
electronics

Article

Real-Time Adversarial Attack Detection with Deep Image
Prior Initialized as a High-Level Representation Based
Blurring Network

Richard Evan Sutanto 1 and Sukho Lee 2,*

����������
�������

Citation: Sutanto, R.E.; Lee, S.

Real-Time Adversarial Attack

Detection with Deep Image Prior

Initialized as a High-Level

Representation Based Blurring

Network. Electronics 2021, 10, 52.

https://doi.org/10.3390/

electronics10010052

Received: 17 November 2020

Accepted: 24 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Korea;
richardwenz91@gmail.com

2 Division of Computer Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Korea
* Correspondence: petrasuk@gmail.com; Tel.: +82-51-320-1744

Abstract: Several recent studies have shown that artificial intelligence (AI) systems can malfunction
due to intentionally manipulated data coming through normal channels. Such kinds of manipulated
data are called adversarial examples. Adversarial examples can pose a major threat to an AI-led
society when an attacker uses them as means to attack an AI system, which is called an adversarial
attack. Therefore, major IT companies such as Google are now studying ways to build AI systems
which are robust against adversarial attacks by developing effective defense methods. However,
one of the reasons why it is difficult to establish an effective defense system is due to the fact that
it is difficult to know in advance what kind of adversarial attack method the opponent is using.
Therefore, in this paper, we propose a method to detect the adversarial noise without knowledge of
the kind of adversarial noise used by the attacker. For this end, we propose a blurring network that
is trained only with normal images and also use it as an initial condition of the Deep Image Prior
(DIP) network. This is in contrast to other neural network based detection methods, which require
the use of many adversarial noisy images for the training of the neural network. Experimental results
indicate the validity of the proposed method.

Keywords: adversarial attack; adversarial noise detection; deep image prior; neural network

1. Introduction

Among the technologies leading the fourth industrial revolution, the interest in artifi-
cial intelligence (AI) is increasing, and it is expanding its base by being applied to various
fields such as autonomous vehicles, drones, and robots. Furthermore, the research on AI-
based autonomous vehicles, which had been conducted only at the laboratory level in the
past, has already reached the stage of commercialization, and IT companies such as Google,
Apple, and Samsung are actively conducting commercialization research. In addition,
AI technology, which contributes to various business areas such as manufacturing, finance,
and health care, is creating a wide range of impacts and economic ripple effects throughout
society. However, as social dependence on artificial intelligence grows, social costs due to
AI malfunctions are also expected to increase. It has been shown in [1,2] that the AI no
longer recognizes images correctly when a small amount of well-designed noise, called
adversarial noise, is added to the images. The combination of the adversarial noise with the
image is called an adversarial example. Using such adversarial examples to intentionally
malfunctioning the AI system is called an AI deception attack. The seriousness of such a
deception attack lies in the fact that the deception attack can be made without breaking
into the system through abnormal routes. In other words, even an AI system that is 100 %
protected from hacking, for example, by using generation engine to deceive the attacker [3]
can be attacked as much as possible by adversarial examples coming through normal
channels. Furthermore, it has been shown in [4,5] that adversarial examples could pose

Electronics 2021, 10, 52. https://doi.org/10.3390/electronics10010052 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9425-3249
https://orcid.org/0000-0001-6346-6439
https://doi.org/10.3390/electronics10010052
https://doi.org/10.3390/electronics10010052
https://doi.org/10.3390/electronics10010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010052
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/52?type=check_update&version=2

Electronics 2021, 10, 52 2 of 17

a threat to the real world, for example, autonomous driving. Well-known adversarial
attack methods are the Fast Gradient Sign Method (FGSM) [1], the Basic Iterative Method
(BIM) [5] and the Jacobian Saliency Map Attack Method [6] which make use of the gradient
of the network. Meanwhile, the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
algorithm method (L-BFGS) [7], the Deepfool [8] and the Carlini–Wagner (CW) attack
method [9] use optimization techniques to generate the adversarial example.

Defense methods are divided into two categories depending on whether the AI sys-
tem allows the entry of the denoised adversarial example into the system or not. Defense
methods that allow the entry of the denoised adversarial example assume that the denoised
adversarial example can no longer harm the system. Such defense methods include the
defense distillation technique [10], a kind of hostile training technique that makes the AI
model less vulnerable to adversarial attacks, and methods which use obfuscated gradients
to make it difficult for attackers to calculate feasible gradients to generate adversarial
examples [11,12]. The method in [13] makes use of the high-level representation to guide
the denoiser for better denoising, while the method in [14] leverages the expressive capa-
bility of generative models to defend deep neural networks against adversarial attacks.
Unfortunately, such defense methods are not valid for all kinds of attacks, and therefore,
there is a risk of allowing a valid attack on the system. Thus, the recent works defend the
network by detecting adversarial examples, while not allowing their system entry once
detected as an attack [15–27]. We will provide a detailed comparison of the characteristics
and advantages/disadvantages of these detection methods including the proposed method
in Section 2.2.

In this paper, we propose how to detect adversarial noise without knowing what
kind of adversarial noise the attacker uses. To this end, we propose the use of a blurring
network as an initial condition for the Deep Image Prior (DIP) network which is trained
only on normal noiseless images, and therefore, does not require adversarial noisy images
in the training process. This is in contrast to other neural network based detection meth-
ods, which normally require the use of many adversarial noisy images to train the neural
network. Experimental results show that the proposed method can detect the adversarial
noise not only in images within the CIFAR10 dataset, but also in general images where
many detection methods fail to detect the noise.

We summarize the main contributions of the proposed method as follows:

• We propose a Deep Image Prior network (DIP) based detection method which detects
the adversarial noise. Until now, while being used for adversarial image genera-
tion [28] or adversarial noise elimination [29], the DIP has not been used for adversarial
noise detection.

• Based on the use of the parameters of the blurring network as initial conditions (initial
parameters), we propose how the DIP can generate images in real-time. In general,
it takes a long time for the DIP to generate an image, which is the reason why it has
not been considered for real-time adversarial noise detection.

• We propose a high-level representation based loss function to train the blurring
network, so that the blurry image can be trained to blur the image in the direction
of correct classification result. This has a large influence on the performance of the
proposed method.

• The proposed detection method surpasses other methods not only with the CIFAR10
dataset but also in general images where many detection methods fail.

2. Preliminaries for the Proposed Method

To understand the proposed method, the following preliminaries have to be under-
stood.

2.1. Concept of AI Deception Attack

The adversarial noise is a carefully designed small perturbation that can lead the
neural network to make a wrong decision when added to the original input to the network.

Electronics 2021, 10, 52 3 of 17

The combination of the original input with the adversarial noise is called an adversarial
example. Using such an adversarial example to intentionally malfunctioning the AI system
is called an AI deception attack. The seriousness of such an AI deception attack lies in
the fact that the deception attack can be made without breaking into the system through
abnormal routes. This is in contrast to hacking attacks that intrude into the system through
abnormal routes. Therefore, even an AI system that is secure against hacking attacks can
be attacked by adversarial examples coming through normal channels. Figure 1 shows the
concept of an AI deception attack. Even though the noise added to the image is small so
that in the eye of the human the original image and the adversarial example look similar,
the neural network gives different decisions to the two images. This kind of adversarial
example can arouse critical harms to the system which depends on the decision of the
neural network.

Figure 1. Concept of artificial intelligence (AI) deceiving attack. A small adversarial noise added
to the original image can make the neural network to classify the image as a Guacamole instead
of an Egyptian cat. This is in contrast to a hacking attack that intrudes the system through an
abnormal route.

There are many methods to generate an adversarial example. One of the most widely
used adversarial example generating methods to date is referred to as the Fast Gradient
Sign Method (FGSM) [1]. This method generates th adversarial example by increasing the
distance between the output of the neural network and the true label using the gradient:

x̂ = x + ε · sign(∇x J(x, ytrue)). (1)

Here, x is the input image, x̂ is the generated adversarial image, sign(a) is the sign operator
which takes the sign of a, ytrue is the true label of the input image, ∇x is the gradient with
respect to x, and ε is a small positive value. A straightforward extension of the FGSM is
the Basic Iterative Method (BIM) [5] which applies the adversarial noise η iteratively with
a small ε value:

x∗0 = x

x∗i = clipx,ε

(
x∗i−1 + ε sign

(
∇x∗i−1

J
(
Θ, x∗i−1, y

)))
,

(2)

where clipx,ε(·) represents a clipping of the value of the adversarial example such that it
lies within an ε-neighborhood of the original image x. It has been shown in [5] that this
recursive formula gives control on how far the adversarial example should be pushed
beyond the class boundary, which makes it more effective than the FGSM attack on the
ImageNet dataset.

One of the most powerful adversarial attacks is the Carlini–Wagner (CW) attack
method which uses optimization techniques to generate the adversarial example [9].
The Carlini–Wagner (CW) attack method reformulates the original optimization prob-
lem in [1] by moving the given constraints into the minimization function to generate
strong adversarial examples.

Electronics 2021, 10, 52 4 of 17

2.2. Works Related to Adversarial Example Detection

In this section, we describe the characteristics of works related to adversarial example
detection and provide a systematic comparison between the works.

Early methods on adversarial detection use the statistical properties of images to de-
tect attacks [15–18,30]. These methods try to discriminate adversarial examples by looking
at how the statistical characteristics of them differ from normal data. However, one of the
difficulty with this approach is that many adversarial examples are needed to extract the
statistical characteristics. Another difficulty is to extract a good feature which can well
describe the adversarial example region. To overcome the problem of requiring numerous
adversarial images for the training, the authors in [26] propose a method which performs a
classification based on the statistical features of adversarial and clean images extracted by
a Gaussian process regression with a small number of images, while in [31], the authors
propose the Local Intrinsic Dimensionality (LID) feature to well describe the adversarial
example region based on the distance distribution of the adversarial example to its neigh-
bors. However, despite these techniques using fewer data and more sophisticated features,
statistical characteristics based detection methods are still limited to the use when it is
somewhat easy to distinguish between the statistical characteristics between the adversarial
example and normal data. Therefore, most statistical methods work only on MNIST or
CIFAR10 data sets with somewhat simple statistical characteristics of images.

Another approach is to detect adversarial noise by examining the behaviour of adver-
sarial examples under certain conditions. The work in [19] proposes the Feature Squeezing
method, a method of detecting adversarial examples by measuring differences between the
predictive vectors of the original and the squeezed examples. Several squeezing operations
are suggested in [19], and are tried out against different adversarial attacks. The squeez-
ing operations should satisfy the property that they reverse the effects of the adversarial
noise, but do not significantly impact the classifier’s predictions on legitimate examples.
Therefore, in this approach it is important to find the right squeezing operation for the
type of adversarial attack coming into the input. The squeezing approach shows less
performance against the L0 attack than the L2 attack. Meanwhile, the work in [20] detects
the adversarial attack by checking whether the prediction behavior is consistent with a set
of neural fingerprints. In this approach, neural fingerprints are encoded into the prediction
response around the data-distribution during the training process. The main drawback
of this approach is that the detection works only on networks which are trained with the
fingerprints, and not on general neural networks that has already been trained without
fingerprints. Closely related to the work of [19], the work in [21] utilizes the fact that adver-
sarial examples are usually sensitive to certain image transformation operations. Like [19],
in this approach it is important to find a transformation operation which invalidates the
adversarial noise, but has no significant impact on the prediction of the classifiers for
clean images. Furthermore, it has been shown in [32] that adversarial examples which
are robust against image transformation can be made, so this detection method is possible
to show weaknesses against adversarial examples that are resistant to transformation.
The method in [25] detects adversarial examples by observing that they produce different
types of ReLU (Rectified Linear Unit) activation patterns than those produced by normal
images. This method works also on real images, but mainly do the experiments with the
Deep Fool attack, and it is not clear if the method works also with small global noise-like
adversarial noises.

A third approach for adversarial detection is to classify images as normal or adversar-
ial, using a second neural network [22–24,33]. In this approach, the second neural network
is trained or distilled with a dataset containing both normal and adversarial data. One of
the main drawbacks of this approach is that many normal and adversarial data are required
to train the second network and that only the trained adversarial noise can be detected by
these methods.

In this paper, we propose a method to detect the adversarial noise without knowledge
of the kind of adversarial noise used by the attacker. For this end, we propose a blurring

Electronics 2021, 10, 52 5 of 17

network that is trained only with normal images and also use it as an initial condition of
the Deep Image Prior (DIP) network. This is in contrast to other neural network based
detection methods, which require the use of many adversarial noisy images for the training
of the neural network. The DIP reconstructs a denoised version of the input image, which is
then compared with original input with a proposed detection measure, to decide whether
the input is an adversarial noise or not. A method close to ours is proposed in [27] which
compares the results of the classification of the input with its denoised version to detect the
adversarial example. However, as will be shown in the experimental section, the proposed
method has better denoising properties for real-world images and obtains a higher accuracy
of detection.

In summary, compared to approaches using the statistical properties described above,
the proposed method neither requires a sophisticated design of statistical tools that char-
acterize adversarial noise nor knowledge of the types of adversarial attacks made by
attackers. Moreover, the proposed method does not require adversarial examples to train
the network.

2.3. Deep Image Prior Network

In [34], the deep image prior (DIP) network has been proposed as a prior for image
restoration methods such as image denoising, superresolution, and inpainting. The DIP
network converts a random noisy vector z into a restored image gθ∗(z), where gθ(·) denotes
the deep image prior network with parameter θ. The parameter θ∗ which results in the best
restored image gθ∗(z) is obtained by the way of minimizing the following loss function

min
θ
‖gθ(z)− x0‖2, (3)

where x0 denotes the noisy image. That is, in the course of training the DIP network to
minimize (3), a good solution of the parameters θ∗ which creates a well denoised image
gθ∗(z) can be obtained. It should be noticed that θ∗ is not the minimizer of (3), but a
passing parameter in the way of minimization, as the minimizer of (3) will result in the
noisy image again. Figure 2a shows the progress of the reconstruction of an image with
the DIP. The input image Iin is just a noise image, and the DIP tries to reconstruct the
target image, which is normally a noisy image. As the parameter are updated from θ0 to
θ1, θ2, ..., θN , the generated image g(θ0, Iin), g(θ1, Iin), g(θ2, Iin)...., g(θN , Iin) approaches the
target image again. In general, the update of parameters is interrupted at a midpoint, so
that only the signal, and not the noise, is reconstructed. The DIP has been shown effective
for denoising, and the use of the DIP to denoise the adversarial noise has been proposed
by us in [29]. However, the DIP is known to be too slow for the input to converge into the
denoised image, and therefore, it cannot be used as such for real-time adversarial example
detection. Therefore, in this paper, we adopt the idea of the Model-Agnostic Meta Learning
(MAML) into the proposed method to start from parameters from which the fine-tuning of
the DIP can be done in real-time, which enables the adversarial example detection to run
in real-time.

2.4. Model-Agnostic Meta Learning

Model-Agnostic Meta-Learning (MAML) is a method which finds a good initialization
of the parameters of the neural network so that an optimal fast learning can be achieved
in new tasks with only a small number of gradient steps [35]. Given N different tasks
Ti, i = 1, 2, ..., N, the MAML tries to find the initial parameters from which the different
tasks can be learned very fast. As each task is related to a specific loss function, the MAML
is trying to find the initial parameters that can quickly minimize the different loss functions
for the different tasks. Applying this concept to the case of the DIP, the different tasks of
the DIP are the tasks of reconstructing different images. Therefore, we obtain a good initial
parameter for the DIP by iteratively taking gradient steps with respect to the tasks Ti for all

Electronics 2021, 10, 52 6 of 17

i = 1, 2, ..., N. By doing so, we optimize an objective in the expectation that the model does
well on each task, i.e., reconstruct each new image fast after fine-tuning.

Figure 2. Initialization of Deep Image Prior (DIP) with blurring network parameters for fast convergence. (a) Conventional
DIP of slow convergence (b) DIP initialized with blurring network parameters.

3. Proposed Method

In this section, we propose an adversarial example detection method which uses the
parameters of a blurring network as the initial condition for the DIP.

3.1. Main Idea of the Proposed Method

We first explain the main idea of the proposed method. Figure 3 shows a conceptual
diagram of the main idea. The main idea is to compare the outputs of the target CNN
(Convolutional Neural Network) with two different inputs, i.e., the test image (Itest) which
contains the adversarial noise and the image reconstructed by the DIP. Using the test
image as the target to be reconstructed by the DIP, the DIP will slowly reconstruct the
noise input (Iin) to the DIP into the test image. During the reconstruction process, high
frequency components that do not include adversarial noise are first reconstructed and the
adversarial noise is reconstructed later, which is due to the noise resistance characteristics
of the DIP. Therefore, if the reconstruction process is interrupted before the adversarial
noise is reconstructed, the reconstructed image will show a different effect than the original
test image on the target CNN. Thus, by measuring the correlation between the two outputs
of the target CNN, we can determine whether the input contains adversarial noise or not.

Electronics 2021, 10, 52 7 of 17

Figure 3. Concept of the proposed method.

Figure 4 shows the overall diagram of the proposed method. In the test time, the input
image Iin can be either a clean or an adversarial image. The detection is based on a detection
measure D which compares the outputs of the target model (target convolutional neural
network) for different inputs. The detection measure D takes as the input f (Iin) and
f (g(θ + ∆θ, Iin)), where f (·) denotes the output of the pre-trained classifier, i.e., the target
model which we want to defend by the detection method. Furthermore, g(θ + ∆, Iin) =
gB(θ + ∆, Iin) denotes the output of the DIP network g(·) after the parameters have been
updated by ∆θ from the initial parameters θ of the blurring network, i.e., g(θ, Iin) =
gB(θ, Iin), and Iin is the input image.

Figure 4. Diagram of the proposed AI deception attack detection method.

The role of the blurring network gB is two-fold: first, gB blurs the input image to
eliminate the adversarial noise. Second, the parameters in gB serve as an initial condition
for the deep image prior (DIP) network. In the following sections, we explain first the role
of the gB as the blurring network. Then, we explain the role of gB as an initial condition for
the DIP and how the detection measure D is defined.

3.2. Role of gB as the Blurring Network

The network gB is trained so that it blurs the input image. The blurring will eliminate
the high frequency components, and therefore, removes the adversarial noise to some

Electronics 2021, 10, 52 8 of 17

extent. However, when eliminating the high frequency components, the components
which are helpful for correct classification will also be eliminated. Therefore, to prevent
this undesired side-effect, we add a high-level representation guiding term in the loss
function when training gB, so that gB will blur the image in the direction that its high-level
responses are similar to those of non-blurred noise-free images.

We describe the main idea of the proposed method in Figure 5, which shows the space
of the high-level features of images. The horizontal axis is the axis of the degree of blur,
i.e., as the feature vector is placed more to the right it corresponds to a feature vector of
an image which is more blurred. The domain Ωtrue in Figure 5a,b is the domain of images
which are rightly classified. As the blurriness intensifies, the feature vector corresponding
to the blurred image will cross the boundary of Ωtrue and will be misclassified. This is
because the high frequency components that contribute to the correct classification are
eliminated by the blurring process. However, we want to train the blurring network so
that images blurred by this network are still classified in the right class. To be more specific,
with regard to Figure 5a, we want the network gB to be trained so that gB has parameters θ2
instead of θ1, i.e., that it achieves a mapping from f (Iin) to f (gB(θ2, Iin)) which still gives
the same classification result as f (Iin), rather than to f (gB(θ1, Iin)) which classification
result differs from f (Iin) in the case that Iin is a noise-free clean image. This can be achieved
by training gB with the following loss function:

Lblur = ‖gB(Iin)− Gσ ∗ Iin‖2
2 + λ‖ f (gB(Iin))− f (Iin)‖2

2, (4)

where Gσ refers to the Gaussian kernel with standard deviation σ and ∗ denotes the
convolution operator. The minimization of the first term (‖gB(Iin)− Gσ ∗ Iin‖2

2) aims to
achieve a network which results in an output that is a blurred version of the input image,
while the minimization of the second term (‖ f (gB(Iin))− f (Iin)‖2

2) aims to result in an
output which has similar classification result as Iin, and λ is a positive value which controls
the balance between the two terms. Here, it should be noticed that in the training we use
only noise-free clean images for Iin, while in the test time, Iin can be either a noisy or a
noise-free image.

Meanwhile, for the case that Iin contains adversarial noise, we want the blurring
network gB to effectively remove the noise. That is, with regard to Figure 5c, we want
the network to achieve a mapping from f (Iin) to f (gB(θ2, Iin)) which classification result
is different from Iin rather than a mapping to f (gB(θ1, Iin)) which gives the same wrong
classification result as Iin. In contrast to the case that Iin is a clean image, the reason that
gB tries to map the noisy images to the space with different classification results than
the input images is that gB is trained only on clean images. Therefore, a large difference
between f (Iin) and f (gB(θ, Iin)) indicates that the input image is an adversarial image,
while a small difference indicates that it is a normal image, and we already can design
an adversarial noise detection measure by measuring the similarity between f (Iin) and
f (gB(θ, Iin)). A simple measure would be

S(Iin, θ) =
1

| f (gB(θ, Iin))− f (Iin)|+ α
(5)

which has a large value if f (Iin) and f (gB(θ, Iin)) are similar, and a small value if they are
different, where α is a small positive value to avoid dividing by zero. So, if S(Iin, θ) is small,
we can conclude that there is adversarial noise in Iin. Thus, we detect the adversarial noise
by comparing it with a pre-defined threshold value (Th) as follows:{

Detect Adversarial Attack if S(Iin, θ) ≥ Th
No Adversarial Attack if S(Iin, θ) < Th.

(6)

The network gB already has the ability to denoise and detect the adversarial noise.

Electronics 2021, 10, 52 9 of 17

However, to increase the ability to denoise and detect, we take one further step as in the
following section.

Figure 5. Explanation of the parameter domain. (a) effect of putting a normal image through
the blurring network (b) effect of putting a normal image through the DIP (c) effect of putting an
adversarial image through the blurring network (d) effect of putting an adversarial image through
the DIP.

3.3. Role of gB as the Initial Condition for the DIP

According to the concept of the MAML, the parameters of the blurring network can be
regarded as good initial parameters for the task of regenerating the input image, as these
parameters have been obtained by learning how to produce blurry versions of different
input images. Using the parameters of the blurring network as the initial parameters,
we will fine-tune the blurring network to the input image. That is, we use the parameters of
the blurring network as the initial condition of the DIP which reproduces the input image.
By doing so, we expect that the DIP will converge very fast, so that the reconstruction of
the input image can be performed in real-time. Figure 2b shows this concept. Using the
parameters of the blurring network, the DIP will first reproduce a blurry version of the
input image. As the parameters are getting updated, the DIP will generate a sharper and
sharper version of the blurred image in real-time. Therefore, the blurring network becomes
overfitted to the test image Itest = gB(θ, Iin). This can be achieved by minimizing the
following loss function:

L f ine = ‖g(θ, Itest)− Iin‖2
2. (7)

whereas Iin in (4) refers to all the images in the training dataset, Itest in (7) refers only to the
test image.

After a few updates, we get g(θB + ∆θ, Itest) that is close to Iin in the L2 norm sense,
but does not include the adversarial noise. When g(θ + ∆θ, Itest) is put into the classifier f ,
this will give an exact or at least similar classification result to Iin, if Iin is a normal image.
Figure 5b illustrates the case that the classification results of the normal images get more
similar to f (Itest) by the update of the parameters. On the contrary, if Iin is an adversarial
image, the overfitting of the DIP will also restore the high frequency components. However,
the few iterations are not enough to restore fully the adversarial noise, as we start from
a blurred image, and f (g(θ + ∆θ, Itest)) will be still different from f (Iin) as illustrated
in Figure 5d. Therefore, if we use the similarity measure on f (Iin) and f (g(θ + ∆θ, Itest)),
we can discriminate between normal and adversarial images. In the next section, we explain
the proposed detection measure based on the similarity in details.

3.4. Proposed Detection Measure for Detecting an AI Deception Attack

Let S5 denote the set of nodes which give the top five activation values in the vector
f (Iin), and denote by fn(Iin) the activated value of the n-th node in S5. The similarity
measure we use as the detection measure in the proposed method is

Electronics 2021, 10, 52 10 of 17

S(Iin, θ + ∆θ) = ∑
n∈S5

fn(g(θ + ∆θ, Itest)) + fn(Iin)

| fn(g(θ + ∆θ, Itest))− fn(Iin)|+ α
. (8)

here, compared with (5), we multiplied by fn(g(θ + ∆θ, Itest)) + fn(Iin) to give priority to
the node value which has larger values than others, whether in fn(g(θ + ∆θ, Itest)) or in
fn(Iin). Actually, instead of using the very last layer of the network, we use the second
to the last layer, which we still denote by f to avoid confusion. Furthermore, instead of
using all the node values in f , we use only a set of the nodes, i.e., the set S5. Figure 6 shows
the accuracy values for the top five probable classes of the adversarial image, and the
corresponding accuracy values for the same classes in the normal and the reconstructed
images. It can be observed from Figure 6a,b that the accuracy values for the top five
classes of the adversarial image are different in the reconstructed image as the blurring
network and the DIP decrease the accuracies of the wrong classes. Therefore, S(Iin, θ + ∆θ)
becomes small in this case. On the other hand, if the input is the normal image, then the
reconstructed image shows somewhat similar accuracy values for the top five classes of
the input image, as the blurring network and the DIP will reconstruct the image in the
direction that favors the same classification result as the normal image. Therefore, if we
use a pre-defined threshold value, we can determine whether an AI deception attack has
occurred by comparing the value of S(Iin, θ + ∆θ) with the threshold value.

Figure 6. Showing the accuracy values for (a) the top five classes in the adversarial image. (b) the same five classes as in (a)
for the output of the DIP with (a) as the input. (c) the top five classes in the normal image. (d) the same five classes as in (c)
for the output of the DIP with (c) as the input.

Electronics 2021, 10, 52 11 of 17

Finally, a simple analysis on the detection measure will help to understand why
it shows a good detection performance, even if the classification results are somewhat
inaccurate. Let fn(g(θ + ∆θ, Itest)) = fn(Iin) + εn, where εn denotes the difference between
fn(g(θ + ∆θ, Itest)) and fn(Iin). Then, we can rewrite (8) as

S(Iin, θ) = ∑
n∈S5

| fn(Iin) + εn + fn(Iin)|
| fn(Iin) + εn − fn(Iin)|+ α

.

= ∑
n∈S5

|2 fn(Iin) + εn|
|εn|+ α

.

(9)

The value εn is negative due to the following facts: if Iin is an adversarial image,
fn(g(θ + ∆θ, Itest)) < fn(Iin), since the accuracy values for the top five classes in the
adversarial image decrease with the reconstructed image, while if Iin is a normal image,
again fn(g(θ + ∆θ, Itest)) < fn(Iin), since the accuracy values of the reconstructed image
cannot be as large as those of the normal image for the top five classes of the normal
image. If Iin is an adversarial image, |εn| is large, while if Iin is a normal image, |εn| is
small. This is due to the fact that g(θ, Iin) and Iin are significantly different if Iin contains
adversarial noise, since g(θ + ∆θ, ·) acts as a denoiser of the adversarial noise. Therefore,
ignoring α, for |2 fn(Iin)+εn |

|εn |+α
to have a value less than 1, fn(Iin) only needs to be less than

|εn|, which would easily be so if Iin were an adversarial image. Therefore, the detection
performance will be good even if the accuracy value fn(Iin) is not very accurate. That is,
even if the DIP does not reconstruct images that provide accurate classification results,
the detection performance will be good. This is one of the reasons that the proposed
method shows a good detection performance as will be shown in the experimental section.
Figure 7 shows the flowchart of the proposed method.

Figure 7. Flowchart of the proposed method.

Electronics 2021, 10, 52 12 of 17

4. Results and Discussion

We compared the performance of the proposed detection method with those of the
Artifact based detector (A-detector) [18], the Gaussian Process Regression based detector
(GPR-detector) [26], the Adaptive Noise Reduction (ANR) method [27], and the Local
Intrinsic Dimensionality (LID) method [31]. For the test images, we used the test data in the
MNIST [36] and the CIFAR10 [37] datasets, and partial subsets of the ImageNet [38] and
the ‘Dog and Cat’ datasets [39]. We used the FGSM [1], the BIM [5], and the Carlini–Wagner
(CW) [9] attacks for the experiments. For the BIM attack, we iterated it for a fixed number
of iterations so that the adversarial example is created well beyond the decision boundary.
As a measure of the detection performance, we used the accuracy of detection, which is
calculated as

DetectionAccuracy =
Number o f correct detections
Number o f total detections

× 100%, (10)

where a correct detection means that the detector has classified the input image rightly as
an adversarial example or a normal image. The number of adversarial examples or normal
images used in the testing are different for different datasets.

4.1. Experimental Settings with the Proposed Method

We used an autoencoder architecture with skip connections for both the blurring
network and the DIP network. The encoder part of the network is constructed by three
convolutional layers, where the spatial size of the output decreases according to a stride-2
downsampling convolution operation. The numbers of filters in each layer in the en-
coder are 32, 64, and 128, respectively. The decoder also consists of three convolutional
layers, where the spatial size of the output increases according to a stride-2 deconvolu-
tion operation. The numbers of filters in each layer of the decoder are 128, 64, and 32,
respectively. Both networks are trained with the AdamOptimizer, where used a uniform
random initialization between −1 and 1, for all the filters in the networks. We fixed the
learning rate to 0.0001 and don’t use any learning rate decay. We did an early stopping
for the blurring network if the validation loss did not improve for 10 continues epochs
to avoid over-training. With the DIP, we performed an early stopping to recover only
the image and not the adversarial noise. As we copied the parameters of the blurring
network into the DIP, the DIP with only a few iterations already reconstructed the image
as explained above. We used 10 iterations for the experiments with the MNIST and the
CIFAR10 datasets, and two iterations for the experiments with the ImageNet and ‘Dog and
Cat’ datasets. The number of iterations is set to the value that provide the highest accuracy
and has been manually found by many experiments. This is also true for the setting of the
threshold value (Th) in (6). The manually found threshold values are 98 for the MNIST
and the CIFAR10 datasets, and 74 for the ImageNet and the ‘Dog and Cat’ datasets. For the
Gaussian kernel Gσ in (4), we used a Gaussian Filter of size 5× 5.

4.2. Results on the MNIST and the CIFAR10 Datasets

While the MNIST and the CIFAR10 dataset are not composed of real-life images,
they are often used as reference datasets to evaluate the performance of the detection
methods. The MNIST [36] and the CIFAR-10 [37] datasets consists both of 60,000 images in
10 different classes, where the images in the CIFAR-10 dataset are colour images of size
32 × 32, while those in the MNIST dataset are gray images of size 28 × 28. We used four
different settings for the ε values in the FGSM and the BIM attacks, respectively, and two
different settings of confidence values for the CW attack which are shown in Table 1.
We tested on 10,000 images for both the MNIST and the CIFAR10 datasets, where half of
the images (5000 images) were normal images and the other half images (5000 images)
were added with the generated adversarial noise. The target classifier was a simple CNN
(Convolutional Neural Network), which consists of five layers. The proposed method uses
the same DIP structure as for the experiments with the ‘Dog and Cat’ dataset, but the sizes

Electronics 2021, 10, 52 13 of 17

of the input and output images matched the sizes of the images in the CIFAR10 dataset
with resizing operations after the input and before the output of the DIP. The adversarial
noise was generated with respect to the input image, so the resizing operation can be seen
as a part of the proposed detector.

Table 1. Comparison of detection accuracy between different detection methods. Here ‘n/w’ stands
for ‘Not working’, while ‘-’ stands for ‘Unknown’.

Dataset Attack Method Strength [18] [26] [27] [31] Proposed

FGSM ε = 0.1 0.7768 0.7952 0.9514 0.8030 0.8566
ε = 0.2 0.8672 0.8977 0.9826 0.7767 0.6131
ε = 0.3 0.8925 0.9380 0.9887 0.8681 0.5613
ε = 0.4 0.9122 0.9424 0.9866 0.9246 0.5144

MNIST BIM ε = 0.1 0.9419 0.8096 0.9716 0.8092 0.7894
ε = 0.2 0.9768 0.8330 0.9890 0.9027 0.5294
ε = 0.3 0.9801 0.7088 0.9896 0.9574 0.5039
ε = 0.4 0.9779 0.7002 0.9798 0.9797 0.4905

CW confidence = 0 n/w 0.9067 0.9419 0.6667 0.7058
confidence = 10 n/w 0.9652 0.8893 0.6411 0.7926

FGSM ε = 1/255 0.5521 0.5876 - 0.7108 0.7610
ε = 3/255 0.5892 0.5839 - 0.7097 0.8045
ε = 6/255 0.5994 0.6088 - 0.6667 0.8016
ε = 9/255 0.5931 0.6452 - 0.6671 0.8001

CIFAR10 BIM ε = 1/255 0.6588 0.5502 - 0.7807 0.7968
ε = 3/255 0.6172 0.6342 - 0.7755 0.8014
ε = 6/255 0.5962 0.8215 - 0.8117 0.8005
ε = 9/255 0.5802 0.8335 - 0.8654 0.7941

CW confidence = 0 n/w 0.8812 - 0.8757 0.7930
confidence = 10 n/w 0.9489 - 0.8239 0.8705

FGSM ε = 1 n/w n/w 0.9132 n/w 0.8516
ε = 2 n/w n/w 0.6757 n/w 0.8847
ε = 4 n/w n/w 0.8255 n/w 0.8908

Dog and Cat ε = 6 n/w n/w 0.5729 n/w 0.9096

Dataset BIM ε = 10 n/w n/w 0.8265 n/w 0.9155
ε = 20 n/w n/w 0.7943 n/w 0.9010

CW confidence = 0 n/w n/w 0.9198 n/w 0.9167
confidence = 10 n/w n/w 0.8365 n/w 0.9587

FGSM ε = 1 n/w n/w 0.8643 n/w 0.8010
ε = 2 n/w n/w 0.7763 n/w 0.8375
ε = 4 n/w n/w 0.6116 n/w 0.8400

ImageNet ε = 6 n/w n/w 0.5026 n/w 0.8615

BIM ε = 10 n/w n/w 0.7789 n/w 0.8833
ε = 20 n/w n/w 0.7431 n/w 0.8808

CW confidence = 0 n/w n/w 0.9215 n/w 0.9243
confidence = 10 n/w n/w 0.8441 n/w 0.9650

As shown in the accuracy values in Table 1, the proposed method was no better than
other detection methods against the FGSM and BIM attacks on the images in the MNIST
dataset. This is due to the fact that the images in the MNIST dataset small-sized grayscaled
images had no complex background and only two principal colors (black and white),
which made it easy to extract the statistical characteristics from the images that could
discriminate the adversarial examples from normal data. Therefore, the A-detector [18] and
the LID method [31] could easily extract valid statistical features, and the GPR-detector [26]
could easily draw the Gaussian distribution of the features from the image, which made it
easy for them to detect the adversarial noise. The ANR method [27] could also eliminate

Electronics 2021, 10, 52 14 of 17

the noise well by using strong spatial smoothing and scalar quantization on the adversarial
noise. With the proposed method, the large black-and-white adversarial noises were also
easily reconstructed by the DIP, which made it difficult to detect the adversarial cases, so the
accuracy with the proposed method was not high. However, since such black-and-white
images are not common in real life, we believe that the experiments on the MNIST dataset
are less important than those on the ImageNet or the ‘Dog and Cat’ datasets.

With the more complex CIFAR10 dataset, the accuracy values of the A-detector [18]
and the GPR-detector [26] dropped a lot as it became more difficult to discriminate between
the statistical properties of the adversarial and the clean cases. The LID method [31] had
lower accuracy values than the proposed method for the FGSM attack because it was
more difficult to extract LID features from images in the CIFAR10 dataset than the MNIST
dataset. However, for the BIM and the CW attacks, which yielded larger perturbations
in the LID features in the inner layers than the FGSM attack, the LID method was still
comparable with the proposed method. The proposed method also showed a higher
detection accuracy, about 80%, than with the MNIST dataset case, which is due to the
fact that the adversarial noise was not so extreme as in the MNIST case, and therefore,
could be effectivly removed by the DIP. For the ANR method [27], there was no code with
the CIFAR10 dataset, so the result is unknown. However, according to the results of the
MNIST dataset and the real-world datasets (ImageNet and ‘Dog and Cat’ datasets), we can
derive that the ANR method was still the most effective adversarial denoiser with the
CIFAR10 dataset as the images in the CIFAR10 dataset are smoothed, small-sized versions
of real-world images. However, we think that the comparison with the ANR method on
real-world images is more important, which we describe in the next section.

4.3. Results on the ‘Dog and Cat’ and the ImageNet Datasets

The ‘Dog and Cat’ [39] and the ImageNet [38] datasets consist of real-life images,
and therefore, are more suitable for the experiments of AI deception attack detection.
The ‘Dog and Cat’ consisted of 25,000 labeled color photos of size 224× 224, i.e., 12,500
images of dogs and the same number of images of cats, and the ImageNet consists of about
1 million color images of different sizes divided into 1000 classes. For the experiments with
the ‘Dog and Cat’ datasets, we tested on a total of 1000 images randomly selected from
each dataset. We added the adversarial noise to half of this subsampled dataset, so that
500 images are normal images while the other 500 images are added with the generated
adversarial noise. For the experiments with the ImageNet dataset, we prepared the dataset
in the same way as in [27]. We randomly chose a class in the ImageNet dataset, added the
adversarial noise to all the images in this class and experimented whether the detection
methods can detect the adversarial noise for this class. We used four different settings for
the ε values in the FGSM attack and two different settings for the BIM attack. For the CW
attack, we used two different settings for the confidence value which are shown in Table 1.

Like many other detection methods, the A-detector [18], the GPR-detector [26], and the
LID method [31] did not work with the real-life images as can be seen in Table 1, and could
not be evaluated with the ‘Dog and Cat’ and the ImageNet datasets. This is because
the statistical characteristics of normal data and adversarial examples are not clearly
distinguished in real-world images because the noise intensity in real-world images is
smaller than in the artificial MNIST and CIFAR10 datasets.

The proposed method and the ANR method [27] both worked well on real-world
images, but the tendencies in the change of accuracy values according to the strength of
the noise were different. With the ANR method, the accuracy tended to decrease as the
noise became stronger. This is because the spatial smoothing and scalar quantization of the
ANR method could not eliminate the noise well when the noise intensity was increased.
However, since the proposed method did not reconstruct noise when the noise is below a
certain level, the accuracy increased as the noise increased because the detection measure
could better distinguish adversarial examples from denoised data. However, with a very
large noise, as with the case of the BIM attack with ε = 20, the noise was somewhat

Electronics 2021, 10, 52 15 of 17

reconstructed with the proposed method, which decreased the accuracy value. However,
even in this extreme case, the proposed method still outperformed other detection methods.

4.4. Results on the Computation Time

Table 2 compares the computation time to detect the adversarial example of a single
image between the different detection methods. The operation was tested on a PC with Intel
i9 CPU, 16GB RAM, and GPU of RTX 2080Ti using the Windows10 OS. All the detection
methods ran on Tensorflow v1.12.0 with Python 3.6, and CUDA 9.0 settings. It can be seen
from Table 2, that the running time of the proposed method was very fast. The detection
times for a single image of the ‘Dog and Cat’ dataset and the ImageNet dataset were about
0.114 and 0.121 seconds, respectively. To show how the use of the blurring network as an
initial condition has accelerated the convergent speed of the DIP in the proposed method,
we further measured the reconstruction time of a single image by the normal DIP. Starting
from the same input image as the proposed method, the image reconstruction time for the
normal DIP was about 4.35 seconds for the a single image in the ‘Dog and Cat’ dataset.
This illustrates that the use of the blurring network as an initial condition is essential for
real-time implementation, as proposed.

Table 2. Comparison of detection running time for one image between different detection methods.

Detection Method

Dataset [18] [26] [27] [31] DIP Proposed

MNIST 0.022 s 0.434 s 0.050 s 0.002 s 1.85 s 0.039 s
CIFAR10 0.028 s 0.456 s 0.053 s 0.002 s 2.01 s 0.048 s

Dog and Cat - - 0.123 s 0.004 s 4.35 s 0.114 s
ImageNet - - 0.131 s 0.005 s 4.43 s 0.121 s

5. Conclusions

In this paper, we proposed a real-time adversarial detection method which utilizes
the use of a high-level representation based blurring network as the initial condition of the
Deep Image Prior(DIP) network. The high-level representation based blurring network is
trained with only normal noiseless images, which is in contrast to other neural network
based detection methods which require the use of many adversarial noisy images to train
the neural network. Due to the nature of not needing adversarial noisy images for training
the network, the proposed method can detect AI deception attacks regardless of the type
of attack. Furthermore, it has been shown in the experiments that the proposed method
outperforms other detection methods in all datasets. The proposed detection method
works also for real images while showing a detection speed of less than 0.05 s per image.
This performance shows that the proposed method is applicable for real-time AI systems.
Another big advantage of the proposed method is that the detection method is not based
on deterministic neural networks, but on the deep image prior where the parameters
changes for every incoming image. This makes it difficult for an attacker who is aware of
the proposed detection system to generate an adversarial example which can avoid the
detection. The subject of further research could be an analysis of how to make an attack
method that can avoid the detection of the proposed detection method, and again, how to
re-detect such an attack method. Research for better measures for the proposed framework
to better determine whether an AI deception attack has occurred may be another additional
topic of further study.

Electronics 2021, 10, 52 16 of 17

Author Contributions: conceptualization, S.L. and R.E.S.; methodology, S.L. and R.E.S.; software,
R.E.S.; validation, S.L.; formal analysis, S.L. and R.E.S.; investigation, S.L.; resources, R.E.S.; writing—
original draft preparation, S.L.; writing—review and editing, S.L. and R.E.S.; visualization, R.E.S.;
supervision, S.L.; project administration, S.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2018-0-00245, Development
of prevention technology against AI dysfunction induced by deception attack) and by the Basic
Science Research Program through the National Research Foundation of Korea under Grant NRF-
2019R1I1A3A01060150.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the 3rd International

Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
2. Akhtar, N.; Mian, A. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018,

6, 14410–14430. [CrossRef]
3. Chakraborty, T.; Jajodia, S.; Katz, J.; Picariello, A.; Sperli, G.; Subrahmanian, V.S. FORGE: A Fake Online Repository Generation

Engine for Cyber Deception. IEEE Trans. Depend. Secure Comput. 2019, 1–16. [CrossRef]
4. Boloor, A.; He, X.; Gill, C.D.; Vorobeychik, Y.; Zhang, X. Simple Physical Adversarial Examples against End-to-End Autonomous

Driving Models. In Proceedings of the 15th IEEE International Conference on Embedded Software and Systems (ICESS),
Las Vegas, NV, USA, 2–3 June 2019; pp. 1–7. [CrossRef]

5. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

6. Papernot, N.; McDaniel, P.D.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial
Settings. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrücken, Germany, 21–24
March 2016; pp. 372–387. [CrossRef]

7. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks.
In Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

8. Moosavi-Dezfooli, S.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2574–2582. [CrossRef]

9. Carlini, N.; Wagner, D.A. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the IEEE Symposium on
Security and Privacy, San Jose, CA, USA, 22–26 May 2017; pp. 39–57. [CrossRef]

10. Papernot, N.; McDaniel, P.D.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations Against Deep
Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 582–597. [CrossRef]

11. Papernot, N.; McDaniel, P.D.; Goodfellow, I.J.; Jha, S.; Celik, Z.B.; Swami, A. Practical Black-Box Attacks against Machine
Learning. In Proceedings of the Asia Conference on Computer and Communications Security, Abu Dhabi, UAE, 2–6 April 2017;
pp. 506–519. [CrossRef]

12. Athalye, A.; Carlini, N.; Wagner, D.A. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to
Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden,
10–15 July 2018.

13. Liao, F.; Liang, M.; Dong, Y.; Pang, T.; Hu, X.; Zhu, J. Defense Against Adversarial Attacks Using High-Level Representation
Guided Denoiser. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), Salt Lake City,
UT, USA, 18–22 June 2018; pp. 1778–1787. [CrossRef]

14. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative
Models. In Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada,
30 April–3 May 2018.

15. Bhagoji, A.N.; Cullina, D.; Mittal, P. Dimensionality Reduction as a Defense against Evasion Attacks on Machine Learning
Classifiers. arXiv 2017, arXiv:1704.02654.

http://dx.doi.org/10.1109/ACCESS.2018.2807385
http://dx.doi.org/10.1109/TDSC.2019.2898661
http://dx.doi.org/10.1109/ICESS.2019.8782514
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/CVPR.2016.282
http://dx.doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1109/SP.2016.41
http://dx.doi.org/10.1145/3052973.3053009
http://dx.doi.org/10.1109/CVPR.2018.00191

Electronics 2021, 10, 52 17 of 17

16. Li, X.; Li, F. Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5775–5783. [CrossRef]

17. Hendrycks, D.; Gimpel, K. Early Methods for Detecting Adversarial Images. In Proceedings of the 5th International Conference
on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

18. Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting Adversarial Samples from Artifacts. arXiv 2017, arXiv:1703.00410.
19. Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. In Proceedings of the

25th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018.
20. Dathathri, S.; Zheng, S.; Murray, R.M.; Yue, Y. Detecting Adversarial Examples via Neural Fingerprinting. arXiv 2018,

arXiv:1803.03870.
21. Tian, S.; Yang, G.; Cai, Y. Detecting Adversarial Examples Through Image Transformation. In Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LO, USA, 2–7 February 2018; pp. 4139–4146.
22. Metzen, J.H.; Genewein, T.; Fischer, V.; Bischoff, B. On Detecting Adversarial Perturbations. In Proceedings of the 5th International

Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
23. Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P.D. On the (Statistical) Detection of Adversarial Examples.

arXiv 2017, arXiv:1702.06280.
24. Gong, Z.; Wang, W.; Ku, W. Adversarial and Clean Data Are Not Twins. arXiv 2017, arXiv:1704.04960.
25. Lu, J.; Issaranon, T.; Forsyth, D.A. SafetyNet: Detecting and Rejecting Adversarial Examples Robustly. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 446–454. [CrossRef]
26. Lee, S.; Kim, N.; Cho, Y.; Choi, J.; Kim, S.; Kim, J.; Lee, J. Adversarial Detection with Gaussian Process Regression-based Detector.

KSII Trans. Internet Inf. Syst. 2019, 13, 4285–4299. [CrossRef]
27. Liang, B.; Li, H.; Su, M.; Li, X.; Shi, W.; Wang, X. Detecting Adversarial Examples in Deep Networks with Adaptive Noise

Reduction. arXiv 2017, arXiv:1705.08378.
28. Gittings, T.; Schneider, S.A.; Collomosse, J.P. Robust Synthesis of Adversarial Visual Examples Using a Deep Image Prior.

In Proceedings of the 30th British Machine Vision Conference (BMVC), Cardiff, UK, 9–12 September 2019; p. 283.
29. Sutanto, R.E.; Lee, S. Adversarial Attack Defense Based on the Deep Image Prior Network. Inf. Sci. Appl. 2020, 621, 519–526.
30. Zhao, C.; Fletcher, P.T.; Yu, M.; Peng, Y.; Zhang, G.; Shen, C. The Adversarial Attack and Detection under the Fisher Information

Metric. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI),
Honolulu, HI, USA, 27 January–1 February 2019; pp. 5869–5876. [CrossRef]

31. Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.N.R.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J. Characterizing
Adversarial Subspaces Using Local Intrinsic Dimensionality. In Proceedings of the 6th International Conference on Learning
Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

32. Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing Robust Adversarial Examples. In Proceedings of the 35th International
Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 284–293.

33. Yin, X.; Kolouri, S.; Rohde, G.K. GAT: Generative Adversarial Training for Adversarial Example Detection and Robust Clas-
sification. In Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia,
26–30 April 2020.

34. Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Deep Image Prior. Int. J. Comput. Vis. 2020, 128, 1867–1888. [CrossRef]
35. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th

International Conference on Machine Learning, (ICML), Sydney, NSW, Australia, 6–11 August 2017; Volume 70, pp. 1126–1135.
36. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 18 Decem-

ber 2020).
37. The CIFAR-10 Dataset. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 18 December 2020).
38. IMAGENET. Available online: http://www.image-net.org/ (accessed on 18 December 2020).
39. Dogs vs. Cats. Available online: https://www.kaggle.com/c/dogs-vs-cats/data (accessed on 18 December 2020).

http://dx.doi.org/10.1109/ICCV.2017.615
http://dx.doi.org/10.1109/ICCV.2017.56
http://dx.doi.org/10.3837/tiis.2019.08.027
http://dx.doi.org/10.1609/aaai.v33i01.33015869
http://dx.doi.org/10.1007/s11263-020-01303-4
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/
https://www.kaggle.com/c/dogs-vs-cats/data

	Introduction
	Preliminaries for the Proposed Method
	Concept of AI Deception Attack
	Works Related to Adversarial Example Detection
	Deep Image Prior Network
	Model-Agnostic Meta Learning

	Proposed Method
	Main Idea of the Proposed Method
	Role of gB as the Blurring Network
	Role of gB as the Initial Condition for the DIP
	Proposed Detection Measure for Detecting an AI Deception Attack

	Results and Discussion
	Experimental Settings with the Proposed Method
	Results on the MNIST and the CIFAR10 Datasets
	Results on the `Dog and Cat' and the ImageNet Datasets
	Results on the Computation Time

	Conclusions
	References

