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Abstract: Object tracking is still an intriguing task as the target undergoes significant appearance
changes due to illumination, fast motion, occlusion and shape deformation. Background clutter
and numerous other environmental factors are other major constraints which remain a riveting
challenge to develop a robust and effective tracking algorithm. In the present study, an adaptive
Spatio-temporal context (STC)-based algorithm for online tracking is proposed by combining the
context-aware formulation, Kalman filter, and adaptive model learning rate. For the enhancement
of seminal STC-based tracking performance, different contributions were made in the proposed
study. Firstly, a context-aware formulation was incorporated in the STC framework to make it
computationally less expensive while achieving better performance. Afterwards, accurate tracking
was made by employing the Kalman filter when the target undergoes occlusion. Finally, an adaptive
update scheme was incorporated in the model to make it more robust by coping with the changes of
the environment. The state of an object in the tracking process depends on the maximum value of
the response map between consecutive frames. Then, Kalman filter prediction can be updated as
an object position in the next frame. The average difference between consecutive frames is used to
update the target model adaptively. Experimental results on image sequences taken from Template
Color (TC)-128, OTB2013, and OTB2015 datasets indicate that the proposed algorithm performs
better than various algorithms, both qualitatively and quantitatively.

Keywords: spatio-temporal context; target tracking; Kalman filter

1. Introduction

Visual Object Tracking (VOT) is an active research topic in computer vision and ma-
chine learning due to extensive applications in areas including gesture recognition [1],
sports analysis [2], visual surveillance [3], medical diagnosis [4], autonomous vehicles [5,6]
and radar navigation systems [7–9]. Various factors such as partial or full occlusion, back-
ground clutter, illumination variation, deformation and other factors in the environment
complicate a tracking problem [10–12]. Tracking methods are categorized as generative [13]
and discriminative methods [14]. Generative tracking methods focus on constructing an
appearance model for target representation and search regions with high scores as results.
Discriminative tracking methods treat object tracking as a classification problem by dis-
tinguishing the target from its background. Both types of tracking approaches are widely
referred to in literature and have their own pros and cons in various scenarios. Generative
trackers perform better analysis in case of availability of small training data. However,
these trackers only consider object similarity which leads to loss of useful information
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around the target that might drift the tracker when the target undergoes occlusion or scale
variation. However, discriminative trackers perform better analysis in the case of large
training data. However, these trackers cannot adapt adequately when the appearance of
target changes, due to which, tracking is affected when the target changes its shape or size
during motion [15].

1.1. Related Work

With recent advancement in visual tracking, various competitive methods have been
proposed for target tracking. Zhang et al. [16] proposed network padding, stride and
respective field size-based network architecture for Siamese trackers. Rahman et al. [17]
proposed a Siamese network-based tracker, which utilizes an attention module inside the
feature refine network to discriminate between the target and background. Zhang et al. [18]
proposed a tracking method which constructs a correlation filter learning model by using
handcrafted features extracted from a convolutional neural network and uses hierarchical
peak to side lobe ratio (PSR) for activation of the classifier. Dai et al. [19] presented adaptive
regularization in a correlation filter which can learn and update the target model according
to appearance variations during tracking. Javed et al. [20] proposed a deep correlation
filter-based tracking method, by utilizing both forward and backward tracking information
between the regression target and response map. Despite the fact that deep learning-based
methods achieve favorable results, the complexity of these methods is still higher with the
requirement of offline training.

Zhang et al. [21] proposed a fast algorithm which effectively uses Spatio-temporal
context (STC) information for online tracking by signifying Spatio-temporal relationships
between the target and its local contexts in a Bayesian framework. The tracking problem
is resolved by maximizing the confidence map which uses target location prior informa-
tion. Tian et al. [22] proposed an enhanced STC tracker to address occlusion through the
incorporation of a patch-based occlusion detection mechanism in the STC framework.
Chen et al. [23] proposed an improved STC tracker to address occlusion by incorporating
a Kalman filter for prediction of the target location in case of occlusion. Munir et al. [24]
proposed a modified STC tracker to address occlusion by incorporating a Kalman filter for
prediction of target location in case of occlusion and implemented it for a real-time eye
tracking application. Cui et al. [25] proposed an amended STC tracker to address limitation
of full occlusion. They incorporated an occlusion detection mechanism which consists of
three stages during which motion and template update information is stored and used
when the target is occluded. Yang et al. [26] proposed an enhanced STC tracker to address
occlusion by incorporating a PSR-based occlusion feedback mechanism for the model and
scale update in the STC framework. Yang et al. [27] proposed an improved STC tracker to
address occlusion through incorporating a Kalman filter for prediction of target location
and uses Euclidean distance to detect occlusion. Zhang et al. [28] proposed a motion aware
correlation filter (MACF) which predicts position and scale of the target in the next frame
by utilizing instantaneous motion estimation.

Lu et al. [29] proposed RetinaTrack, an efficient joint model for detection and track-
ing which modifies single stage RetinaNet to instance level embedding training. Hen-
riques et al. [30] proposed a tracking by detection framework with a kernel trick and
histogram of oriented gradients feature to track the object. Ahmed et al. [31] proposed a
real-time correlation-based tracking framework by utilizing open loop control strategy, so
that the target is always at the center of frame. Moreover, a video stabilization method was
incorporated to eliminate the vibration at low computational cost. Ma et al. [32] proposed a
long-term correlation filter tracker (LCT) which decomposed the tracking problem into esti-
mation of translation and scale, and redetects the target by online training of a random fern
classifier. Masood et al. [33] proposed tracking framework which uses a maximum average
correlation height (MACH) filter for detection and proximal gradient algorithm-based
particle filter for tracking.
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Zhou et al. [34] proposed an STC learning algorithm with multichannel features
and an improved adaptive scheme for scale by using a histogram of oriented gradients
feature along with color naming and using kernel methods in the STC framework to
improve tracking performance. Khan et al. [35] proposed an improved tracking algorithm
based on LCT. They incorporated the Kalman filter in the LCT framework for occlusion
handling and PSR of the response map for occlusion detection. Ali et al. [36] proposed
a tracking algorithm that combines the mean-shift tracker, Kalman filter, and correlation
filter heuristically. It updates the template based on the change in the appearance model of
the target and computes similarity for each forthcoming frame based on the current frame
similarity value.

Mueller et al. [37] proposed a context-aware framework for correlation filter track-
ers by reformulating the original optimization problem for single and multidimensional
features in both primal and dual domains. Qi et al. [38] proposed an improved STC al-
gorithm through incorporation of a context-aware correlation filter in STC framework.
Zhang et al. [39] proposed an improved STC algorithm by incorporating color naming
and histogram of oriented gradients features in the STC framework, along with improved
scale strategy and adaptive model update scheme. Shin et al. [40] proposed an improved
KCF-based tracking algorithm. They incorporated module for detection of tracking failure,
mechanism for re-tracking in multiple search windows and analysis of motion vectors
for deciding the search window in the KCF framework. Based on literature presented it
can be concluded that significant modifications have been made in the STC algorithm in
terms of model updates, incorporation of occlusion detection and handling mechanisms,
utilization of contextual information, fusion of various cues and features such as histogram
of oriented gradients feature and color naming, combined with deep learning techniques
and incorporation of adaptive learning rate mechanisms.

The STC algorithm proposed by Zhang et al. [21] utilizes fast Fourier transform for
detection. Subsequently, context information around the target plays a vital role in object
tracking. The basic idea of STC is to use background information around the target area
in consecutive frames. The target model is updated based on spatial context information.
However, STC cannot deal effectively when the model is updated on inaccurate measure-
ments due to occlusions, background clutter and fast motion. Context-aware formulation
can be efficiently applied to deal with background clutter issues. The maximum value of
the response map can be used to detect occlusions. Afterwards, the Kalman filter can be
applied for occlusion handling. The model update can also be related to the motion of the
target; the STC model is updated on a fixed learning rate, making it vulnerable to target
motion. On the basis of target motion, the tracking model should be updated adaptively.

1.2. Our Contributions

In this paper, an improved spatio-temporal context-based tracking algorithm is pro-
posed. It combines s context aware formulation, Kalman filter and average difference
between consecutive frame-based adaptive learning rate mechanism with STC. Our ap-
proach utilizes correlation filter-based context aware formulation making it effective at
utilizing the context information while making it computationally less expensive. In
addition, the Kalman filter is fused in a tracking framework for occlusion handling. More-
over, an adaptive learning rate mechanism is incorporated to update the model according
to change in the environment. Experimental results have been presented on de facto
standard videos to show the efficacy of the proposed ideas with various state-of-the-art
tracking methods.

1.3. Paper Outline

The rest of the article is organized as follows—a brief explanation of Spatio-temporal
context tracking and correlation filtering is given in Section 2. Section 3 defines Context-
aware tracking, Kalman filter, occlusion detection mechanism and adaptive model learning
rate by an explanation of the proposed method for online tracking. Experiment and
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Performance analysis is discussed in Sections 4 and 5. Section 6 provides Experimental
results. Section 7 provides discussion and Section 8 concludes the article.

2. The Principle of Spatio-Temporal Context and Correlation Filter Tracking
2.1. STC Based Tracking

In visual object tracking, the target is characterized by objects around the target present
in the current frame. The area which is present around the target is called context. In the
context around the target, various temporal and spatial relationships exist in continuous
frames. STC tracking algorithm is based on a Bayesian framework to accurately find the
target location on the basis of background knowledge. It formulates the task of finding the
object center by maximizing the confidence map in every frame. Every current frame target
location is represented by x* with its features defined as Xc = {y(i) = (I(i), i)|i ∈ Ωc(x*)}
where I(i) is the image grey scale value at location i while Ωc(x*) is the context around
target center x*. It is shown in Figure 1.

Figure 1. Graphical representation of spatial relationship between object and its context.

Confidence map of target location is described in (1).

y(x) = P(x|j) = ∑
y(i)∈Xc

P(x, y(i)|j)

= ∑
y(i)∈Xc

P(x, y(i)|j)P(y(i)|j) (1)

where j is the target, P(y(i)|j) is context prior model that represents the features of context
appearance. P(x, y(i)|j) is spatial context model that formulates spatial relation between
object location and its information of context. It is used in identifying and resolves various
uncertainties for different image measurements. The goal in this tracking problem is to
train the spatial context model P(x, y(i)|j).

2.1.1. Confidence Map

Confidence map function y(x) is presented in (2).

y(x) = P(x|j) =re−|
x−x∗

α | ξ (2)

where r is normalization constant, α is scale parameter while ξ is shape parameter. The
problem of location ambiguity occurs frequently in object tracking. Appropriate selection
of the shape parameter can resolve this problem and is helpful in the learning spatial
context model. Setting ξ > 1 results in over-smoothing of the confidence map near the
center, thereby increasing location ambiguities. However, if ξ < 1 it generates a sharp peak
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response due to which few positions are activated while learning spatial context. Due to
these issues STC uses ξ = 1.

2.1.2. Context Prior Model

To learn the spatial context model, the context prior model needs to be calculated first.
It is modeled by using an image intensity function to represent target appearance along
with Gaussian weighted function mentioned in (3) and (4).

P(y(i)|j) = I(i) ωγ(i− x∗) (3)

ωγ = de−|
x−x∗

σ2 |
2

(4)

where d is normalization constant which restricts (4) to range between 0–1 and σ is scale
representation. The closer the context location i is to the currently target location x∗, larger
weight should be set to predict target location in the next frame.

2.1.3. Learning Spatial Context Model

Spatial context model is defined by conditional probability function is presented in (5).

P(x, y(i)|j) = hsc (x− i) (5)

Solving (5) for spatial context.

= hsc(x− i) I(i) ωγ(i− x∗)

= hsc(x)⊗ (I(x) ωγ(x− x∗)) (6)

where ⊗ is a convolution operator in (6). For improving calculation speed fast Fourier
transform (FFT) is used and calculated as presented in (7).

F(y(x)) = F(hsc(x))� F(I(x)ωγ(x− x∗)) (7)

where F is FFT operation and� denotes element wise multiplication. Solving (7) for spatial
context model.

hsc(x) = F−1

 F
(

re−|
x−x∗

α | ξ
)

F((I(x)ωγ(x− x∗)))

 (8)

where F−1 denotes inverse FFT in (8). The spatial context model hsc learns relative spatial
relations between different pixels in the Bayesian framework.

2.1.4. Model Update

In the STC model, the tracking is considered as a detection task. The target is initialized
in position at the first frame. At the tth frame, the STC model Hstc

t+1(x) can be updated by
using the spatial context model hsc

t (x). Then, the target center position x∗t+1 of the (t + 1)
frame can be attained by computing the extreme of the confidence map given in (9).

x∗t+1 = argx∈Ωc(x∗t )
max yt+1(x) (9)

The confidence map yt+1(x) at t + 1 frame can be calculated as described in (10).

yt+1(x) = F−1(F(Hstc
t+1(x)

)
� F(It+1(x)ωγ(x− x∗t ))

)
(10)

Here, Hstc
t+1 derives from spatial context hsc

t and is able to reduce noise caused by
abrupt appearance changes of It+1. The STC model can be updated as mentioned in (11).

Hstc
t+1 = (1− ρ) Hstc

t + ρhsc
t (11)
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where ρ is the learning rate and hsc
t is the spatial context model computed in (8).

2.2. Correlation Filter Tracking

Correlation filters use sampling methods to discriminate the target position from the
region of interest in consecutive frames at low computational cost. It models all possible
translations of the target in the search window as circular shifts and concatenates them
to form a square matrix A0. It facilitates in computing the Fourier domain solution to the
ridge regression problem given in (12).

min
w
‖A0w− y‖2

2 + λ1‖w‖2
2 (12)

In (12), the learned correlation filter is denoted by vector w. Square matrix A0 contains
all circular shifts of image patch and regression target y is vectorized image of 2D Gaussian.
Let x(j) be the jth component of vector x and its conjugate is x∗. Then, its Fourier transform
FHx is x̂. (12) can be solved by using (13).

X = Fdiag(x̂)FH and XT = Fdiag(x̂∗)FH (13)

The convex in (12) is complex and has a unique global minimum. Equating its gradient
to zero leads to a closed form solution of the filter as given in (14).

w =
(

AT
0 A0 + λ1 I

)−1
AT

0 y (14)

As A0 is circulant, (14) can be diagonalized and its solution in Fourier domain is given
in (15).

ŵ =
â∗0 � ŷ

â∗0 � â0 + λ1
(15)

The location of the target is the same as the location of maximum response when (15)
is convolved with a search window for the next frame. The detection formula is given
in (16).

rp(w, Z) = Zw↔ r̂p � ŵ (16)

where Z is the search window circulant matrix.

3. Proposed Solution

In this section, the proposed tracker is introduced in detail. First, a context-aware
object tracking model is investigated. Second, a Kalman filter-based motion estimation
model is discussed. Third, the average difference of a consecutive frames-based model
update scheme is presented. Finally, the tracker will be discussed in Algorithm 1. Figure 2
shows the flowchart of the proposed algorithm.

3.1. Context-Aware Tracking Framework

Information of context around the target elevates the tracking performance. Therefore,
it is added in the solution of the context-aware correlation filter as given in (17).

min
w
‖A0w− y‖2

2 + λ1‖w‖2
2 + λ2

k

∑
i=1
‖Aiw‖2

2 (17)

It should be noted that there are other possible choices for incorporating the context
term. However, it leads to constrained convex optimization requiring an iterative solution,
which is quite slow. When the position for the current frame is computed by STC, the filter
w is trained and the background term Ai is as small as possible. The objective function
can be rewritten by forming a new data matrix B ∈ R(k+1)n×n which consists of target and
context patches as given in (18).
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fp(w, B) = ‖Bw− y‖2
2 + λ1‖w‖2

2 (18)

where B =


A0√
λ2 A1

...√
λ2 Ak

 and y =


y
0
...
0

.

Similar to the correlation filter, the function in (18) is convex and minimized by setting
the gradient to zero. It is presented in (19).

w =
(

BT B + λ1 I
)−1

BTy (19)

Similar to (12), using (13) to determine Fourier domain closed form solution as de-
scribed in (20).

ŵ =
â∗0 � ŷ

â∗0 � â0 + λ1 + λ2 ∑k
i=1 â∗i � âi

(20)

The target window and its position are updated according to (20). Based on target
position, the confidence map and STC model in (9) and (11) are updated.

Figure 2. Implementation process of context-aware formulation, spatio-temporal context, adaptive
learning rate and Kalman filtering in the tracking algorithm.
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3.2. Kalman Filter-Based Motion Estimation Model

The Kalman Filter is an optimal filter which minimizes difference between true states
and estimated states. It consists of four processes which are (1) Initial guess of state vector
and state error covariance, (2) Forward time step propagation of the state vector and state
error covariance, (3) Estimation of the Kalman gain based on state error covariance and
measurement noise covariance, (4) Update state vector and state error covariance based on
estimated output and Kalman gain [41]. A constant velocity motion model is used due to
its simplicity and effectiveness in describing motion of the target. It consists of two stages
which are prediction and correction.

3.2.1. Kalman Filter Prediction

During this state, uncertainty about the target is determined by both state and covari-
ance prediction. The current system state can predict position based on the previous state.
Similarly, covariance is calculated multiplying the covariance matrix from the previous
iteration by state transition matrix and adding process noise Q. The prediction equations
are described in (21) and (22).

Xt = AXt−1 + But−1 (21)

where Xt is the state target vector, A is the state transition matrix and But−1 is noise.

St = ASt−1 AT + Q (22)

where St is the predicted error covariance and Q is the covariance of the process noise.

3.2.2. Kalman Filter Correction

The position of the target obtained from STC is used as a measurement value Yt. By
combining it with the predicted result, the Kalman gain can be calculated as described
in (23).

Kt−1 = St−1HT
(

HSt−1HT + R
)−1

(23)

where R is the measurement noise covariance. The estimate is updated by combining it
with the old estimate and the measurement as given in (24).

Xt+1 = Xt + Kt−1(Yt − HXt) (24)

The difference (Yt − HXt) is called measurement innovation or residual. It reflects
discrepancy between the predicted measurement HXt and actual measurement Yt. Error
covariance is calculated by using (25).

St+1 = (I − KtH) St (25)

where St+1 is the updated error covariance, H is matrix related to measurement of the state
and Kt is the updated Kalman gain.

3.3. Occlusion Detection

When the target undergoes occlusion, then the STC model is updated incorrectly
thereby losing the target. In order to detect occlusion, maximum value of target map is
used which changes its value with the situation of the target state. If the target is occluded,
then the value of response map is small. However, when the target reappears then its
value increases. The value of the response map determines whether the target is tracked
by STC or by Kalman filter. For a given input image sequence; first the confidence map
is calculated in frequency domain, then Spatio-temporal model is learned for tracking.
If the target is severely occluded, then for next frame the Kalman filter will predict the
position and update the STC using a feedback loop. The filter template for context-aware
is updated accordingly. Kalman filter prediction can be updated as observation of target
position marked for next frame.
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3.4. Adaptive Learning Rate

During object tracking, target motion changes in each frame of the image sequence.
Therefore, it is necessary to update the target model correctly. In STC, the learning rate
is fixed, making it evitable to different appearances in the environment. So, to make it
adaptive, an average difference of two consecutive frames-based mechanisms is incorpo-
rated [39]. It is given in (26).

er =
∑M,N

i,j

∣∣∣In
ij − In−1

ij

∣∣∣
M ∗ N

(26)

where Iij is the pixel value and M ∗ N is the size of image. Learning rate is adjusted as
given in (27).

ρ =


0.005, er < 1.2
0.075, 1.2 ≤ er < 10

0.1, er > 10
(27)

Value of learning rate ρ is assigned on the basis of er by using (27).

Algorithm 1: Proposed Tracker at time step t

Input: Image Sequence of n Frames. Position of Target at First Frame.
Output: Target Position for each frame in Image Sequence.
for frame 1 to n frames.

(1). Calculate context prior model using (3).
(2). Calculate confidence map using (10).
(3). Calculate target center.
(4). Calculate maximum of response map.
(5). if response map < threshold
(6). new position = Kalman prediction
(7). end
(8). Estimate position for next frame using (21).
(9). Estimate error covariance using (22).
(10). Calculate Kalman gain using (23).
(11). Update estimate via measurement using (24).
(12). Update error covariance using (25).
(13). Calculate average difference between consecutive frames using (26).
(14). Adjust learning rate using (27).
(15). Update filter template using (20).
(16). Update context prior model on Kalman prediction using (3).
(17). Update spatial context model using (8).
(18). Update Spatio-temporal context model using (11).
(19). Draw rectangle on target in each frame.

End

4. Experiments

To verify the performance of the proposed tracker both qualitatively and quantita-
tively, it is tested on several image sequences with complex conditions such as occlusion,
illumination variation, deformation and clutter background. The proposed method is
implemented in MATLAB 2016a. The experimental setup is Intel Core i3 2.30 GHz CPU
with 4GB RAM.

4.1. Evaluation Criteria

Two criteria were used to evaluate the algorithm. Those are the center location error
(CLE) and distance precision rate (DPR). The CLE is defined as the Euclidean distance
calculated by tracking algorithm and ground truth of target. The calculation formula is
given in (28).

CLE =

√(
xi − xgt

)2
+
(
yi − ygt

)2 (28)

where (xi,, yi) are tracker positions and (xgt, ygt) are ground truth values.
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Distance precision rate (DPR) is the percentage of frames at threshold of 20 pixels of
estimated location distance and ground truth.

4.2. Dataset

TC-128 [42], OTB2013 [43], and OTB2015 [44] are used for tracking experiments.
Eight image sequences are used in this experiment. We evaluate the proposed tracker
in comparison with MOSSECA and DCFCA [37], STC [21] and MACF [28] trackers both
qualitatively and quantitatively.

5. Performance Analysis

DPR comparison is given in Table 1. In sequences (Cardark, Cup, Jogging-1, Juice, and
Man) proposed, the tracker outperforms MOSSECA, STC, MACF, and DCFCA. In sequences
(Carchasing_ce3, and Plate_ce2) all tracking methods have similar performance. Sequence
Busstation_ce2 has slightly less precision value. However, the proposed has a higher mean
value than other tracking methods.

Table 1. Distance precision rate at threshold of 20 pixels.

Sequence Proposed STC MACF MOSSECA DCFCA

Busstation_ce2 0.878 0.194 1 0.820 0.886
Carchasing_ce3 1 1 1 1 1

Cardark 1 1 1 1 1
Cup 1 1 1 0.452 1

Jogging-1 0.996 0.228 0.231 0.231 0.231
Juice 1 1 1 1 1
Man 1 1 1 1 1

Plate_ce2 1 1 1 1 1
Mean Precision 0.984 0.803 0.904 0.813 0.890

The average center location error comparison is given in Table 2. In sequences (Bussta-
tion_ce2, Cup, Jogging-1, and Man), the proposed tracker outperforms STC, MOSSECA,
MACF, and DCFCA. In sequences (Carchasing_ce3, Cardark, Juice, and Plate_ce2), the
proposed tracker has slightly higher error value. However, the proposed has the lowest
mean error than other tracking methods.

Table 2. Average center location error.

Sequence Proposed STC MACF MOSSECA DCFCA

Busstation_ce2 10.86 78.25 3.58 14.50 9.71
Carchasing_ce3 3.90 3.55 2.39 2.61 3.05

Cardark 4.09 2.83 1.67 3.15 5.11
Cup 4.63 4.84 3.11 95.87 3.85

Jogging-1 8.40 5010 94.93 115.98 89.44
Juice 4.63 5.08 0.91 3.71 1.92
Man 1.32 1.49 1.73 1.72 2.23

Plate_ce2 2.58 2.34 1.62 1.77 1.83
Mean Error 5.05 638.55 13.74 29.91 14.64

The precision plots are shown in Figure 3. These plots provide frame-by-frame
precision in entire image sequences. Since precision gives the mean value of an entire
image sequence, it is a possibility that the tracker might get drift for a few frames but then
again tracks the target correctly. Therefore, these plots were presented to show the efficacy
of the tracking method. Various challenges were present in sequences such as occlusion,
illumination variations, background clutter, etc. In sequences (Carchasing_ce3, Cardark,
Cup, Jogging-1, Juice, Man, and Plate_ce2), the proposed tracker has the highest precision
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in the entire sequence. In sequence Busstation_ce2, the proposed tracker has slightly lower
precision.

Figure 3. Precision plots comparison of proposed and other state-of-the-art trackers on selected image sequences taken
from TC-128, OTB2013 and OTB2015 datasets.

The location error plots are shown in Figure 4. These plots provide frame-by-frame
error in entire image sequences. Since the average center location gives mean error of
entire image sequence, it is a possibility that tracker might get drift for few frames but
then again tracks the target correctly. Therefore, these plots were presented to show
the effectiveness of the tracking method. Various challenges were present in sequences
such as occlusion, illumination variations, deformation, etc. In sequences (Busstation_ce2,
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Cup, Jogging-1, and Man), the proposed tracker has the lowest error in entire sequence.
In sequences (Carchasing_ce3, Cardark, Juice, and Plate_ce2), the proposed tracker has
slightly higher error.

Figure 4. Centre location error (in pixels) comparison of proposed and other state-of-the-art trackers on selected image
sequences taken from TC-128, OTB2013 and OTB2015 datasets.

6. Experimental Results

Qualitative results of proposed tracking with four state-of-the-art trackers over eight
image sequences is shown in Figure 5. It involves various challenges such as partial or
full occlusions, illumination variations, background clutter, etc. DCFCA and MOSSECA
contains similar tracking components as our approach, i.e., correlation filtering and context
aware formulation. However, correlation filter in MOSSECA and DCFCA is not robust to
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blur motion in (cup), illumination variations in (man, cardark) and occlusions in (jogging-1,
busstation_ce2). In (carchasing_ce3, plate_ce2) where the target undergoes scale variations,
both MOSSECA and DCFCA have similar performance with the proposed in tracking of
the target. With the joint use of an instantaneous motion model and Kalman filter in
discriminative scale space tracking frame, MACF performs better on various challenging
sequences. However, MACF tends to drift when the target undergoes occlusion and fails
to recover from tracking failures (jogging-1). Although STC can estimate scale, it does
not perform well in motion blur (juice) and scale variations (cup). This is because STC
only uses intensity features and estimates scale from a response map of single translation
filter. Moreover, it does not deal effectively with occlusion (jogging-1, busstation_ce2) as
there is no occlusion handling mechanism present to deal with this issue. Moreover, its
target model is updated on a fixed learning rate, making it vulnerable to the background
environment.

Figure 5. Qualitative comparison of proposed with four state-of-the-art trackers on selected image
sequences taken from TC-128, OTB2013 and OTB2015 datasets.

The proposed tracker performs well in all these challenging sequences. This per-
formance can be attributed to three reasons. First, context-aware formulation in STC
framework is incorporated, making it less sensitive to illumination variation (cardark, man)
and motion blur (juice, man, cup). Second, incorporation of occlusion detection based on
the response map and occlusion handling using Kalman filter makes it effective towards
partial or full occlusion (jogging-1, busstation_ce2). Third, fusion of adaptive learning rate
in the model update of the tracking model is effective in dealing with scale variation and
fast motion (plate_ce2).

7. Discussion

We discuss several observations from experimental and quantitative analysis. First,
context aware formulation in the correlation filter outperforms trackers without this for-
mulation. This can be attributed to the fact that correlation filters regress all circular shifts
of the target appearance model. Second, trackers with occlusion detection and handling
modules outperforms trackers without these modules. This can be attributed to the fact
that occlusion detection and handling mechanism does not lead the tracker to drift. Third,
trackers with an adaptive learning rate mechanism perform better than a fix learning rate.
It is because the tracking model copes with the changes in environment.
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8. Conclusions

In the present article, an adaptive Spatio-temporal context (STC)-based algorithm for
online tracking is presented, which combines the context-aware formulation, Kalman filter,
response map-based occlusion detection, and average difference based adaptive model
update in the STC framework. The algorithm performs better in scenarios such as full
occlusion, illumination variation, deformation, and background clutter in comparison to
various algorithms with the achievement of efficient performance in datasets. Even though
the tracker has achieved the desired performance, the target may be lost in some cases
like motion blur, fast motion, and scale variation. The problem can be resolved through
the establishment of neural network-based algorithms [7–9] to improve robustness and
tracking accuracy.

Author Contributions: K.M. and A.A. conceived the main idea. K.M. designed the framework under
the supervision of A.A. and A.J. K.M. and B.K. validate the results. M.M., W.U.K. and Y.H. provided
suggestions in manuscript writing. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant No. 51977153, 51977161, 51577046, State Key Program of National Natural Science Foundation
of China under Grant No. 51637004, National Key Research and Development Plan “important
scientific instruments and equipment development” Grant No. 2016YFF010220, Equipment research
project in advance Grant No. 41402040301.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Cao, S.; Wang, X. Real-time dynamic gesture recognition and hand servo tracking using PTZ camera. Multimed. Tools Appl. 2019,

78, 27403–27424. [CrossRef]
2. Santhosh, P.K.; Kaarthick, B. An Automated Player Detection and Tracking in Basketball Game. Comput. Mater. Contin. 2019, 58,

625–639.
3. Oh, S.H.; Javed, S.; Jung, S.K. Foreground Object Detection and Tracking for Visual Surveillance System: A Hybrid Approach. In

Proceedings of the 11th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 16–18 December
2013; pp. 13–18.

4. Zhou, W.; Wu, C.; Yu, X.; Gao, Y.; Du, W. Automatic fovea center localization in retinal images using saliency-guided object
discovery and feature extraction. J. Med. Imaging Health Inform. 2017, 7, 1070–1077. [CrossRef]

5. Kuramoto, A.; Aldibaja, M.A.; Yanase, R.; Kameyama, J.; Yoneda, K.; Suganuma, N. Mono-Camera based 3D Object Tracking
Strategy for Autonomous Vehicles. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June
2018; pp. 459–464.

6. Muresan, M.P.; Giosan, I.; Nedevschi, S. Stabilization and Validation of 3D Object Position Using Multimodal Sensor Fusion and
Semantic Segmentation. Sensors 2020, 20, 1110. [CrossRef] [PubMed]

7. Kazimierski, W. Proposal of neural approach to maritime radar and automatic identification system tracks association. IET Radar
Sonar Navig. 2017, 1, 729–735. [CrossRef]

8. Stateczny, A. Neural manoeuvre detection of the tracked target in ARPA systems. IFAC Proc. Vol. 2002, 34, 209–214. [CrossRef]
9. Kazimierski, W.; Zaniewicz, G.; Stateczny, A. Verification of multiple model neural tracking filter with ship’s radar. In Proceedings

of the 13th International Radar Symposium (IRS), Warsaw, Poland, 23–25 May 2012; pp. 549–553.
10. Ali, A.; Jalil, A.; Niu, J.; Zhao, X.; Rathore, S.; Ahmed, J.; Iftikhar, M.A. Visual object tracking—Classical and contemporary

approaches. Front. Comput. Sci. 2016, 10, 167–188. [CrossRef]
11. Fiaz, M.; Mahmood, A.; Javed, S.; Jung, S.K. Handcrafted and deep trackers: Recent visual object tracking approaches and trends.

ACM Comput. Surv. (CSUR) 2019, 52, 1–44. [CrossRef]
12. Fiaz, M.; Javed, S.; Mahmood, A.; Jung, S.K.M. Comparative Study of ECO and CFNet Trackers in Noisy Environment. arXiv

2018, arXiv:1801.09360.
13. Biresaw, T.A.; Cavallaro, A.; Regazzoni, C.S. Tracker-Level Fusion for Robust Bayesian Visual Tracking. IEEE Trans. Circuits Syst.

Video Technol. 2015, 25, 776–789. [CrossRef]

http://dx.doi.org/10.1007/s11042-019-07869-7
http://dx.doi.org/10.1166/jmihi.2017.2139
http://dx.doi.org/10.3390/s20041110
http://www.ncbi.nlm.nih.gov/pubmed/32085608
http://dx.doi.org/10.1049/iet-rsn.2016.0409
http://dx.doi.org/10.1016/S1474-6670(17)35084-X
http://dx.doi.org/10.1007/s11704-015-4246-3
http://dx.doi.org/10.1145/3309665
http://dx.doi.org/10.1109/TCSVT.2014.2360027


Electronics 2021, 10, 43 15 of 16

14. Sun, X.; Yao, H.; Zhang, S.; Li, D. Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model. IEEE Trans. Image
Process. 2015, 24, 3386–3399.

15. Jang, S.I.; Choi, K.; Toh, K.A.; Teoh, A.B.J.; Kim, J. Object tracking based on an online learning network with total error rate
minimization. Pattern Recognit. 2015, 48, 126–139. [CrossRef]

16. Zhang, Z.; Peng, H. Deeper and wider siamese networks for real time visual tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 4591–4600.

17. Rahman, M.M.; Ahmed, M.R.; Laishram, L.; Kim, S.H.; Jung, S.K. Siamese High-Level Feature Refine Network for Visual Object
Tracking. Electronics 2020, 9, 1918. [CrossRef]

18. Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Li, K. Dual model learning combined with multiple feature selection for accurate visual
tracking. IEEE Access 2019, 7, 43956–43969. [CrossRef]

19. Dai, K.; Wang, D.; Lu, H.; Sun, C.; Li, J. Visual tracking via adaptive spatially regularized correlation filters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 4670–4679.

20. Javed, S.; Zhang, X.; Seneviratne, L.; Dias, J.; Werghi, N. Deep Bidirectional Correlation Filters for Visual Object Tracking. In
Proceedings of the IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020;
pp. 1–8.

21. Zhang, K.; Zhang, L.; Liu, Q.; Zhang, D.; Yang, M.H. Fast visual tracking via dense spatio-temporal context learning. In
Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–7 September 2014; pp. 127–141.

22. Tian, J.; Zhou, Y. Real-time patch-based tracking with occlusion handling. In Proceedings of the International Conference on
Neural Information Processing, Kuching, Malaysia, 3–6 November 2014; pp. 210–217.

23. Panqiao, C.; Mengzhao, Y. STC Tracking Algorithm Based on Kalman Filter. In Proceedings of the 4th International Conference
on Machinery, Materials and Computing Technology, Hangzhou, China, 23–24 January 2016; pp. 1916–1920.

24. Munir, F.; Minhas, F.; Jalil, A.; Jeon, M. Real time eye tracking using Kalman extended spatio-temporal context learning. In
Proceedings of the Second International Workshop on Pattern Recognition, Singapore, 1–3 May 2017; p. 104431.

25. Cui, Z.; Yang, J.; Jiang, S.; Li, J.; Gu, Y. Robust spatio-temporal context for infrared target tracking. Infrared Phys. Technol. 2018, 91,
263–277. [CrossRef]

26. Yang, X.; Zhu, S.; Zhou, D.; Zhang, Y. An improved target tracking algorithm based on spatio-temporal context under occlusions.
Multidim. Syst. Sign Process. 2020, 31, 329–344. [CrossRef]

27. Yang, H.; Wang, J.; Miao, Y.; Yang, Y.; Zhao, Z.; Wang, Z.; Sun, Q.; Wu, D.O. Combining Spatio-Temporal Context and Kalman
Filtering for Visual Tracking. Mathematics 2019, 7, 1059. [CrossRef]

28. Zhang, Y.; Yang, Y.; Zhou, W.; Shi, L.; Li, D. Motion-Aware Correlation Filters for Online Visual Tracking. Sensors 2018, 18, 3937.
[CrossRef]

29. Lu, Z.; Rathod, V.; Votel, R.; Huang, J. RetinaTrack: Online Single Stage Joint Detection and Tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 14656–14666.

30. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal.
Mach. Intell. 2014, 37, 583–596. [CrossRef]

31. Ahmed, J.; Ali, A.; Khan, A. Stabilized Active Camera Tracking System. J. Real-Time Image Process. 2016, 11, 315–324. [CrossRef]
32. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term correlation tracking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5388–5396.
33. Masood, H.; Rehman, S.; Khan, A.; Riaz, F.; Hassan, A.; Abbas, M. Approximate Proximal Gradient-Based Correlation Filter for

Target Tracking in Videos: A Unified Approach. Arab. J. Sci. Eng. 2019, 44, 9363–9380. [CrossRef]
34. Zhou, X.; Liu, X.; Yang, C.; Jiang, A.; Yan, B. Multi-channel features spatio-temporal context learning for visual tracking. IEEE

Access 2017, 5, 12856–12864. [CrossRef]
35. Khan, B.; Ali, A.; Jalil, A.; Mehmood, K.; Murad, M.; Awan, H. AFAM-PEC: Adaptive Failure Avoidance Tracking Mechanism

Using Prediction-Estimation Collaboration. IEEE Access 2020, 8, 149077–149092. [CrossRef]
36. Ali, A.; Jalil, A.; Ahmed, J.; Iftikhar, M.A.; Hussain, M. Correlation, Kalman filter and adaptive fast mean shift based heuristic

approach for robust visual tracking. Signal Image Video Process. 2015, 9, 1567–1585. [CrossRef]
37. Mueller, M.; Smith, N.; Ghanem, B. Context-Aware Correlation Filter Tracking. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1387–1395.
38. Qi, F.; Hao, Z.; Lu, Z. Spatio-Temporal Context Tracking Algorithm Based on Correlation Filtering. J. Phys. Conf. Ser. 2019, 1213,

1–7.
39. Zhang, Y.; Wang, L.; Qin, J. Adaptive spatio-temporal context learning for visual tracking. Imaging Sci. J. 2019, 67, 136–147.

[CrossRef]
40. Shin, J.; Kim, H.; Kim, D.; Paik, J. Fast and Robust Object Tracking Using Tracking Failure Detection in Kernelized Correlation

Filter. Appl. Sci. 2020, 10, 713. [CrossRef]
41. Zekavat, R.; Buehrer, R.M. An Introduction to Kalman Filtering Implementation for Localization and Tracking Applications. In

Handbook of Position Location: Theory, Practice, and Advances, 2nd ed.; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 143–195.
42. Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Trans. Image

Process. 2015, 24, 5630–5644. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2014.07.020
http://dx.doi.org/10.3390/electronics9111918
http://dx.doi.org/10.1109/ACCESS.2019.2908668
http://dx.doi.org/10.1016/j.infrared.2018.03.022
http://dx.doi.org/10.1007/s11045-019-00664-5
http://dx.doi.org/10.3390/math7111059
http://dx.doi.org/10.3390/s18113937
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.1007/s11554-012-0251-z
http://dx.doi.org/10.1007/s13369-019-03861-3
http://dx.doi.org/10.1109/ACCESS.2017.2720746
http://dx.doi.org/10.1109/ACCESS.2020.3015580
http://dx.doi.org/10.1007/s11760-014-0612-0
http://dx.doi.org/10.1080/13682199.2019.1567020
http://dx.doi.org/10.3390/app10020713
http://dx.doi.org/10.1109/TIP.2015.2482905


Electronics 2021, 10, 43 16 of 16

43. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

44. Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2014.2388226

	Introduction 
	Related Work 
	Our Contributions 
	Paper Outline 

	The Principle of Spatio-Temporal Context and Correlation Filter Tracking 
	STC Based Tracking 
	Confidence Map 
	Context Prior Model 
	Learning Spatial Context Model 
	Model Update 

	Correlation Filter Tracking 

	Proposed Solution 
	Context-Aware Tracking Framework 
	Kalman Filter-Based Motion Estimation Model 
	Kalman Filter Prediction 
	Kalman Filter Correction 

	Occlusion Detection 
	Adaptive Learning Rate 

	Experiments 
	Evaluation Criteria 
	Dataset 

	Performance Analysis 
	Experimental Results 
	Discussion 
	Conclusions 
	References

