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Abstract: The fast estimation of synchronization parameters plays an extremely important role in the
demodulation of burst signals. In order to solve the problem of high computational complexity in the
implementation of traditional algorithms, a synchronization parameter (frequency offset, phase offset,
and timing error) estimation algorithm based on Offset Quadrature Phase Shift Keying (OQPSK)
burst signal detection is proposed in this article. We first use the Data-Aided (DA) method to detect
where the burst signal begins by taking the segment correlation between the receiving signals and
the known local Unique Word (UW). In the sequel, the above results are adopted directly to estimate
the synchronization parameters, which is obviously different from the conventional algorithms.
In this way, the complexity of the proposed algorithm is greatly reduced, and it is more convenient
for hardware implementation. The simulation results show that the proposed algorithm has high
accuracy and can track the Modified Cramer–Rao Bound (MCRB) closely.

Keywords: synchronization parameter estimation; burst signal detection; data-aided; OQPSK

1. Introduction

The importance of satellite communication is not only reflected in the ordinary com-
munication transmission, but it also has a profound impact on production safety and
economic development. With the commercialization of the Fifth-Generation (5G) mobile
networks in recent years, the integration of satellite communication and ground 5G has
become a new hot topic in the industry. Therefore, satellite communication has ushered in
a new round of development upsurge in the world, and the development of its technology
has also been paid much attention [1].

As a common communication system in satellites, Time Division Multiple Access
(TDMA) shares the transmission medium or network, which is conducive to the transmis-
sion of burst data. TDMA works by allowing multiple users to use the same frequency in
different time slots, where each user occupies one particular slot. Therefore, TDMA has the
advantages of high signal quality, good security, and large system capacity [2].

Offset Quadrature Phase Shift Keying (OQPSK) as a modulation method is widely
used in satellite communication because of its constant envelope characteristics, good
spectral efficiency, and power efficiency. The OQPSK signal is an improved version of the
Quadrature Phase Shift Keying (QPSK) signal, which can be obtained by staggering the
code streams of the in-phase component and quadrature component of the QPSK signal by
half a symbol period in time, such that its phase can only jump 90 degrees at most.

In satellite communications, due to the burstiness and shortness of the burst signal
and the huge influence of synchronization parameters on the performance of signal de-
modulation [3], it is very important to quickly and accurately capture the starting position
of the burst signal and estimate its synchronization parameters. In addition, because of the
limitation of hardware resources in practical application, the complexity of the algorithm
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is required to be as low as possible to reduce resource consumption. On the other hand,
the accuracy of the algorithm should be guaranteed to meet the actual needs.

1.1. Related Work

The improved energy method given in [4] achieves a high detection rate, but it uses
the center of the energy window as the starting point of the burst signal, so there is a certain
deviation from the true starting point. Cross-correlation is then used in the earliest burst
signal detection based on the Data-Aided (DA) method; however, its performance is poor
in the presence of frequency offset [5]. The double correlation [6] can effectively eliminate
the influence brought by frequency offset. Unfortunately, it contains many conjugate
multiplications, resulting in high computational complexity. In [7], a segment correlation
algorithm was introduced to greatly reduce the complexity at the expense of part of the
anti-frequency offset ability. The burst signal detection adopted in this article is further
simplified on the basis of segment correlation.

Once the burst signal detection is done, we need to estimate the synchronization parame-
ters. Synchronization includes carrier synchronization and timing synchronization, in which
carrier synchronization includes frequency offset synchronization and phase offset synchro-
nization. We should note that for burst signals, the synchronization parameter estimation often
adopts the feedforward algorithm, so the method based on the phase-locked loop [8] is not
applicable here. A code-assisted carrier synchronization algorithm was proposed in [9], but this
method requires the use of channel coding, and the iterative concept makes its implementation
more complicated. In [10], a low-complexity carrier synchronization method was designed
under the assumption of a special frame structure. The L&W, KAY, L&R, and Fitz [11–14]
algorithms are commonly used to feedforward estimate the frequency offset. However, the
accuracy and estimation range of these algorithms cannot be well coordinated. More specif-
ically, L&W and KAY have a wide estimation range, but low accuracy, while L&R and Fitz
have a high accuracy, but a narrow estimation range, and their complexities increase with the
improvement of the estimation accuracy. The phase offset estimation is usually performed
after the frequency offset is estimated. Finally, the received signal needs to be compensated
for the frequency offset based on the above results, and then, the Maximum-Likelihood (ML)
principle is applied to estimate the phase offset.

For timing error estimation, the commonly used feedforward algorithms are the
Lee, AVN, and Zhu [15–17] algorithms; nevertheless, their performances rely heavily on
the roll-off factor, and they cannot be directly applied to OQPSK signals. In [18] (in the
simulation, we call the algorithm Ye), a DA-based feedforward timing error estimation
algorithm using trigonometric interpolation was proposed, but this algorithm is disabled
for anti-frequency offset.

1.2. Our Contribution

In this paper, we propose an OQPSK synchronization parameter estimation algorithm
based on burst signal detection in satellite communications. The main contributions of this
paper are the following:

(1) We exploit a simplified segment correlation algorithm in burst signal detection,
where the sequential results of segment correlation are then efficiently used to estimate the
synchronization parameters. We should note that there is no correlation between burst
the signal detection and synchronization parameter estimation of traditional algorithms.
To this degree, the proposed algorithm has significantly low complexity.

(2) For frequency offset estimation, the proposed algorithm can achieve high estima-
tion accuracy and is relatively robust to the estimation range.

(3) For timing error estimation, the proposed algorithm is almost not affected by the
roll-off factor, and it also has the ability of anti-frequency offset.

(4) The simulation results show that the algorithm has high accuracy, and its perfor-
mance is close to the Modified Cramer–Rao Bound (MCRB).
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The rest of this article is arranged as follows: Section 2 is the algorithm description;
Section 3 is the performance evaluation; and Section 4 is the conclusions.

2. Algorithm Description

The flowchart of this article is shown in Figure 1, where we first detect the burst signal to
find the frame header of the received signal. In the sequel, we exploit the above correlation
value to estimate the frequency offset, which is compensated for the true carrier frequency and
closely followed by the phase offset estimation part. Once again, we apply the interpolation
method to the correlation peak in the frame header detection to obtain the timing error.

Figure 1. Algorithm flowchart.

2.1. Burst Signal Detection

Without considering the timing error, the received signal model can be represented as:

r(k) = exp(j(θ + 2π fdkT + θ0)) + n(k) (1)

where ejθ is the M-ary phase-modulated symbol, n(k) denotes Additive White Gaussian
Noise (AWGN), T stands for the symbol period, and fd and θ0 represent the frequency offset
and phase offset, respectively. Applying double correlation between r(k) in Equation (1)
and the known local Unique Word (UW) c(k) yields:

L0(υ) =
N−1

∑
i=1

{∣∣∣∣∣N−1

∑
k=i

r(υ + k)c(k)∗r∗(υ + k− i)c(k− i)

∣∣∣∣∣− υ+N−1

∑
k=υ+i

|r(k)||r(k− i)|
}

(2)

where υ is the moment of judgment. In Equation (2), ∑N−1
k=i r(υ+ k)c(k)∗r∗(υ+ k− i)c(k− i)

is the double correlation term, and ∑υ+N−1
k=υ+i |r(k)||r(k− i)| is the random data correction

term. Usually, the random data correction term can be omitted [6], such that Equation (2)
can be approximated as:

L1(υ) =
N−1

∑
i=1

{∣∣∣∣∣N−1

∑
k=i

r(υ + k)c(k)∗r∗(υ + k− i)c(k− i)

∣∣∣∣∣
}

(3)

The reason we chose double correlation in Equations (2) and (3) is that cross-correlation
is dysfunctional when frequency offset exists. Unfortunately, this brings unacceptable
complexity and makes its implementation in hardware impossible. In order to reduce the
computational complexity, the double correlation method can be improved by the concept
of segments [7]; that is:

xi =
L−1

∑
k=0

r(υ + k + iL)c(k + iL)∗ (4)

L2(υ) =
N/L−1

∑
j=1

∣∣∣∣∣N/L−1

∑
i=j

xix∗i−j

∣∣∣∣∣ (5)

where N and L are the lengths of the local UW and each segment of UW, respectively.
The segment correlation takes the conjugate multiplication between different segments to
eliminate the influence of frequency offset. It can be seen from Equations (4) and (5) that
the complexity of L2(µ) is greatly reduced compared to that of L1(µ).
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Normally, the received signal should be up-sampled, but when the local UW is
correlated with the received signal, we can choose whether the local UW is up-sampled
or not. In the simulation, we find that using local UW without up-sampling in QPSK
modulation yields acceptable performance, but this does not work for OQPSK modulation.
This is because OQPSK staggers the in-phase component and quadrature component by
half a symbol period, and the local UW will lose the information of the half symbol if the
local UW is not up-sampled. Obviously, the solution to that is to up-sample the local UW
and stagger its in-phase component and quadrature component by half a symbol period.

We find it a convenient approximation of Equation (5) to only consider the case of
j = 1. This is because the correlation of the segment correlation algorithm is mainly
dominated by the adjacent segments (j = 1 case). Therefore, Equation (5) can be written
as follows:

L3(υ) =

∣∣∣∣∣N/L−1

∑
i=1

xix∗i−1

∣∣∣∣∣ (6)

Undoubtedly, L3(υ) has lower complexity, but results in extra performance loss.
Fortunately, our simulation shows that this loss is acceptable. More in detail, the complexity
comparison between L1(υ), L2(υ), and L3(υ) is explained in Table 1.

Table 1. Algorithmic complexity comparison of burst signal detection.

Multiplication Addition

L1(υ) 6N2 − 6N N2 − 2N

L2(υ) 2(N/L)2 + 4N − 2N/L (N/L)2 + 2N − 4N/L

L3(υ) 4N + 4N/L− 4 2N − 4

2.2. Synchronization Parameter Estimation

Once the frame header of the burst signal is detected, the following work will be the
synchronization parameter (frequency offset, phase offset, and timing error) estimation.

2.2.1. Frequency Offset Estimation

We start our derivation of the estimation of frequency offset in Equation (4). Specifi-
cally, the term:

r(k)c∗(k) = exp(j(2π fdkT + θ0)) + n(k)c∗(k)

= exp(j(2π fdkT + θ0)) + n′(k)
(7)

In order to facilitate the derivation, we temporarily ignore the influence of the noise
term n′(k) and define f ′ , 2π fdT. Equation (7) can be written as follows:

r(k)c∗(k) = exp(j( f ′k + θ0)) (8)

As we mentioned earlier, the value of υ indicates the judgment time, which only
represents the starting position of the burst signal and does not affect the parameter
estimation. Thus, we can set take the value of υ to zero. Then, incorporating Equation (8)
into Equation (4):

xi = exp(j( f ′iL + θ0))
{

1 + exp(j f ′) + ... + exp(j(L− 1) f ′)
}

(9)

xi−1 = exp(j( f ′(i− 1)L + θ0))
{

1 + exp(j f ′) + ... + exp(j(L− 1) f ′)
}

(10)

In order to obtain L3(υ) in Equation (6), we first simplify xix∗i−1:

xix∗i−1 = Aexp(j f ′L) (11)
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where:
A = L + 2(L− 1)cos f ′ + 2(L− 2)cos2 f ′ + ... + 2cos(L− 1) f ′ (12)

Equation (12) implies that the value of A is a real number, and accordingly, it will not
affect the result of the complex angle of Equation (11). Obviously, the following results can
be obtained:

f ′ =
1
L

arg{xix∗i−1} (13)

The result of Equation (13) is in an ideal case, that is no noise is considered. Unfor-
tunately, noise has a non-negligible effect on the frequency offset estimation. In order to
improve the performance of the estimation, we accumulate the value of xix∗i−1 to smooth
the effect of noise. We should also note that in order to facilitate the derivation, we defined
f ′ , 2π fdT above. Consequently, the final frequency offset can be calculated as:

f̂d =
1

2πL
arg

{
N/L−1

∑
i=1

xix∗i−1

}
(14)

Equation (14) indicates that the frequency offset estimation range is inversely pro-
portional to L, and its estimation accuracy is directly proportional to it. It is particularly
important to note that ∑N/L−1

i=1 xix∗i−1 in Equation (14) equals Equation (6) after removing
the modulus. Therefore, the burst signal detection and parameter estimation algorithm
are connected here. In this case, we can directly use the results of burst signal detection
to estimate the frequency offset, which is why the complexity of the algorithm in this
article is greatly reduced. Table 2 is a comparison of the complexity of the frequency offset
estimation algorithms. N0 in L&R and Fitz is usually N/2.

Table 2. Comparison of the complexity of frequency offset estimation algorithms.

Multiplication Addition Complex Angle

L&R 12NN0 − 6N2
0 − 6N0 (2N − N0 − 1)(N0 − 1) 1

Fitz 12NN0 − 6N2
0 − 6N0 (2N − N0 − 1)(N0 − 1) N0

Kay 14(N − 1) 2(N − 1) 1

L&W 14(N − 1) 2(N − 1) 1

This article 1 0 1

2.2.2. Phase Offset Estimation

We perform phase offset estimation after frequency offset estimation is completed.
The first step of phase offset estimation is to compensate for the frequency offset in the
frame header:

y(k) = r(k) ∗ exp(−2π f̂dkT)

= {exp(j(θ + 2π fdkT + θ0)) + n(k)} ∗ exp(−j2π f̂dkT)

= exp(j(θ + θ0)) + n′′(k)

(15)

where y(k) is the frame header after removing the frequency offset and n′′(k) = n(k) ∗
exp(−j2π f̂dkT) is the noise item. According to the principle of ML, the DA phase offset
estimation algorithm can be obtained as [19]:

θ̂0 = arg

{
N−1

∑
k=0

y(k)c∗(k)

}
(16)
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2.2.3. Timing Error Estimation

After the burst signal detection is completed, in addition to estimating the above carrier
synchronization parameters, it is also necessary to estimate the timing error. The signal
model with timing error is:

r(t) = ejθ0 ∑
l

a(l)g(t− lT − τ̃) + n(t) (17)

where {a(l)} represents the independent and identically distributed information sequence
and g(t) and τ denote the baseband shaping function and timing error, respectively. When
the received signal is sampled at t = kT + τ̃, the sampled data r(kT + τ̃) can be obtained.
The ML-based data-aided timing error estimation formula given in [20] is as follows:

Λ(τ̃) =

∣∣∣∣∣N−1

∑
k=0

ĉ∗(k)r(kT + τ̃)

∣∣∣∣∣
2

(18)

If removing the square, Equation (18) is accurate for the burst signal detection based
on cross-correlation. The process of capturing the frame header is the process of searching
for correlation peaks. When Equation (18) achieves the maximum value, the timing error
can be calculated as:

τ̃ = argmax
τ̃


∣∣∣∣∣N−1

∑
k=0

ĉ∗(k)r(kT + τ̃)

∣∣∣∣∣
2
 (19)

As mentioned above, the cross-correlation algorithm has the fatal disadvantage of
no anti-frequency offset. Fortunately, we found that the segment correlation used in this
article is also the process of capturing the frame header, and its maximum value position is
the same as Equation (18), that is when the local UW is completely aligned with the UW in
the received signal. Therefore, the cross-correlation peak in Equation (19) can be replaced
by the segment correlation peak in Equation (6), and the timing error estimation algorithm
at this time obtains the ability of anti-frequency offset. Thus, burst signal detection and
timing error estimation are linked via:

τ̃ = argmax
τ̃


∣∣∣∣∣N/L−1

∑
i=1

xix∗i−1

∣∣∣∣∣
2
 (20)

The interpolation method is usually adopted to calculate the maximum value of
Equation (20); here, we chose a simple and highly accurate trigonometric interpolation
method [21]. It should be noted that the number of points used must be an even number.
In this article, there were four points employed for interpolation, and each symbol took two
points; thus, a total of two symbols were required. The four-point interpolation formula
given in [21] is as follows:

z(µ) =
1
4

Re(C0 + 2C1ejπµ/2 + C2ejπµ) (21)

Among them:

C0 = z(−1) + z(0) + z(1) + z(2)

C1 = [z(0)− z(2)] + j[−z(1) + z(−1)]

C2 = z(0)− z(1) + z(2)− z(−1)

(22)

To find the timing error, we only need to find out what the value of µ is to maxi-
mize z(µ):

µ̂ = arg
{

max
µ

∣∣∣Re(C0 + 2C1ejπµ/2 + C2ejπµ)
∣∣∣2} (23)
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Therefore, finding the timing error is transformed into the problem of finding the
maximum value of Re(C0 + 2C1ejπµ/2 + C2ejπµ). We define:

Z(µ) , Re(C0 + 2C1ejπµ/2 + C2ejπµ) (24)

For the convenience of calculation, we define C1 , A + Bj, where A = z(0)− z(2),
B = −z(1) + z(−1). According to the Euler formula, ejπµ/2 = cos πµ

2 + j sin πµ
2 , ejπµ =

cos πµ + j sin πµ can be obtained; thus, Equation (24) can be rewritten as:

Z(µ) = 2A cos
πµ

2
− 2B sin

πµ

2
+ C2 cos πµ (25)

The derivative of the above equation:

Z′(µ) = −Aπ sin
πµ

2
− Bπ cos

πµ

2
− C2π sin πµ (26)

Take zero for the above equation, then solve it; we can obtain:

µ̂ = − 2
π

arctan(
2C2

A
sin

πµ̂

2
+

B
A
) (27)

According to Equation (27), the corresponding timing error can be calculated as:

τ̂ =
µ̂T
P

= − T
π

arctan(
2C2

A
sin πτ̂ +

B
A
) (28)

where P is the number of sampling points used for each symbol during interpolation,
and P = 2 in this article. The value of τ cannot be calculated by Equation (28) because
the equation is already in its simplest form; thus, we have to do approximate processing.
The four points adopted in the interpolation are approximately symmetrical, in which the
values of z(0) and z(1) in the middle are larger and the values of z(−1) and z(2) on both
sides are smaller. Therefore, we can get a larger A and a smaller C2, and further, 2C2

A sin πτ̂
can be ignored:

τ̂ = − T
π

arctan
B
A

= − T
π

arctan
−z(1) + z(−1)

z(0)− z(2)
(29)

Although we obtain Equation (29) by ignoring 2C2
A sin πτ̂, simulation indicates that it

still reaches high accuracy.

3. Performance Evaluation
3.1. Performance Simulation of Burst Signal Detection

Tables 3 and 4 are the comparisons of the false alarm rate and detection rate of OQPSK
burst signal detection under local UW being up-sampled four times and not up-sampled in
the case of Equation (5). Simulation conditions: in the case of being up-sampled, the added
normalized frequency offset is 0.04 (relative to the symbol rate and the same below); the
total length of UW after being up-sampled four times is N = 108; the number of segments
is M = 9; and the local UW length of each segment is L = N/M = 12; in the case of not
being up-sampled, the added normalized frequency offset is 0.04, N = 27, M = 9, and
L = N/M = 3. We performed 10,000 simulations. From Tables 3 and 4, it can be seen that
the performance of the local UW when it is up-sampled four times is much better than not
being up-sampled. This is because there are more points after being up-sampled, so the
value of the correlation result is larger, but the more important reason is that the OQPSK
signal can stagger its in-phase component and quadrature component by half a symbol
period only after being up-sampled; otherwise, the partial correlation will be lost.
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Table 3. Comparison of the false alarm rate between the local Unique Word (UW) being up-sampled
and not being up-sampled.

Local UW

SNR
0 dB 1 dB 2 dB 3 dB 4 dB 5 dB

up-sampled 1.0× 10−5 3.7× 10−6 7.9× 10−7 2.2× 10−7 0 0

not up-sampled 2.7× 10−4 2.1× 10−4 1.7× 10−4 1.3× 10−4 1.3× 10−4 9.2× 10−5

Table 4. Comparison of the detection rate between the local UW being up-sampled and not being
up-sampled.

Local UW

SNR
0 dB 1 dB 2 dB 3 dB 4 dB 5 dB

up-sampling 99.03% 99.67% 99.993% 99.998% 100% 100%

not up-sampling 77.25% 85.51% 91.77% 95.67% 98.3% 99.27%

Tables 5 and 6 are the comparisons of the false alarm rate and detection rate, respec-
tively, of the segment correlation algorithm before and after the simplification. Simulation
conditions: the added normalized frequency offset is 0.04, N = 108, M = 9, and L = 12.
We performed 10,000 simulations. Tables 5 and 6 indicate that the performance of the sim-
plified segment correlation algorithm is slightly lower than that before the simplification,
but the decrease is not significant. This is because the correlation of the segment correlation
algorithm is mainly concentrated between adjacent segments. When j = 1, the correlation
is maximum, and the correlation decreases with the increase of j. Therefore, this paper
adopts the simplified algorithm, that is the case where the value of j is only one, which
can be exchanged for a further reduction in the amount of calculation at the cost of a small
performance loss.

Table 5. Comparison of the false alarm rate between L2(µ) and L3(µ).

j Value

SNR
0 dB 1 dB 2 dB 3 dB 4 dB 5 dB

1:N−1 1.0× 10−5 3.7× 10−6 7.9× 10−7 2.2× 10−7 0 0

1 1.5× 10−5 7.1× 10−6 1.6× 10−6 5.1× 10−7 2.2× 10−7 0

Table 6. Comparison of the detection rate between L2(µ) and L3(µ).

j Value

SNR
0 dB 1 dB 2 dB 3 dB 4 dB 5 dB

1:N−1 99.03% 99.67% 99.993% 99.998% 100% 100%

1 98.69% 99.4% 99.86% 99.995% 99.998% 100%

To sum up, for the burst signal detection algorithm, on the one hand, due to the char-
acteristics of the OQPSK signal, the local UW must be up-sampled to ensure its detection
performance. On the other hand, in order to reduce the complexity of the algorithm, we
further simplify the segment correlation algorithm. Of course, the performance of the
algorithm will decrease after simplification, but fortunately, the decrease is not obvious.
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3.2. Performance Simulation of Synchronization Parameter Estimation
3.2.1. Performance Simulation of Frequency Offset Estimation

Figure 2 shows the Mean Squared Error (MSE) comparison of different frequency
offset estimation algorithms. Simulation conditions: the added normalized frequency offset
is 0.02; N = 108; and the segment length L of the algorithm in this article is 18, 12, 9,
and 6, respectively. The figure implies that the L&R and Fitz algorithms have the highest
estimation accuracy, and their performance is very close to the MCRB, while the L&W
algorithm has the worst performance. The Kay algorithm only gradually gets better in the
case of a high SNR. The performance of the algorithm in this article is proportional to the
length of L. We can see that when L = 18, the accuracy of the algorithm in this article is
very close to that of the L&R and Fitz algorithms and is far better than the L&W algorithm.
In addition, when the SNR is lower than 12 dB, its performance is also better than the
KAY algorithm.

0 5 10 15

SNR(dB)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

M
S

E

This article(L=18)
This article(L=12)
This article(L=9)
This article(L=6)
KAY

L&W
L&R
Fitz
MCRB

Figure 2. Accuracy of different frequency offset estimation algorithms. MCRB, Modified Cramer–Rao
Bound.

Figure 3 shows the comparison of the estimation range of the algorithm in this article
and several frequency offset algorithms with high accuracy. Simulation conditions: the
added normalized frequency offset is [−0.4:0.4], and its step size is 0.001; N = 108; and the
segment length L of the algorithm in this article is 18, 12, 9, and 6, respectively. It can be
seen from the figure that under the current simulation conditions, the estimation ranges of
Fitz and L&R are (−0.035:0.035) and (−0.07:0.07), respectively. In practical applications, the
range of the estimated frequency offset should be at least (−0.1:0.1); thus, the L&R and Fitz
algorithms become invalid in the presence of large frequency offset. While the estimation
range of the algorithm in this article can still reach (−0.11,0.11) even in the case of the
highest accuracy (L = 18). In the following simulations, we select L = 12, since the L = 12
case is more robust to frequency offset (−0.16:0.16), and there is not much difference in the
MSE performance between L = 12 and L = 18.

In short, as long as the appropriate L is selected, the frequency offset estimation
algorithm in this paper not only has an accuracy close to the L&R and Fitz algorithms, but
it also has a much larger estimation range. In addition, the frequency offset estimation
algorithm is calculated based on the correlation results generated during the burst signal
detection process, so its complexity drops significantly.
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Figure 3. Estimation range of different frequency offset estimation algorithms.

3.2.2. Performance Simulation of Phase Offset Estimation

Figure 4 shows the simulation of phase offset estimation accuracy. Simulation condi-
tions: N = 108; the added phase offsets are − 3

4 π, − 1
2 π, − 1

4 π, 0, 1
4 π, 1

2 π, and 3
4 π. From the

figure, we can see that the MSE of the algorithm closely tracks the MCRB, so its performance
is excellent.

Figure 4. Accuracy of the phase offset estimation algorithm.

Figure 5 shows the effect of different UW lengths on the phase offset estimation
performance. Simulation conditions: the added phase offset is 1

4 π, and the UW lengths used
are N(N = 108), 3N/4, N/2, and N/4. From the figure, we can see that the performance
of the algorithm is proportional to the local UW length used.

In summary, the ML-based phase offset estimation algorithm has better estimation
performance, and its performance is directly proportional to the UW length. In actual
projects, as long as the performance can meet the needs, the length of the local UW used
can be appropriately reduced. For example, when the length of the local UW used in this
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article takes N/2, its accuracy still meets the requirements, and its complexity is reduced
by half.

Figure 5. Accuracy of the phase offset estimation algorithm under different UW lengths.

3.2.3. Performance Simulation of Timing Error Estimation

Figure 6 shows the estimation accuracy of OQPSK signals under different timing
estimation algorithms. Simulation conditions: the roll-off factor is set to 0.35, N = 108;
L = 12; and the frequency offset is zero. It can be seen from the figure that the Lee, Wang,
and AVN [15–17] algorithms are completely invalid at this time, and only the suggested
algorithm and the Ye algorithm [18] can be used. We note that to make the system suitable
for the proposed algorithm and the Ye algorithm, we especially emphasize the up-sampling
of local UW and staggering the in-phase component and quadrature component by half a
symbol period in Section 2.1.
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Figure 6. Timing error estimation algorithm used on OQPSK.
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Since Lee, Wang, and AVN do not work for OQPSK, in order to carry out a fair
comparison, we also test OPSK signals in the following. Figure 7 shows the accuracy of the
timing error estimation algorithms under different roll-off factors. Simulation conditions:
adopt the QPSK signal; N = 108; L = 12; the frequency offset is zero. It can be seen
from the figure that the performance of the Lee, Wang, and AVN algorithms is greatly
affected by the roll-off factor, while the proposed algorithm and Ye algorithm are not
sensitive to the roll-off factor. In addition, we can also see that the MSE performance of
the proposed algorithm is slightly better than that of Ye and much better than that of Lee,
Wang, and AVN.
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(c) The roll-off factor is 0.7
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(d) The roll-off factor is one

Figure 7. Simulation of the timing error estimation algorithm under different roll-off factors.

If the roll-off factor is set to 0.35, a normalized frequency offset of 0.05 is added, and
the other conditions remain the same as those in Figure 7, then we can get the simulation
in Figure 8. Figure 8 implies that with the existence of frequency offset, the Ye algorithm
fails, while other algorithms are not affected.

From the above comparison, we can draw a conclusion: firstly, for the traditional Lee,
Wang, and AVN algorithms, the performance is not only greatly affected by the roll-off
factor, but also, they cannot be used on OQPSK signals. Secondly, although Ye solved these
problems, it lost the ability of anti-frequency offset.

As we mentioned in Section 3.2.1, the anti-frequency offset ability in practical appli-
cations must be at least within the range of (−0.1:0.1). Figure 9 shows the anti-frequency
offset ability of the algorithm in this article when it is used on OQPSK signals. Simulation
conditions: N = 108; M = 9; L = 12; the roll-off factor is 0.35; the added normalized
frequency offsets is [−0.1:0.1] in steps of 0.025. It can be seen from the figure that as
the frequency offset becomes larger, the estimation accuracy will slightly decrease, but



Electronics 2021, 10, 69 13 of 15

overall, the difference is not large. Therefore, the timing algorithm in this article has good
anti-frequency offset ability, and its range can fully meet the needs of the actual situation.
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Figure 8. Timing error estimation simulation when adding 0.05 normalized frequency offset.
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Figure 9. Timing estimation accuracy under different frequency offset.

All in all, the timing estimation algorithm in this article not only has high accuracy, but
also, its performance is not affected by the roll-off factor; it also has a good ability of anti-
frequency offset. In addition, the value used in the interpolation of the timing estimation
algorithm is generated during burst signal detection. According to Equation (29), it can be
seen that the result can be achieved with only a very simple calculation.

4. Conclusions

In order to reduce the complexity of algorithm implementation, we propose an OQPSK
synchronization parameter estimation algorithm based on burst signal detection. First of
all, the burst signal detection is performed by adopting a simplified segment correlation
algorithm, which greatly reduces the amount of calculation with a very small performance
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loss. After completing the burst signal detection, on the one hand, we use the results
generated during the burst signal detection to estimate the frequency offset and then
estimate the phase offset. On the other hand, the results of burst signal detection are also
used to estimate the timing error. The simulation results show that the algorithm in this
article not only greatly reduces the amount of calculation, but still retains good performance.
More precisely, firstly, the estimation accuracy of the frequency offset estimation algorithm
in this article is close to the L&R and Fitz algorithms with a much wider estimation range;
secondly, the timing estimation algorithm keeps high accuracy with excellent anti-frequency
offset ability and is less sensitive to the change of the roll-off factor.
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