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Abstract: This study deals with a methodology for increasing the efficiency of dynamic process
calculations in elastic elements of complex engineering constructions. We studied the complex
dynamic processes in a simple engineering construction, a mechanical system of an elastic body–
continuous flow of homogeneous medium. The developed methodology is based on the use of a
priori information on some of the vibrations forms, the construction of a “simplified” mathematical
model of system dynamics, and the obtaining of an analytical relationship that describe the overall
range of factors on the elastic vibrations of system. The methodology is used for cases of complex
vibrations of elastic bodies, and the obtained results can serve as a basis for choosing the main
technological and operational parameters of elastic elements of mechanisms and machines that
perform complex vibrations. The results obtained in this work are the basis for calculating the
blast effect on the elements of protective structures in order to increase their protective capacity by
improving the method of their attachment or by using additional reinforcement, buff load effects on
the elements of drilling strings and dynamic processes that occur during surface strengthening by
work hardening in order to avoid resonance phenomena, and technological processes of vibration
displacement or vibration separation of granular media.

Keywords: dynamic processes; simplest engineering construction; continuous flow; homogeneous
medium; complex vibration; priori information; mathematical model

1. Introduction

A methodology for researching complex vibrations of the structural elements of the
simplest engineering constructions has been developed. It is based on the usage of a
priori information about one of the vibration forms of an elastic body, its processing and
usage during the construction of a mathematical model of another form of vibrations,
and development or usage of existing analytical methods for constructing a solution for
the latter one. The methodology, however, simplifies the mathematical model of process
dynamics and thus simplifies the procedure of finding and researching its solution. Using
this methodology enables one to establish a number of features of the structural elements’
dynamics, in particular the conditions of external and internal resonances and their initial
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peculiarities. The main idea of the methodology is presented using the example of an
elastic body that performs bending and longitudinal vibrations, and in addition to that a
continuous flow of homogeneous medium (CFHM) of zero stiffness that moves along the
body, which greatly complicates the problem of constructing a solution for the mathematical
model of elastic body dynamics. For this reason, the following issues were predetermined:

• even movement at a constant speed along the elastic body of the CFHM affects the
natural frequencies of the component vibrations;

• the most dangerous (resonant) vibrations of the specified type of systems can be
caused both by external periodic forces and mutual influence of certain forms of
vibrations on the others (internal resonances);

• internal resonances of an elastic body that performs bending and longitudinal vibra-
tions can exist with even and odd modes of bending vibrations; with even modes
they are caused by its longitudinal vibrations and with odd modes by its longitudinal
vibrations and continuous flow of homogeneous medium motion;

• the amplitude of bending vibrations of the transition through the internal resonance
at higher frequencies of longitudinal vibrations is less than at the second frequency;

• the amplitude of the transition through the main resonance for larger values of the
amount of motion of the continuous flow of homogeneous medium is smaller than
the amplitude of the transition during the rapid transition through the resonance.

The methodology can be generalized in other cases of complex vibrations of elastic
bodies, and the obtained results can serve as the basis for choosing the main technological
and operational parameters of elastic elements of mechanisms and machines that perform
complex vibrations. The reliability of the obtained calculated dependences is confirmed by
the boundary transition from which follow the results known from scientific publications
concerning the one form of vibrations of elastic bodies.

2. Problem Statement and Research Relevance

Analysis of dynamic processes in the elements of machines and structures, which are
elastic bodies, shows that in most cases they carry out such complex oscillations through
a combination of longitudinal forces, bending, and torsion. Isolation during research
of some of them, even the largest amplitude with simultaneous neglect of the influence
of others (even small amplitude) will lead to significant inaccuracies in describing the
dynamic process of the element and the system as a whole. The value of the error increases
significantly in cases where the natural frequencies of the oscillations are close in value or
related by a rational ratio, and the elastic properties of the object under study are described
by nonlinear relations.

The analytical study of complex nonlinear dynamic processes in elastic bodies (con-
struction elements) based on mathematical models that take into account a wide range of
external and internal factors is associated with significant mathematical difficulties. This
is the integration of systems of nonlinear non-autonomous boundary value problems for
equations with partial derivatives. Therefore, there is an actual problem of development
of such an analytical methodology that takes into account a broad range of factors that
impact on the object and receive its calculation-dependent base that would be available
for engineering calculations at the design and upgrade stage. A partial solution for these
problems is illustrated with the case of an elastic element mechanism (construction), which
provides both longitudinal and bending vibrations. In addition, the elastic element is
characterized by longitudinal frequencies, or it moves along the continuous flow of an
incompressible homogeneous environment.

The study of even its monoform nonlinear oscillations is a difficult mathematical
problem, because it is impossible to use existing analytical methods of partial differential
equations to solve it.

To partially resolve the problem, an analytical and empirical method is developed.
Its main idea includes the following tasks: based on empirical information on one of the
forms of oscillations (usually of smaller amplitude), the approximate analytical relations
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of their amplitude–frequency characteristics are obtained; the obtained dependences are
taken into account in the refined mathematical model of another form of oscillations. The
latter non-autonomous type is much simpler to study than the “idealized model”. One
of the most convenient analytical methods is used for this model, or a new approach is
developed, for example, for systems with strong nonlinearity.

3. Related Works

The most effective methods of analytical study of nonlinear oscillatory processes of
systems with concentrated masses and distributed parameters are those based on the main
idea of perturbation methods [1,2]. They are effectively used to study single or multifre-
quency oscillations of elastic bodies, as well as systems with distributed parameters [3,4].
However, the operation of existing structures is usually accompanied by complex oscilla-
tions of their elements. For example, turbine rotors perform simultaneous bending and
torsional oscillations [5,6], columns for drilling oil and gas wells perform both longitudinal
bending and torsional oscillations [7,8], etc. Some experimental and theoretical studies
show that components of vibrations of structural elements, in some cases interacting with
each other, can lead to significant dynamic loads in them. These loads increase rapidly in
magnitude in the so-called resonant cases, when the frequencies of the component oscil-
lations (bending, longitudinal, torsional) or external and natural frequencies are related
by rational relations [2,9] (i.e., oscillations in bodies with material properties that are or
are nearly linearly elastic). To prevent them means to extend the service life of elastic
bodies, i.e., structures as a whole, only on the basis of mathematical models adequate to
the dynamic process and their solutions. If such phenomena under the action of external
perturbation for both quasilinear and nonlinear systems with concentrated masses have
found a relatively proper development (see, for example [1,9]), the issues of internal reso-
nances for systems with distributed parameters were considered only in some works [9,10].
To prevent such phenomena, it is necessary to know in advance about the reaction of the
object under study to a particular type of disturbance, as well as the result of the interaction
of certain types of oscillations. However, the development of analytical methods for appro-
priate mathematical models that take into account a wide range of external and internal
factors is a complex problem. The use of the same for the latter methods of numerical
simulation in many cases does not give the desired results. The problem is much more
complicated for elastic elements whose elastic properties of the material are described
by nonlinear relations [11–15] or are characterized by longitudinal velocity [16–22]. The
peculiarity of the dynamics of the last class of systems is an example of this fact. The
velocity of the relative motion of the medium along the elastic body (or the body itself)
affects the quantitative characteristics of the components of oscillations (longitudinal or
bending), and thus the second component of oscillations (torsional). On the other hand,
taking into account the constant velocity of longitudinal motion in the mathematical model
of monoform oscillations of elastic bodies leads to a qualitatively new form for which it
is not possible to apply known classical methods of integrating equations with partial
derivatives [16,17,20,21]. Taken together, it requires the development of simplified methods
for studying this class of systems and obtaining relatively simple analytical dependencies
that could predict in advance such undesirable conditions for the resonant phenomena of
the class of bodies (systems).

Thus, the paper attempts to partially solve such a little-covered problem in the litera-
ture as the development of methods for analytical research of complex nonlinear oscillations
of the simplest elements of machines and mechanisms. Its main idea is illustrated by the
example of nonlinear elastic bodies that carry both bending and longitudinal vibrations
besides the body that moves along a continuous flow in a homogenous environment. Such
systems include, in particular, columns for drilling wells along which a continuous flow
of fluid moves, elements of pipelines for transporting liquids, working bodies of screw
conveyors for moving bulk media [7,19,23], and others. They are the main focus of the
work. Regarding the external perturbation of the oscillations of an elastic body, the cases
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of continuous and discrete action are considered in the work. The latter is analytically
represented by delta functions [24–31]. The resonance condition for the discrete action
of pulsed perturbation is obtained, and on the basis of generalization of the main idea of
asymptotic methods [29–31] of nonlinear mechanics on systems with pulsed perturbation,
the laws of change of basic parameters of resonant oscillations are described.

4. Materials and Methods

The main idea of the developed methodology for studying complex nonlinear elastic
body oscillations is presented below on the example of the elastic body–CFHM system,
which moves along a body with a constant velocity V. The elastic body under the action
of external factors performs complex vibrations, known as bending and longitudinal
vibrations. Partial information about one of the forms of vibrations, in this case longitudinal,
which is known from experimental studies, is considered in experimental studies based on
the processing of information obtained by the use of sensors. Regarding these specified
data, the amplitude of these oscillations is much smaller than the bending. Despite this
fact, the following vibrations under certain conditions can lead to a significant increase
in the amplitude of another form of bending vibrations of the body and thus reduce the
service life. The task is to:

(a) develop methods for processing experimental information about longitudinal vibra-
tions and bringing them to a form convenient for consideration when building a
mathematical model of bending vibrations;

(b) construct a mathematical model of the dynamics of the elastic body–CFHM system,
which would take into account the above a priori information and a wide range of
internal and external factors of continuous and discrete action;

(c) develop methods for constructing the solution of the above mathematical model;
(d) obtain analytical relations that describe the defining parameters of bending vibrations

of an elastic body depending on external and internal factors of the system on the
basis of the above method. That would enable calculations of specific elements of
machines or systems at the design stage or during their operation.

Methods of processing experimental information about one of the forms of vibrations
and bringing it to a form convenient for building a mathematical model of another form
of vibrations. The peculiarity of the elastic body dynamics is the fact that its material
satisfies the quasilinear elastic properties, and therefore the frequency of the dynamic
process of such an elastic body depends on the amplitude. It is proposed to use a priori
information about the amplitude and period of longitudinal vibrations of an elastic body to
establish this relationship with respect to longitudinal vibrations [14]. Thus, it is believed
that it is determined by a set of successive values of amplitudes and periods of vibrations.
These characteristics of the longitudinal vibrations of a rigid body determine the following
approximate ratios:

∆b
τ

=
db
dt

,
∆τ

τ
=

dτ

dt
(1)

in which ∆b = bj+1 − bj, ∆τ = τj+1 − τj, ∆τ—length of j-scope, bj-magnitude.

Logarithms of amplitude change δb = ln
bj

bj+1
and period δτ = ln

τj
τj+1

of vibrations with
a sufficient degree of accuracy can be approximated by polynomials
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(
bj+ 1

2
, ε
)
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In the above dependences, β1

(
bj+ 1

2
, ε
)

and β2

(
bj 1

2
, ε
)

polynomials have the form of
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= ∑
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β2

(
bj+ 1

2
, ε
)
= ∑

n
∑
k

εnβ2nkb2k
j+ 1

2
(4)

It should be highlighted that in relations (3) and (4), bj+ 1
2
=

bj+bj+1
2 , ρ is a constant,

which is expressed in terms of physical and mechanical properties of the elastic body,
the method of its fixation and for the quasilinear properties of the latter is zero, a small
parameter indicating a slow change and time of amplitude and period of vibrations.

From the expressions for the logarithms of the change in the amplitude and period of
vibrations on the basis of the mean theorem we obtain∫ τj+1

τj

d
dt

(
β1

(
bj+ 1

2
, ε
))

dt = τj

(
d
dt

lnb
)
|b=b

j+ 1
2

(5)

∫ τj+1

τj

d
dt

(
β2

(
bj+ 1

2
, ε
))

dt = τj

(
d
dt

lnτ

)
|τ=j+ 1

2

, (6)

2π = ψj+1 − ψj = τj

(
dψ

dt

)
|τ=τ

j+ 1
2

(7)

where ψ is phase of the longitudinal component of vibrations.
Regarding the obtained expressions to the characteristics of the vibrating process at a

given time, we obtain

db
dt

= ∑
n

εnbÂn(b),
dψ

dt
= vbρ + ∑

n
εn B̂n(b), (8)

where Ân(b), B̂n(b) are known functions.
According to the above, the longitudinal movement of the cross section of the elastic

body with the coordinate y for the first approximation can be represented as u(y, t) =
br(εt)sin rπ

l ycosθr, θr = (vrt + φr) (l is length of the elastic body and the parameters r, v
are determined by the method of fixing the body, its physical and mechanical properties
and cross-sectional shape).

Mathematical model of elastic body dynamics. As it follows from the formulation of
the problem to be solved in the work, an arbitrary conditionally-isolated element of an
elastic body, as well as SPOS, are in complex motion. To describe the kinematic parameters
of CFHM, portable motion is considered to be the motion of an elastic body. The movement
of the continuous flow of homogeneous medium is relative to the body and will be nothing
more than a relative motion. As for the elastic body, which performs complex vibrations,
bending and longitudinal ones, the first of them will be considered portable, then the
longitudinal deformation of the thallus relative to the transversely deformed elastic body
determines the relative motion. Assuming that in the undeformed position of the body
its neutral axis occupies a position that coincides with the vertical axis OY, provided
that the bending vibrations of the body occur in one plane (XOY plane), the portable
transverse displacement of the elastic body is uniquely determined by the movement
perpendicular to OY. Thus, the transverse vibrations are described by the function—the
transverse movement of the neutral axis of the body with the coordinate at any time t;
the relative displacement of the elastic body (longitudinal vibrations) is unambiguously
described by the displacement of the specified cross section of the body along the deformed
elastic axis. The specified value is determined, as mentioned above, by the function u(y, t).

A mathematical model of the dynamics of the elastic body system—continuous flow
of CFHM can be obtained based on the “dynamic equilibrium” of the conditionally selected
element with the coordinate of its middle y and length dy.
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In the case when the elastic body continuous flow of homogeneous medium performs
one-form vibrations (bending) at hinged ends, its mathematical model has the following
form [11]:

(mt + ms)
∂2w
∂t2 + 2ms

∂2w
∂y∂t

V + msV2 ∂2w
∂y2 + EI

∂4w
∂y4 = ε f1

(
w,

∂w
∂t

, . . . ,
∂3w
∂y3 , γ

)
(9)

w(y, t)|y=j = 0,
∂2w
∂y2

|y=j
= 0, j = 0, l (10)

in which l is the distance between the attachment points of the elastic body, mt, ms is
accordingly the mass of the unit length of the elastic body and CFHM, EI is its bending
stiffness (E–E-modulus, moment of inertia of the body cross-section), f1

(
w, ∂w

∂t , . . . , ∂3w
∂y3 , γ

)
is a function that describes the resistance forces, the nonlinear component of the reducing
force, the external 2π-periodic γ perturbation with frequency µ (γ = µt) and other forces
whose maximum value is significantly less than the maximum value of the last term of the
left side, as indicated by the small parameter ε.

As for the considered much more complex case, the mathematical model should
additionally take into account the inertial forces of relative motion and the Coriolis force
of an element of an elastic body and CFHM. In accordance with the above-accepted

components of the movements of the system under consideration, the relative (
→
a

t
r) and the

Coriolis (
→
a

t
cor) acceleration of a point that coincides with the middle of an element of an

elastic body (a point with a coordinate y) is determined by the dependences

→
a

t
r =

→
i

∂2u
∂t2 sinα +

→
j

∂2u
∂t2 cosα, (11)

at
cor = 2

(
∂2w
∂y∂t

)→
k ×

(→
i

∂u
∂t

sinα0 +
→
j

∂u
∂t

cosα0

)
= 2

∂2w
∂y∂t

{
−∂u

∂t
cosα0

→
i +

∂u
∂t

sinα0
→
j
}

(12)

where
→
i ,
→
j ,
→
k unit vectors are directed along the axes OX, OY, and OZ (the OZ axis is

directed perpendicular to the XOY plane); and α0 is the angle that is formed by the tangent
to the curved axis of the elastic body with the OY axis at the point with the coordinate y. For
small vibrations of the system (such vibrations are considered in this paper), the condition
for determining the specified angle is the correlation sinα0 = α0 = ∂w

∂y , cosα = 1, and

therefore in accordance with the specified ∂2w
∂y∂t is nothing more than the angular velocity

of the transpositional motion of elastic body. As for the acceleration of CFHM, for its
movement we have the following: the relative acceleration is equal to

→
a

s
e =

V2

ρ

→
p , where

→
p is the unit vector of the internal normal to the curved axis of an elastic body, and that

is why
→
p = −

→
i cosα0 +

→
j sinα0, ρ-radius of curvature of the neutral axis of the body at a

point with an ordinate y. Projections of the specified vector on the axis of the fixed system
XOYZ are determined in accordance with the correlation

→
a

s
e =

∂2w
∂t2

→
i +

∂2u
∂t2 sinα0

→
i +

∂2u
∂t2 cosα0

→
j (13)

Similarly, the Coriolis acceleration vector continuous flow of homogeneous medium
is determined by

as
cor = 2

(
∂2w
∂y∂t

+
∂2u
∂y∂t

)→
k ×V

(→
i sinα0 +

→
j cosα0

)
= 2V

(
∂2w
∂y∂t

+
∂2u
∂y∂t

)(
−
→
i cosα0 +

→
j sinα0

)
(14)

in which ∂2u
∂y∂t

→
k is the vector of angular velocity of an elastic body in relative motion.
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Taken together, the above allows us to write down the differential equation of bending
vibrations of an elastic body, taking into account longitudinal vibrations and motion along
CFHM in the form of

(mt + ms)
∂2w
∂t2 + EI ∂4w

∂y4 + ms

{
2 ∂2w

∂y∂t V + V2 ∂2w
∂y2 + 2V

(
∂2w
∂y∂t +

∂2u
∂y∂t

)
+ ∂2u

∂t2
∂w
∂y )
}

+mt

{
∂2u
∂t2

∂w
∂y − 2 ∂2w

∂y∂t
∂u
∂t

}
= f1

(
w, ∂w

∂t , . . . , ∂3w
∂y3 , γ

)
.

(15)

Note 1:
(a) Equation (15) takes into account that for the case of small vibrations, it is true that

sinα0 = α0 = ∂w
∂y , cosα = 1, and the deplanation of flat sections is neglected;

(b) longitudinal vibrations do not change the curvature of the neutral axis of the
elastic body;

(c) the differential relation of the “dynamic equilibrium” of the selected element in the
projection on the OY axis can, together with Equation (15), serve as a basis for determining
the dynamic response of anchorages.

Methodology for studying nonlinear bending vibrations of an elastic body, non-
resonant case. As noted above, the main idea of the methodology is based on the use
of a priori information for longitudinal vibrations, so the function u(t, y) and its par-
tial derivatives are determined in accordance with the relation obtained on its basis
u(y, t) = br(εt)sin rπ

l ycosθr). Restrictions on the CFHM and magnitude of the amplitude
of longitudinal vibrations allow us to represent differential Equation (15) in the form

(mt + ms)
∂2w
∂t2 + EI

∂4w
∂y4 = ε f

(
w,

∂w
∂t

, . . . ,
∂3w
∂y3 , γ

)
+ g
(

∂w
∂y

,
∂2w
∂y2 ,

∂2w
∂y∂t

,
∂u
∂t

)
, (16)

where

ε f1

(
w,

∂w
∂t

, . . . ,
∂3w
∂y3 , γ

)
= ε f

(
w,

∂w
∂t

, . . . ,
∂3w
∂y3 , γ

)
−ms

(
2

∂2w
∂y∂t

V + V2 ∂2w
∂y2

)
, (17)

g
(

∂w
∂y , ∂2w

∂y2 , ∂2w
∂y∂t , ∂u

∂t , ∂2u
∂t2

)
= −ms

{
2V
(

∂2w
∂y∂t +

∂2w
∂y∂t

)
+ ∂2u

∂t2
∂w
∂y )
}
−mt

{
∂2u
∂t2

∂w
∂y − 2 ∂2w

∂y∂t
∂u
∂t

}
expresses the effect on the bending vibrations of the longitudinal and movements of
the CFHM.

It is obvious that the maximum value of the right-hand side of the obtained Equation (16)
is a small value compared to the maximum value of the term EI ∂4w

∂y4 . This is the basis for
applying general ideas for constructing solutions to quasilinear equations with a small
right-hand side [15–18] for the boundary value problem (16) and (10). Its peculiarity is
that its right part is 2π-periodic according to two arguments, θ (takes into account the
influence of information known on the basis of experimental information, the influence of
longitudinal vibrations on bending ones) and γ (takes into account the influence of external
perturbation). The solution of Equation (17), more precisely its first approximation in the
s-form of “dynamic equilibrium”, is presented in the form

w(t, y) = as(t)(sin(χsy + ψs(t)) + sin(χsy− ψs(t))) + εU1(as, y, ψs, γ, θr). (18)

in which χs =
sπ
l , and U(as, x, ψs, γ, θr) is an unknown 2π-periodic function by arguments

ψs, γ, θ, which takes into account the influence of external and internal factors on changing
the vibrations. As for the law of changes in its parameters as(t) and ψs(t), their value sig-
nificantly depends on the correlation between the frequency of natural bending vibrations

ωs = ( sπ
l )

2
√

EI
mt+ms

on the one hand and the frequency of the external periodic perturba-
tion µ or longitudinal vibrations v on the other hand. In the case when the correlations are
justified, qωs 6= pµтa and qωs 6= pvr (p, q are coprime numbers and this case will be called
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non-resonant) for bending vibrations of the function as(t) and ψs(t) in the asymptotic
representation (18) are related by ordinary differential equations

das

dt
= εA1(as), · · ·

dψs

dt
= ωs − (χs)

2 ms

mt + ms

V2

ω1
+ εB1(as) (19)

The right-hand sides of relations (19), more precisely unknown functions A1(as) and
B1(as), must be defined so that the asymptotic representation (18), taking into account
(19), satisfies the original Equation (17) with the considered accuracy. For an unambiguous
definition of the functions A1(as) and B1(as) on U(as, y, ψs, γ, θ), we impose an additional
condition—it does not contain the first mods in the argument scenario. This is equivalent
to the following relation:

∫ 2π

0
U(as, y, ψs, γ, θr)

{
sinψs
cosψs

}
dψs = 0 (20)

In the physical interpretation, this condition is equivalent to the choice of the s mode
amplitude for the bending vibrations amplitude. To find the indeterminate functions
A1(as) and B1(as), which describe the laws of variation of the basic parameters of bending
vibrations of an elastic body by differentiating the asymptotic representation of the solution
taking into account the relations (19), we obtain

∂w
∂t = εA1(as)(cos(χsy + ψs)− cos(χsy + ψs))− as(ω + εB1(as))(sin(χsy + ψs) + sin(χsy + ψs))

+ε
(

ωs
∂U1(as ,x,ψs ,γ,θr)

∂ψs
+ ∂U1(as ,x,ψs ,γ,θr)

∂θr
vr +

∂U1(as ,x,ψs ,γ,θr)
∂γ µ

)
,

(21)

∂2U
∂t2 = −asωs

2(sin(χsy + ψs) + sin(χsy + ψs))− 2ε(A1(as) + asB1(as) ωs)(cos(χsy + ψs)− cos(χsy + ψs))

+ε
(

∂2U
∂ψs2 ω2

1 +
∂2U
∂θr2 vr

2 + ∂2U
∂γ2 µ2 + 2 ∂2U

∂ψs∂θr
ωsvr + 2 ∂2U

∂ψs∂γ ωsµ + 2 ∂2U
∂γ∂θr

µvr

)
,

(22)

∂2u
∂y2 = −asχ2

s (cos(χsy + ψs)− cos(χsy + ψs)) + ε ∂2U1
∂y2

∂u
∂y = −asχs(sin(χsy + ψs)− sin(χsy− ψs)) + ε ∂U1

∂y
∂3u
∂y3 = asχ3

s (sin(χsy + ψs) + sin(χsy + ψs)) + ε ∂3U1
∂y3 ,

∂4u
∂y4 = aχ4

s (cos(χsy + ψs)− cos(χsy + ψs)) + ε ∂4U1
∂y4 .

(23)

Thus, we obtain the differential equation for the connection between the indeterminate
functions U1(a1, y, ψ1, γ, θ) and A1(a1) and B1(a1) for the first mode of vibrations (s = 1).

(ω1)
2 ∂2U1

∂ψ1
2 + v2

r
∂2U1
∂θr2 + µ2 ∂2U1

∂γ2 + 2ω1µ ∂2U1
∂ψ∂θr

+ 2ω1vr
∂2U1
∂ψ∂θr

+ 2µvr
∂2U1
∂γ∂θr

+ EI
mt+ms

∂4U1
∂x4

= 1
ms+mt

F1(a1, y, ψ1, γ, θr) + G1(a1, y, ψ1, θr) + 4A(a1)ω1sinχ1ysinψ1 + 4B(a1)a1ω1sinχ1ycosψ1
(24)

where F1(as, y, ψs, γ) corresponds to the value f
(

w, ∂w
∂t , . . . , ∂3w

∂y3 , γ
)
−ms

(
2 ∂2w

∂y∂t V + V2 ∂2w
∂y2

)
if

the function w(y, t) in it and its derivatives is determined according to the main part in
representation (5). As for the function G1(as, y, ψs, θr), it, in accordance with the agreed
notation, takes approximate values for the considered value as follows. It allows one to
obtain the relations to determine the required functions

G1(a1, y, ψ1, θr)
1

ms+mt
{2msV

(
−brvr

rπ
l cos rπ

l ysinθr
)
2a1mtbrχ1vr

2sin rπ
l ycosθrcosχsycosψs

−2a1
[
mtbrvrsin rπ

l ysinθr
]
cosχ1ysinψ1

}
da1
dt = − ε

6π2(mt+ms)lω1

∫ l
0

∫ 2π
0

∫ 2π
0 F1(a1, y, ψ1, γ)sinχ1ysinψ1dydψ1dγ

+ ε
6π2(mt+ms)lω1

∫ l
0

∫ 2π
0

∫ 2π
0 G1(a1, y, ψ1, θr)sinχ1ysinψ1dydψ1dθr,

dψ1
dt = ω1 − ε

6π2(mt+ms)la1ω1

∫ l
0

∫ 2π
0

∫ 2π
0 F1(a1, y, ψ1, γ)sinχ1ycosψ1dydψ1dγ+

+ ε
6π2(mt+ms)la1ω1

∫ l
0

∫ 2π
0

∫ 2π
0 G1(a1, y, ψ1, θr)sinχ1ycosψ1dydψ1dθr.

(25)



Electronics 2021, 10, 40 9 of 21

From the form of the function G1(a1, y, ψ1, θr), it can be seen that

∫ l

0

∫ 2π

0

∫ 2π

0

{
cosψs
sinψs

}
G1(as, y, ψs, θr)sinχsydydψsdθr ≡ 0 (26)

The obtained relation allows us to draw the following conclusion: for the first non-
resonance approximation, the longitudinal vibrations of the elastic body do not affect the
law of change of the single-frequency bending vibrations amplitude. As for the CFHM, it
follows from the specified properties of the system that describe the shape of the defected
axis of the elastic body, the frequency and amplitude of vibrations. Taken into consideration
all the above, the system of differential equations for the first non-resonance approximation
(25) can be transformed into

da1
dt = − ε

8π2(mt+ms)lω1s

∫ 2π
0

∫ 2π
0

∫ l
0 F1(a1, y, ψ1, γ)sinχ1ysinψ1dydψ1 = εA1(a1)

dψ1
dt = ω1 − ms

(mt+ms)ω1
V2(χ1)

2 − ε
8π2(mt+ms)laω1

∫ 2π
0

∫ 2π
0

∫ l
0 F1(a1, y, ψ1, γ)sinχ1ycosψ1dydψ1dγ

= ω1 − ms
(mt+ms)ωs

V2(χ1)
2 + εB1(a1).

(27)

For the case when the material of the elastic body satisfies the nonlinear technical law
of elasticity [6], and the resistance force is proportional to the speed in the degree s1, the
right part of Equation (19) takes the form for the case of the main mode of vibrations

A1(a) = υas1 , εB1(a) = −3k2ε

32
π2

l2
a2

ω1
. (28)

According to the relations (19), taking into account (28) in Figure 1, the laws of change
of the natural bending vibrations frequency from the amplitude and speed of the CFHM
relative motion (Figure 1a) and the CFHM bulk mass and the length of the elastic element
(Figure 1b) at the constant speed of the CFHM relative motion at such parameters of the
system l = 8 m, mt = 30 kg/m, ms = 20 kg/m, E = 2× 1012 H/m2, I = 6× 10−6 m4 are
presented for different values of the CFHM bulk mass.
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the length of the elastic body and CFHM bulk mass at a constant relative speed of the latter. 

Figure 1. (a) Relation of the frequency of nonlinear bending vibrations of the elastic body on the amplitude a and continuous
flow V of homogeneous medium (CFHM) relative speed V and (b) the length of the elastic body and CFHM bulk mass at a
constant relative speed of the latter.

Thus, the influence of nonlinear elastic characteristics of the elastic body material
and the motion of a continuous flow of medium along it is manifested as a function of its
natural frequency of vibrations on the amplitude and speed of the latter. In particular, the
natural frequency of nonlinear vibrations of an elastic body:

– for larger values of the relative flow rate of the continuous medium is less;
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– decreases with increase of elastic body length;
– is smaller for a continuous flow of medium of smaller specific gravity.

The above facts play a significant role in the study of resonance vibrations of the system
of elastic body–CFHM continuous flow. These vibrations are the subject of further research.

Methods for studying nonlinear bending vibrations of an elastic body, resonance case.
Resonance vibrations almost always play a negative role for mechanical systems, because
during resonance they significantly increase the amplitude of vibrations, which means that
dynamical loads increase. This reduces the service life of the systems. The peculiarity of
the resonance vibrations of the considered elastic body is the fact that they can be caused
not only by external forces but also by longitudinal vibrations; in addition, they are affected
by the CFHM motion.

In order to find their influence on the resonance values of the amplitude, as in the
non-resonance case, we will look for the solution of the problem in the asymptotic repre-
sentation (18) with the difference that in the resonance case, the pipe vibration’s amplitude
significantly depends on the phase difference of natural and forced vibrations. First of all,
consider the internal resonance. As noted above, it occurs due to longitudinal vibrations,
the main parameters of which are known from the processing of experimental studies, and
they can be interpreted as external (in relation to bending) action. The phenomenon of res-
onance in nonlinear systems depends significantly on the phase difference of their natural
and coercive forces. For this purpose, we introduce the specified parameter according to
the relation φ = ψ1 − θr, and therefore in the asymptotic representation (18), the amplitude
parameter is determined by a more complex relation, namely

da
dt

= εA1(a, φ),
dφ

dt
= ω1 − (χ1)

2 − ms

mt + ms

V2

ω1
− q

p
vr + εB1(a, φ). (29)

Here and below, the index in the amplitude of the main mode of vibrations is omitted
for simplicity. The indeterminate functions A1(a, φ), B1(a, φ) are located in such a way that
the asymptotic representation (18), taking into account (28), satisfies the original equation
with the considered degree of accuracy. To do this, by differentiating (18), taking into
account the above, we have

∂u
∂t = ε A1(a, φ)(cos(χ1y + φ + θr)− cos(χ1y− (φ + θr)))

−a(ω + µ B1(a, φ))(sin(χ1y + φ + θr) + sin(χ1y− (φ + θr))) +
q
p vrε ∂U1

∂θr
+ ω1ε ∂U1

∂ψ1
∂2u
∂t2 = ε

∂A(a,φ)
∂φ

(
ω1 − q

p vr

)
(cos(χ1y + φ + θr)− cos(χ1y− (φ + θr)))

−εωA1(a, φ)(sin(χ1y + φ + θr) + sin(χ1y− (φ + θ)))
−a
(
ω2 + 2εωB1(a, χ1y + φ + θr)

)
(cos(χ1y + φ + θr)− cos(χ1y− (φ + θr)))

−εa ∂B1(a,φ)
∂φ

(
ω− q

p vr

)
(sin(χ1y + φ + θr) + sin((χ1y− (φ + θr)))

+ε
(

∂2U1
∂ψ1

2 ω1
2 + ∂2U1

∂θ2 ( q
p vr)

2
+ ∂2U1

∂γ2 µ2

+2 ∂2U1
∂θ∂ψ1

q
p vr ω1 + 2 ∂2U1

∂θ∂γ
q
p vrµ + 2 ∂2U1

∂γ∂ψ1
µω1

)
(30)

The obtained relations allow us to write a differential equation, which connects the
required functions in the form

ω1
2 ∂2U1

∂ψ1
2 + ( q

p vr)
2 ∂2U1

∂θr2 + µ2 ∂2U1
∂γ2 + 2 q

p ω1vr
∂2U1

∂ψ1∂θr
+ 2ω1µ ∂2U1

∂ψ∂γ + 2 q
p µvr

∂2U1
∂γ∂θr

+ EI
mt+ms

∂4U1
∂y4

= F(y, a, ψ, γ) + a ms
mt+ms

V2(π
l
)2sin χπ

l xcosψ1 + G(y, a, ψ, θr)+

sin πy
l ×

(
cosψ

(
− ∂A(a,φ)

∂φ

(
ω1 − q

p vr

)
+ 2aω1B(a, φ)

)
+ sinψ

(
a ∂B(a,φ)

∂φ

(
ω− q

p vr

)
+ 2A(a, φ)ω

))
.

(31)

An indeterminate function will satisfy homogeneous boundary conditions if it can be
represented as a series

U1(y, a, ψ, γ, θ,) = ∑
m

sin
mπ

l
yU1m(a, θ, ψ1, γ). (32)
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In this case, the functions A1(a, φ), B1(a, φ) and their derivatives are connected by
a relation
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aV2 ms
mt+ms

(
π2

2l

)
cosψ1 +

1
(mt+ms)lωs

∫ l
0 F(a, y, ψ1, θ)sin π

l ydy + 1
l

∫ l
0 G(a, y, ψ1, θ)sin π

l ydy

+
(

cosψ
(
− ∂A(a,φ)

∂φ

(
ω− q

p vr

)
+ 2aωB(a, φ)

)
+sinψ

(
a ∂B(a,φ)

∂φ

(
ω− q

p vr

)
+ 2A(a, φ)ω
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଴
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Relation (33) is the basis for determining the right-hand members of differential
Equation (29), which describe the change in the basic parameters of bending vibrations of
an elastic body in the resonant zone. Indeed, if U1(a, x, ψ1, γ, θr) is 2π periodically with an
argument ψ1, and does not contain in the splitting of its first modes of the splitting, then
the coefficients of its splitting for the specified mode of the function U1m(a, θ, ψ1, γ) have
the same properties. Thus, we obtain a system of equations from relation (33).

a ∂B(a,φ)
∂φ

(
ω− q

p vr

)
+ 2A(a, φ)ω = f 1(a)− 1

π

∫ l
0

∫ 2π
0 G(a, y, φ + θr, θr)sin π

l ysin(φ + θr)dθrdy,
∂A(a,φ)

∂φ

(
ω− q

p vr

)
− 2aωB(a, φ) = f̃1(a) + aV2 ms

mt+ms

(
π2

2l

)
− 1

πl

∫ l
0

∫ 2π
0 G(a, y, φ + θr, θr)sin π

l ycos(φ + θr)dθrdy,

(34)

where

f 1(a) = − 1
4π2(mt+ms)l

∫ l
0

∫ 2π
0

∫ 2π
0 F(a, y, ψ1, θr)sin π

l ysinψdψ1dθrdy,

f̃1(a) = − 1
4π2(mt+ms)l

∫ l
0

∫ 2π
0

∫ 2π
0 F(a, y, ψ1, θr)sin π

l ycosdψ1dθrdy.

The system of differential Equation (34) allows us to represent equation of the first
approximation of resonance vibrations caused by the CFHM motion and longitudinal
vibrations in the form

da
dt = ε f 1(a) + 1

πω1
1
π

∫ l
0

∫ 2π
0 G(a, y, φ + θr, θr)sin π

l ysin(φ + θr)dθrdy
dφ
dt = ω1 − q

p vr − aV2 ms
mt+ms

(
π2

2l

)
+ ε f̃1(a) + 1

πaω1
1
π

∫ l
0

∫ 2π
0 G(a, y, φ + θr, θr)sin π

l ycos(φ + θr)dθrdy

here

f 1(a) = − 1
4π2(mt+ms)l

l∫
0

2π∫
0

2π∫
0

F(a, y, ψ1, θr)sin π
l ysinψdψ1dθrdy

f̃1(a) = − 1
4π2(mt+ms)l

l∫
0

2π∫
0

2π∫
0

F(a, y, ψ1, θr)sin π
l ycosdψ1dθrdy.

Differential equations describe the change in the amplitude of transverse vibrations
of an elastic body during the transition through resonance at the main frequency of lon-
gitudinal vibrations at different speeds of motion of CFHM, provided that the nonlinear
elastic properties of the body material satisfy the nonlinear technical law of elasticity, and
the resistance force is proportional to the speed of portable motion in the power of s1:

da
dt = k1(a)s1 − b

4(mt+ms)
msVlv κπ2

l sinφ

dφ
dt =

(
π
l
)2
√

EI
mt+ms

−v− 2msV2

mt+ms

(
π
l
)2 − 3k2

32 a2 + b
4(mt+ms)a msVlv κπ2

l cosφ

where a is the amplitude of the main internal resonant vibrations.
As for the subresonances that occur when the condition is met κ = 2s, they are

described by dependencies.
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da
dt = 1

4π(mt+ms)lωs

{
ε

2π∫
0

2π∫
0

l∫
0

F1(a, y, ψs, γ)sinχsysinψsdyγdψs+

+ 8lamsbχsv2

mt+ms

pq
4p2−q2 cos pπ

q

[
cos pπ

q sin2 pπ
q − 2cos pπ

q sin2 pπ
q cos2φ+

+ 1
2 sin pπ

q

(
1− 4cos2 pπ

q

)
sin2φ

]

−a 4pql
4p2−q2 mtbvcos pπ

q

[
cos pπ

q

(
2sin2φcos2 pπ

q − 2sin2φ + 4cos2φcos pπ
q sin pπ

q − sin 2pπ
q

)
−

−sin pπ
q
(
2cos2φ− 1

) ]}

dφ
dt = 2ωs − p

q v + 1
4π(mt+ms)laωs

{
ε
∫ l

0

∫ 2π
0

∫ 2π
0 F1

(
aris

s , y, ψs, γ
)
sinχsycosψsdydψsdγ − 2msV2(χs)

2

dφ
dt −

2lamsbχsv2

mt+ms

4pq
4p2−q2 cos mπ

n

[
sin pπ

q

(
1− 2cos2 pπ

q

)
− 2cos pπ

q sin2 pπ
q sin2φ− 2sin pπ

q

(
1− 2cos2 pπ

q

)
cos2φ

]
−a 4pql

4p2−q2 mtbvcos pπ
q

[
cos pπ

q sin2 pπ
q
(
1− 2cos2φ

) 1
2 sin pπ

q

(
1− 4cos2 pπ

q

)
sin2φ

]}
where φ = 2ψ− p

q θr.
In Figure 2 is presented, in accordance with relations (34), the change in the amplitude

of bending vibrations caused by longitudinal vibrations for the case when the material of
elastic body satisfies the nonlinear technical law of elasticity, and the resistance force is
proportional to the velocity for s1 = 3 for different values of the relative amount of motion.
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Figure 2. Laws of changes in the amplitude of bending vibrations during the transition through internal resonance at
different values of the relative amount of motion CFHM (k = msV): (a) - - - - k = 200 kg

s m, —- —- —- k = 150 kg
s m,

——– k = 50 kg
s m, mt = 30; (b) - - - - k = 400 kg

s m, —- —- —- k = 300 kg
s m, ——– k = 100 kg

s m, mt = 30; (c) - - -

- k = 400 kg
s m, —- —- —- k = 300 kg

s m, ——– k = 100 kg
s m, mt = 20; (d) - - - - k = 600 kg

s m, —- —- —- k = 450 kg
s m, ——–

k = 10 kg
s m, mt = 20.
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In Figure 3a, a change in the amplitude of bending vibrations caused by longitudinal
vibrations at different values of amplitudes can be observed, while in Figure 3b is shown
the motion of CFHM at different values of the speed of its movement.
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Figure 3. Change in the amplitude of bending vibrations during the transition through internal resonance at different values
of the amplitude of longitudinal vibrations (a) (- - - b = 0.0015 m, – – – b = 0.001 m, —— b = 0.0125 m); and different speeds
of motion CFHM (b) (- - -V = 1 m/s, – – – V = 1.25 m/s, —— V = 5 m/s).

By analyzing the analytical dependences obtained above, it is established that internal
resonances for an elastic body that performs bending and longitudinal vibrations can exist
on even and odd modes of bending vibrations, and on even modes they are caused by
longitudinal vibrations, and on odd modes by the motion CFHM. As for the quantitative
characteristics of the internal resonance, the given graphical dependences show that the
amplitude of the transition through the internal resonance is less:

– at higher frequencies of longitudinal vibrations than at the main one;
– for large values of the relative amount of motion CFHM;
– with a faster transition through resonance.

The above represented results have a practical component; in order to reduce dynamic
loads in an elastic body that performs longitudinal and bending vibrations and along which
a continuous stream motion of CFHM, it is necessary to move the latter at the highest
technologically possible speed. At the same time, a special case mentioned above, ms = 0,
is the result concerning resonant bending vibrations caused only by longitudinal vibrations.
They, as follows from relations (34), exist only on paired modes of bending vibrations.

The main idea of studying internal resonant phenomena in the elastic body–CFHM
system described above has been transferred to the study of external resonant phenomena.
Below, we give only the basic relations concerning the continuous action of an external
periodic perturbation, and the case of a discrete periodic (pulsed) action on the system
under consideration is considered in more detail, because it requires some additional
mathematical calculations.

Therefore, the condition for the main external resonance under the continuous action
of an external perturbation is ω1 ≈ µ The relations that describe the resonant process at the
main frequency of natural vibrations take the form
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a
∂B(a,φ)

∂φ (ω1 − µ) + 2A
(
a, φ
)
ω1 = 1

2(mt+ms)lπ

∫ l
0

∫ 2φ
0 F

(
a, y, φ + θ, θ

)
Fsin π

l ysin
(
φ + θ

)
dydθ

+ 1
2(mt+ms)lπ

∫ l
0

∫ 2φ
0 F

(
a, y, φ + θ, θ

)
Fsin π

l ycos
(
φ + θ

)
dydθ,

(35)

where φ is the relations that describe the resonant process at the main frequency of
natural vibrations that take the form of the phase difference between natural and external
forced vibrations, i.e., φ = ψ− θ, so functions A

(
a, φ
)

and B
(
a, φ
)

describe the laws of
change in the resonant parameters of the system under study using relations similar to (29),
with the only difference that the resonant process is considered at the frequency of external
perturbation.

In the specific case considered for non-resonant vibrations under the condition of
external periodic perturbation, the system of Equation (35) is transformed to the form

a
∂B(a,φ)

∂φ (ω1 − µ) + 2A
(
a, φ
)
ω1 = υas1 + H

2(mt+ms)ωlπ cosφ,
∂A(a,φ)

∂φ (ω− µ)− 2aω B
(
a, φ
)
= aV2 ms

mt+ms

(
π2

l

)
− 3ε

32
π2k2

l2
a2

ω1
− H

2(mt+ms)aωlπ sinφ,
(36)

where H is the value of the external sinusoidal periodic perturbation.
The differential dependences obtained above also allow us to obtain relations for

determining the amplitude of stationary resonant vibrations

β
m+m1

(ω)s1−1as1 − 2εH
π(ω+ν(t)) cosφ = 0,

ω− µ(t)−
(

π
l
)2 ms

mt+ms
V2

8ω = ε
(

2H
π(ω+µ(t))a sinφ + 3k2

32
π2

l2
a2

ω

) (37)

By simple transformations from dependencies (37), we obtain a resonant curve that de-
scribes the dependence of the amplitude of stationary resonant vibrations on the unbalance
of the frequencies of natural and forced vibrations and the parameters of the system(

2εH
π(ω + µ(t))

)2

=

(
β

mt + ms
(ω)s1−1as1

)2
+ a2

(
ω− µ(t)−

(π

l

)2 ms

mt + ms

V2

8ω
− 3k2ε

32
π2

l2
a2

ω

)2

(38)

Based on ratio (38), Figure 4 presents the dependencies of the amplitude of resonant
stationary vibrations of an elastic body on the unbalance α = ω− µ of the frequencies of
natural and forced vibrations at different speeds of motion of CFHM.
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Figure 4. Dependences of the resonant amplitude of vibrations of an elastic body on the frequency
unbalance at different values of the nonlinear component of the reducing force: k2 < 0, k2 > 0.

It follows from the above that when the sign of the nonlinear component of the
reducing force changes, the slope of the resonant curves changes. Comparing the graphical
dependencies for different models of the resistance force, it can be argued that an increase
in the degree of its nonlinearity leads to a decrease in the resonant value of the vibration
amplitude and a narrowing of the resonant zone.

As for the unknown function U1(a1, y, ψ1, γ, θ), and for non-resonant or resonant
cases, it partially affects only the change in the shape of bending vibrations and can be
found without much difficulty by decomposing into multiple Fourier series, followed by
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equating the coefficients in the right and left parts of the relations that follow from (24) and
(25), for the non-resonant case, and (31) and (36) for the resonant one. The case of pulsed
(discrete) action of an external disturbance is much more important and at the same time
much more difficult to develop a research methodology. Below, we consider the case when
the specified perturbation acts only at a fixed point of the elastic body and is repeated
at regular intervals. As for the limitations concerning the specified external perturbation
of the vibrations, the elastic body–continuous flow of CFHM, as for continuous periodic
perturbation, the maximum value of the pulse perturbation is small compared to the
maximum value of the reduced transverse force. Thus, the differential equation of the
bending component of the elastic oscillations takes the following form:

(mt + ms)
∂2w
∂t2 + EI ∂4w

∂y4

= ε

{
f1

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
+ δ(y− y0) ∑

j=1
f̂ j

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
δ(t− jT)

}
+ g

(
∂w
∂y , ∂2w

∂y2 , ∂2w
∂y∂t , ∂u

∂t

)
,

(39)

in which y0 is the coordinate of the elastic body in which the periodic impulse force
acts with the period T, and δ(. . . .) is a function of the corresponding argument. Regarding
the following forms, f1

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
and f̂ j

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
, we can consider them to

be analytical. The form g
(

∂w
∂y , ∂2w

∂y2 , ∂2w
∂y∂t , ∂u

∂t

)
takes into account the effect of longitudinal

oscillations and CFHM on bending.
From the properties of delta functions [19–21], it follows that the maximum values of

the periodic action of pulsed perturbation at time points

jT are equal f̂ j

(
w(t, y), ∂w(t,y)

∂t , . . . , ∂3w(t,y)
∂y3

)
|

t = jT,
y = y0

. To generalize the above method of

studying the effect of longitudinal vibrations and dynamics of CFHM on bending, primar-
ily on the basis of the properties of completeness and orthonormal system of functions that
describe the forms of natural bending vibrations of an elastic body, delta function from a lin-
ear variable δ(y− y0) will be as follows: δ(y− y0) = ∑

j=1
cmsin mπ

l y, in which the modulus

cm is as follows cm = 2
l

∫ l
0 δ(y− y0)sin mπ

l ydy = 2
l sin mπ

l y0. As for the time component of
the pulse perturbation, the most interesting case of the considered drilling is the case when
the perturbation has a period close to the period of its own bending oscillations. Hence, in
the form presented below we will consider T ≈ 2π

ω1
pulsed perturbations causing resonant

bending vibrations. In this case, the temporal component of its action can be precisely

represented [20] in the following form: δ(t− jT) = cos(ω1t)δ
(

t− j 2π
ω1

)
= cosθδ

(
θ−θj
ω1

)
,

θj = 2π j. For simplicity, it is assumed that the first impulse action coincides with the initial
moment of motion. Thus, the conducted partial sampling allows to present the initial
mathematical model in a simpler form:

(mt + ms)
∂2w
∂t2 + EI ∂4w

∂y4 = g
(

∂w
∂y , ∂2w

∂y2 , ∂2w
∂y∂t , ∂u

∂t

)
+ε

{
f1

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
+ 2

l ∑
m

sin mπ
l y0sin mπ

l y ∑
j=1

f̂ j

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
cosθδ

(
θ−θj
ω1

)}
.

(40)

Note that the procedures performed with delta functions do not violate the accuracy
of the obtained mathematical model in the form of relation (40) compared to the original
(differential Equation (39)); in addition, to operate with the right part of the latter equation
is much easier than the original. The use of the developed methodology for the study of
resonant oscillations due to external periodic action for the boundary value problem (40),
(10) allows the relationship of the main resonance to be represented as follows:
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a
∂B(a,φ)

∂φ

(
ω1 − 2π

T
)
+ 2A

(
a, φ
)
ω1 = f 1(a)+

1
2(mt+ms)lπ ∑

m
sin mπ

l y0 ∑
j

l∫
0

2φ∫
0

sin mπ
l yFj

(
a, y, φ + θ

)
cosθδ

(
θ−θj
ω1

)
sin π

l ysin
(
φ + θ

)
dydθ

∂A(a,φ)
∂φ

(
ω1 − 2π

T
)
− 2aω1B

(
a, φ
)

= f̃1(a) + aV2 ms
mt+ms

(
π2

l

)
+ 1

2(mt+ms)lπ ∑
m

sin mπ
l y0 ∑

j

∫ l
0

∫ 2φ
0 sin mπ

l yFj
(
a, y, φ

+θ)cosθδ
(

θ−θj
ω1

)
sin π

l ycos
(
φ + θ

)
dydθ

(41)

The system of differential equations is the basis for the study in the general case of the
influence of impulse perturbation on the bending vibrations of the system continuous flow
of CFHM. It is greatly simplified in the case where the impulse perturbation is constant, i.e.,
f j

(
w, ∂w

∂t , . . . , ∂3w
∂y3

)
≡ F0 = const. For this case, the basic equations for the main resonance

in the case when the elastic properties of the body are described by the nonlinear technical
law of elasticity, and the force of resistance is proportional to the velocity to the degree they
take the form

a
∂B(a,φ)

∂φ

(
ω1 − 2π

T
)
+ 2A

(
a, φ
)
ω1 = υas1 + TF0

(mt+ms)ωl sin πy0
l ∑

j=1
cosjTcosφ,

∂A(a,φ)
∂φ

(
ω1 − 2π

T
)
− 2aωB

(
a, φ
)
= aV2 ms

mt+ms

(
π2

l

)
−

3k2ε
32

π2

l2
a2

ω1
− TF0

2(mt+ms)aωlπ sin πy0
l ∑

j=1
cosjTsinφ,

(42)

For the first resonant approximation, the system of differential Equation (42) describes
the main parameters of resonant vibrations under the action of external periodic pulse
perturbation by the following dependence:

da
dt == υas1 + TF0

(mt+ms)ωl sin πy0
l ∑

j=1
cosjTcosjTcosφ,

dφ
dt = ω1 − 2π

T − aV2 ms
mt+ms

(
π2

l

)
− 3k2ε

32
π2

l2
a2

ω1
− TF0

2(mt+ms)aωlπ sin πy0
l ∑

j=1
cosjTsinφ.

(43)

According to the above dependence, Figure 5 shows the change in the amplitude
of bending vibrations during the transition through resonance at different lengths of the
elastic body, the quantities of the relative motion of the CFHM, and the points of application
of impulse perturbation.
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Figure 5. Time change of the amplitude of resonant vibrations due to periodic pulse action at different points of application.
(a) —- k = 400 kg

s m, —- —- —- k = 300 kg
s m, ——– k = 100 kg

s m, y0 = 1
4 , l = 8 m; (b) —- k = 400 kg

s m, —- —- —-

k = 300 kg
s m, ——– k = 100 kg

s m, y0 = 1
4 , l = 6 m; (c) —- k = 600 kg

s m, —- —- —- k = 450 kg
s m, ——– k = 150 kg

s m, y0 =
1
6 , l = 8 m; (d) —- k = 600 kg

s m, —- —- —- k = 450 kg
s m, ——– k = 150 kg

s m, y0 = 1
6 , l = 6 m; (e) —- k = 600 kg

s m,

—- —- —- k = 450 kg
s m, ——– k = 150 kg

s m, y0 = 1
12 , l = 8 m; (f) — k = 600 kg

s m, —- —- —- k = 450 kg
s m, ——–

k = 150 kg
s m, y0 = 1

12 , l = 6 m).

The presented graphical dependencies show the amplitude of the passage through
the main resonance of the bending vibrations of the elastic body, which is due to the
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periodic pulse action. It becomes more important in the case when the point of application
of this action is closer to the middle of the elastic body. As for the continuous flow of
a homogeneous medium, for larger values of the relative amount of motion, it not only
reduces the natural frequency of the elastic body but also slightly reduces the maximum
value of the amplitudes of the system through the resonance.

The above results can be generalized without much difficulty in the case of the action
of impulse perturbation at several points of an elastic body.

5. Conclusions

A methodological study of complex vibrations has been developed for the mechan-
ical system of an elastic body–continuous flow of homogeneous medium (CFHM). The
methodology is based on:

(a) the use of a priori information on some of the vibrations forms;
(b) the construction of a “simplified” mathematical model of system dynamics, which

provides a wide range of external and internal factors and information on the longitu-
dinal vibrations of an elastic body;

(c) obtaining analytical relationship that describe the overall range of factors on the
elastic vibrations of system.

Considering the above given information, it allows us to conclude the following:

• CFHM motion affects both the natural frequency of bending and longitudinal vibra-
tions;

• the most dangerous resonance vibrations of the specified systems type can be caused
both by external periodic forces and mutual influence of one form of vibrations on the
others (internal resonances);

• internal resonances for an elastic body that performs bending and longitudinal vibra-
tions can exist in even and odd modes of bending vibrations, and they are caused
by longitudinal vibrations in even modes, and by continuous flow of homogeneous
medium motion in odd modes;

• the amplitude of the bending vibrations of the transition through the internal reso-
nance at higher longitudinal vibrations frequencies is less than at the second frequency;

• the amplitude of the transition through the main resonance for larger values of the
amount of CFHM motion is smaller than the amplitude of the transition during the
rapid transition through the resonance.

The methodology can be used for other cases of complex vibrations of elastic bodies,
and the obtained results can serve as a basis for choosing the main technological and
operational parameters of elastic elements of mechanisms and machines that perform
complex vibrations.

Practical use of the obtained results. The theoretical results obtained in this work can
be the basis for calculating the following:

• the blast effect on the elements of protective structures in order to increase their
protective capacity by improving the method of their attachment or by using additional
reinforcement;

• buff load effects on the elements of drilling strings and dynamic processes that oc-
cur during surface strengthening by work hardening in order to avoid resonance
phenomena;

• technological processes of vibration displacement or vibration separation of granular
media;

• longitudinal frequencies of movement of rope lifts in order to avoid resonant phenom-
ena in them, and thus to extend the resource to make the object;

• reducing dynamic performance bearings for mounting rotors;
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• assessing structural strength and vibration reduction of mechanical systems in energy,
taking into account the optimal parameters (motion, mass, stiffness, etc.), which are
found on the basis of empirical information and methodology developed in the work
using interpretation and synthesis.
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