foundation. Gazebo. Available online: http://gazebosim.org (accessed on 19 October 2020).
17. Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; Von Stryk, O. Comprehensive Simulation of Quadrotor UAVs Using ROS

and Gazebo. In Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012;
Volume 7628 LNAI, pp. 400–411.

18. Vanegas, F.; Gaston, K.J.; Roberts, J.; Gonzalez, F. A Framework for UAV Navigation and Exploration in GPS-Denied Environments.
In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; 2019; pp. 1–6. [CrossRef]

19. Open Source Robotics Foundation. Robot Operating System (ROS). Available online: https://www.ros.org/ (accessed on
19 October 2020).

20. Sanchez-Lopez, J.L.; Fernandez, R.A.S.; Bavle, H.; Sampedro, C.; Molina, M.; Pestana, J.; Campoy, P. AEROSTACK: An architecture
and open-source software framework for aerial robotics. In Proceedings of the 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 332–341.

21. Penserini, L.; Tonucci, E.; Ippoliti, G.; Di Labbio, J. Development framework for DRONEs as smart autonomous systems.
In Proceedings of the 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA), Larnaca,
Cyprus, 27–30 August 2017; Volume 2018-Janua, pp. 1–6.

22. School of Computer Science and Engineering (University of Castilla-La Mancha). Available online: https://esiiab.uclm.es.
(accessed on 19 October 2020).

23. Drone Challenge. Available online: http://blog.uclm.es/esiidronechallenge (accessed on 19 October 2020).
24. Bermúdez, A.; Casado, R.; Fernández, G.; Guijarro, M.; Olivas, P. Drone challenge: A platform for promoting programming and

robotics skills in K-12 education. Int. J. Adv. Robot. Syst. 2019, 16, 1. [CrossRef]
25. Ogata, K. Modern Control Engineering, 5th ed.; Pearson Education: London, UK, 2002.
26. Moffatt, A.; Platt, E.; Mondragon, B.; Kwok, A.; Uryeu, D.; Bhandari, S. Obstacle Detection and Avoidance System for Small UAVs

using a LiDAR. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece,
1–4 September 2020; pp. 633–640.

http://dx.doi.org/10.1007/978-3-319-71011-2_8
https://developer.dji.com/mobile-sdk/
https://developer.parrot.com/
https://www.mathworks.com/products/matlab.html.
https://www.mathworks.com/hardware-support/px4-autopilots.html
https://www.mathworks.com/hardware-support/px4-autopilots.html
https://scratch.mit.edu/
https://www.tynker.com/
https://www.droneblocks.io
https://www.makeblock.com/
https://arxiv.org/abs/1804.08458
https://ardupilot.org/planner/
https://www.ugcs.com/
http://gazebosim.org
http://dx.doi.org/10.1109/aero.2019.8741612
https://www.ros.org/
https://esiiab.uclm.es.
http://blog.uclm.es/esiidronechallenge
http://dx.doi.org/10.1177/1729881418820425

	Introduction
	Simulation Framework Overview
	Location Subsystem
	Vision Subsystem
	Low-Level Control Subsystem

	Implementing Autonomous Navigation Systems
	Navigation System Testing
	Practical Application
	Conclusions and Future Work
	References

