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Abstract: Remaining Useful Life (RUL) prediction is significant in indicating the health status of the 
sophisticated equipment, and it requires historical data because of its complexity. The number and 
complexity of such environmental parameters as vibration and temperature can cause non-linear 
states of data, making prediction tremendously difficult. Conventional machine learning models 
such as support vector machine (SVM), random forest, and back propagation neural network 
(BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-
learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for 
RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (Con-
vFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which 
removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is 
the attention mechanism, which ensures the model to extract more specific features for generating 
an output, compensating the drawbacks of the FGRNET that it is a black box model and improving 
the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is 
validated by comparing it with other machine learning methods and deep learning methods on the 
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball 
screw experiment. 

Keywords: Remaining Useful Life (RUL) prediction; deep learning; recurrent neural network 
(RNN); equipment maintenance 
 

1. Introduction 
In such heavy industries as the aviation industry, the increasingly capable and ad-

vanced technologies are demanding, necessitating the reliability, intelligence, and effi-
ciency. Those requirements, however, increase the complexity and the numbers of failure 
modes of the equipment. 

In order to avoid the progression from an early minor failure to a serious or even 
catastrophic failure, reasonable preventive maintenance measures need to be taken. Tra-
ditionally, reliability indicators such as Mean Time Between Failure (MTBF) or Mean Time 
Before Failure (MTTF) have been assessed through reliability analysis and tests. Despite 
maintaining the availability of the system to some extent, conducting regular maintenance 
or tests has also revealed significant drawbacks: shortened intervals can cause unneces-
sary system downtime, regular maintenance often leads to premature replacement of 
components that are still functional, and excessive maintenance introduces new risks [1]. 

The advancements of sensor technology, communication systems, and machine 
learning contribute to the revolution of maintenance strategies for industrial systems, 
from preventive maintenance based on reliability assessment to condition-based mainte-

Citation: Xie, Z.; Du, S.; Lv, J.;  

Deng, Y.; Jia, S. A Hybrid  

Prognostics Deep Learning Model 

for Remaining Useful Life  

Prediction. Electronics 2021, 10, 39. 

https://doi.org/10.3390/ 

electronics10010039 

Received: 2 November 2020 

Accepted: 10 December 2020 

Published: 29 December 2020 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2020 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Electronics 2021, 10, 39 2 of 33 
 

 

nance (CBM) in numerous domains ranging from manufacturing to aerospace [2]. Con-
sidered as the key factor, CBM connects real time diagnosis of approaching failure and 
prognosis of future performance of the equipment, facilitating to schedule required repair 
and maintenance prior to the breakdown. 

Referring specifically to the phase involved with predicting future behavior, prog-
nostics and health management (PHM) is one of the enablers of the CBM. As a multi-
disciplinary high-end technology that includes mechanical, electrical, computer, artificial 
intelligence, communication, and network, PHM uses sensors to map the equipment’s 
working condition, surrounding environment, and online or historical operating status, 
making it possible to monitor the operating status of equipment, model performance deg-
radation, predict remaining life and assess reliability, etc., through feature extraction, sig-
nal analysis, and data fusion modeling. 

In Figure 1, an implementation phase of CBM/PHM can be identified. The phase in-
cludes obtaining machinery data from sensors, signal preprocessing, extracting the fea-
tures that are the most useful for determining the current status or fault condition of the 
machinery, fault detection and classification, prediction of fault evolution, and scheduling 
of required maintenance. 
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Figure 1. The condition-based maintenance/prognostics and health management (CBM/PHM) cycle. 

The goals of PHM include maximizing the operational availability, reduction of 
maintenance costs, and improvement of system reliability and safety by monitoring the 
facility conditions, and so does prognostics. The focus of prognostics is mainly on predict-
ing the residual lifetime during which a device can perform its intended function, for ex-
ample, the Remaining Useful Life (RUL) prediction. RUL is not only an estimation of the 
amount of time that an equipment, component, or system can continue to operate before 
reaching the replacement threshold, but also the indication of the health status of equip-
ment. 

If an equipment has reached the end of its service life, the number and complexity of 
environmental parameters (e.g., temperature, pressure, vibration levels, etc.), in which the 
equipment operates can significantly affect the accuracy of the prediction. An accurate 
RUL prediction is significant to the PHM, since it provides benefits, which, in turn, im-
prove the decision-making for operations and CBM. 

Aiming to predict the RUL of equipment, numerous methods are proposed, which 
contain two major branches: physical models and data-driven methods. The overview is 
shown in Figure 2. 
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Figure 2. Classification of Remaining Useful Life (RUL) prediction method. 

1.1. RUL Prediction Based on Physical Models 
The degradation trend can be determined by such physical theories as fatigue dam-

age theory and thermodynamics theory. Hoeppner et al. propose a fatigue-crack growth 
law, combining the knowledge of fracture mechanics to illustrate the application of fa-
tigue-crack growth model [3]. Contemporary, with the complexity and integration of ad-
vanced equipment, the RUL of equipment can be estimated by numerical integration us-
ing different fatigue crack growth rate. To overcome such a difficulty, Mohanty et al. pro-
pose an exponential model that can be used without integration of fatigue crack growth 
rate curve [4]. To analyze the fatigue of pipelines, Divino et al. present a method based on 
nominal stresses, using a one-dimensional Finite Element mode with the application of 
stress concentration factors. The results make sense for not only finding the appropriate 
model, but also predicting the RUL through temperature theory [5]. By evaluating the 
axial natural frequency from the motor current signal and axial vibrational signal, Nguyen 
et al. propose a discrete dynamic model to characterize the degradation level [6]. The 
physical-model-based approach is suitable for a specific subject where the failure mecha-
nism is well defined. Once an accurate physical model has been developed based on the 
system characteristics, the accuracy of the RUL prediction method is high, and the method 
is highly interpretable because it corresponds to the physical quantities through a mathe-
matical model. However, as the structure of the equipment system becomes more and 
more complex, those physical models, mainly focusing on exploiting the fault mechanism 
of the equipment, may not be the most feasible for practical prognostic of complex equip-
ment, for example, the turbofans or the ball screws, since the uncertainty in the machining 
process and the measurement noise are not incorporated in the physical models, and it is 
difficult to perform extensive experiments to identify some model parameters. 

1.2. RUL Prediction Based on Data-Driven Method 
Data-driven methods concentrate on the degradation of equipment from monitoring 

data instead of building physical models. To monitor the operating condition in all direc-
tions, the system is often equipped with a number of measuring sensors, making the data 
for data-driven methods high dimensional. Yan et al. provided a survey on feature extrac-
tion for bearing PHM applications [7,8]. High frequency resonance technique (HFRT) is a 
widely used frequency domain technique for bearing fault diagnosis [9]. The Hilbert–
Huang Transform (HHT) and Multiscale entropy (MSE) are used to extract features and 
evaluate the degradation levels of the ball screw [10]. Feature learning is a method which 
transforms the extracted features into a representation that can be effectively exploited in 
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data-driven methods. Hinton and Salakhutdinov [11] proposes auto-encoders to learn fea-
tures of handwriting, which is a commonly used unsupervised method in transfer writing. 

According to the characteristics of RUL as a non-linear function, the current data-
driven methods for RUL prediction are mainly divided into three branches: statistical 
model methods, machine learning methods represented by back propagation neural net-
work (BPNN), and deep learning methods represented by long short-term memory 
(LSTM). The statistical model-based model assumes that the RUL prediction process is a 
white-box model, by inputting the device history data into the established statistical deg-
radation model, and continuously adjusting the degradation model parameters to update 
the model accuracy. Based on existing information to establish probability density distri-
butions for battery states, Saha et al. apply Bayesian estimation to battery cycle life pre-
diction to quantify the uncertainty in RUL predictions [12]. Bressel presents an HMM-
based method, from which a state transfer matrix is obtained through matching tracing 
down [13]. 

The actual engineering applications in the degradation model, however, often cannot 
be determined in advance, and different equipment has different working conditions, the 
inappropriate selection of degradation model will greatly affect the accuracy of the pre-
diction results, thus causing huge economic losses [14]. Machine learning methods are 
mostly grey-box models that do not require a prior degradation model, and the input data 
are not limited to the historical usage data of the device [15–17]. Guo et al. propose a roll-
ing bearing RUL prediction method based on improved deep forest, the model first itera-
tively calculates the equipment usage data by fast Fourier transform, and then replaces 
the traditional random forest multi-grain scan structure with a convolutional neural net-
work, thus predicting the remaining life of rolling bearings [18]. Celestino et al. propose a 
hybrid autoregressive integrated moving average–support vector machine (ARIMA–
SVM) model that first extracts features from the input data via the ARIMA part, and then 
feeds the extracted features into the SVM model to predict the remaining lifetime [19]. 
Based on singular value decomposition (SVD), Zhang et al. perform feature extraction of 
rolling bearing historical data to evaluate bearing degradability [20]. Yu et al. improve the 
accuracy of the prediction of bearing remaining life by improving the recurrent neural 
network (RNN) model by zero-centering rule [21]. 

Faced with massive amounts of industrial data, the computing power and accuracy 
of some machine learning models cannot meet industrial standards [22]. Hence, deep 
learning is adopted universally to extract the features in non-linear systems [23]. Deep 
learning models, such as LSTM, are widely used for their long-term memory capabilities. 
Elsheikh et al. combined deep learning with long and short memory to derive a deep long 
short-term memory (DLSTM) model, which firstly explored the correlation between each 
input signal through deep learning model, and then introduced random loss strategy to 
accurately and stably predict the remaining service life of aero-engine rotor blades [24]. 
Based on the ordered neurons long short-term memory (ON-LSTM) model, Yan et al. first 
extracted the health index by calculating the frequency domain features of the original 
signal; then constructed the ON-LSTM network model to generate the RUL prediction 
value, which uses the sequential information between neurons and therefore has en-
hanced prediction capability [25]. Though effective, RNN derived methods have the prob-
lem of gradient explosion, significantly affect the accuracy of the methods. Cho et al. pro-
posed the encoder–decoder structure, which can learn to encode a variable-length se-
quence into a fixed-length vector representation and decode a given fixed-length vector 
representation back into a variable-length sequence [26]. To remedy the gap between the 
emerging neural network-based methods and the well-established traditional fault diag-
nosis knowledge because data-driven method generally remains a “black box” to re-
searchers, Li et al. introduce attention mechanism to assist the deep network to locate the 
informative data segments, extract the discriminative features of inputs, and visualize the 
learned diagnosis knowledge [27]. Zhou et al. proposed the attention-mechanism-based 
convolutional neural network (CNN), with positional encoding, to tackle the problem that 
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RNNs take much time for information to flow through the network for prediction [28]. 
The attention mechanism enables the network to focus on specific parts of sequences and 
positional encoding injects position information while utilizing the parallelization merits 
of CNN on GPUs. Empirical experiments show that the proposed approach is both time 
effective and accurate in battery RUL prediction. Louw et al. combine dropout with Gate 
Recurrent Unit (GRU) and LSTM to predict RUL, obtaining an approximate uncertainty 
representation of the RUL prediction and validating algorithmically the turbofan engine 
dataset [29]. Liao et al. propose a method based on Bootstrap and LSTM, which uses LSTM 
to train the model and obtains the confidence intervals for RUL predictions [30]. 

Admittedly, LSTM has the capability to deal the signal and predict RUL. With the 
large data and equipment operating under various conditions, the calculating speed and 
accuracy was undermined because the changeable conditions could influence the predic-
tion and only with faster and more quick-responsible method can we get more accurate 
RUL prediction results. To achieve more competitive prediction results, Kyunghyun et al. 
propose a Gate Recurrent Unit (GRU) [31]. They couple the reset (input) gate to the update 
(forget) gate and show that this minimal gated unit (MGU) achieves a performance similar 
to the standard GRU with only two-thirds of the parameters, overcoming the risk of over-
fitting. GRU is a binary convolutional neural network whose weights are recursively ap-
plied to the input sequence until it outputs a single fixed-length vector. Compared to 
LSTM, GRU only reserves two gates, namely the forget fate and output gate, and has faster 
calculating speed than that of LSTM. 

To further develop the value of gates of recursive convolutional neural network, a 
two-phase deep-learning-model attention-convolutional forget-gate recurrent network 
(AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate recur-
rent network (FGRNET) is based on a one-dimensional analog LSTM, which removes all 
the gates except the forget gate and uses chrono-initialized biases [32]. The combination 
of fewer nonlinearities and chrono-initialization enables skip connections over entries in 
the input sequence. The skip connections created by the long-range cells allow infor-
mation to flow unimpeded from the elements at the start of the sequence to memory cells 
at the end of the sequence. For the standard LSTM, however, these skip connections are 
less apparent and an unimpeded propagation of information is unlikely due to the multi-
ple possible transformations at each time step. The fully connected layer is then added 
into the FGRNET model to assimilate temporal relationships in a group of time series. The 
FGRNET model is transformed into ConvFGRNET. The second phase is the Attention 
Mechanism: The lower part is the encoder structure which employs bi-directional recur-
rent neural network (RNN), the upper part is the decoder structure, and the middle part 
is the attention mechanism. The proposed model is capable of extracting more specific 
features for generating an output, compensating the drawbacks of the ConvFGRNET that 
it is a black box model and improving the interpretability. Hence, a two-phase model is 
proposed to predict the RUL of equipment. To comprehensively evaluated the perfor-
mance of the proposed method, the ability of classification of FGRNET is first tested on 
MNIST (a database of handwritten digits performed) dataset [33], whose result is then 
compared with RNN, LSTM and WaveNet [34]. Then, the strengthen of RUL prediction 
is demonstrated through experiments dependent on a widely used dataset, and compari-
sons with other methods. To further evaluate, an experiment based on ball screw is con-
ducted and proposed method is tested. 

The main innovations of the proposed model are summarized as follows: 

1. The proposed AM-ConvFGRNET simplifies the original LSTM model, in which the 
input and output gates are removed and only a forget gate is retained to correlate 
data accumulation and deletion. The simplified gate structure ensures the model 
could construct complex correlations between device history data and its remaining 
life, and to achieve faster gradient descent and increased computing power. 
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2. The attention mechanism is embedded into the ConvFGRNET model, which can in-
crease the receptive field for feature extraction, increasing the prediction accuracy. 

The article is developed as follows. The AM-ConvFGRNET is discussed in Section 2. 
The data features and the data processing are discussed in Section 3. The experiments and 
validation of the model is discussed in Section 4. The conclusion is addressed in Section 
5. 

2. The Proposed Model 
The model proposed contains four major parts: data input, FGRNET feature learning, 

health status assessment, and RUL prediction. The accuracy of the prediction is character-
ized by calculating the RMSE. Detailed calculation is shown as follows, and the process is 
in Figure 3. 
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Figure 3. Flowchart of the proposed model. 

2.1. Initialization of the Input Data 

Given the input data, Ω = {(푥 , 푦 )} , where Ω represents the dataset; 푁 repre-
sents the number of training samples; 푥 ∈ ℝ ×  represents a time window with 퐷 ei-
genvalues and a timeseries range of 푇; 푦 ∈ ℝ represents the Remaining Useful Life of 
the turbo fan since 푥 . 
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2.2. Initialization of Training Model Parameters 
Maximum likelihood estimation was used to select the parameters 휃 =

{푤 , 푤 , … , 푤 }. Assuming that the 푁 training samples are independently co-distributed. 
By inserting a Gaussian transform with several large likelihood functions, the distribution 
of model parameters obeys the function shown as follows: 

푙(휃) = − log
1

2휋휎
exp

1
2휋휎

푦 − 휇(푥 )

=
−1

2휎 (푥)
(푦 − 휇(푥 )) −

푁
2

log (2휋휎 (푥)) 

(1)

The model proposed itself is a learning process through which the dataset Ω =
{(푥 , 푦 )}  is input and then is mapped as 푥 ∈ ℝ × → 푦 ∈ ℝ. Moreover, Ω can be 
used first for learning the a priori model 푃(푦 |푥, 휃) and then for training the AM-FGRNET 
model: 

푥 ↦ 푦∗ + 휀 = argmax log P(푦 ∣ 푥 , 휇(푥 ), 휎 (푥 )) (2)

2.3. Model Training 
First, running the AM-ConvFGRNET model, then mapping the historical run data to 

the RUL predicted value, 푦 , and finally building the loss function as follows: 

퐸 = (푦 − 푦∗)  (3)

where 퐵 is the size of each batch split by the training sample size, 푦  is the model pre-
dicted RUL value, and 푦∗ is the real RUL. The gradient descent method is then used to 
optimally adjust the model parameters selected based on the maximum likelihood esti-
mation. 

2.4. RUL Prediction 
The dataset to be processed according to Equations (1)–(3) will first be constructed 

with a data matrix, and then the constructed matrix will be entered into the AM-Con-
vFGRNET network to calculate the RUL of the equipment. All the symbols used in the 
equations can be found in Table 1. 

Table 1. Nomenclature. 

Characters Detail 
Ω Dataset 
푁 Number of training samples 
푥  Input 
푦  RUL of the equipment 
푏∗ Bias parameter 
휎 Sigmoid function 

W∗ Recursive weight 
푈∗ Weight value 
h  Hidden state 
f  Forget gate 
퐶  Memory cell 
퐶
~

 New storage cell 
f(∙) Output of the fully connected layer 
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2.5. FGRNET Structure 
A recurrent neural network (RNN) creates a lossy sequence summary ℎ , The main 

reason why ℎ  is lossy is that RNN maps an arbitrarily long sequence 푥 ∶  to a vector of 
fixed lengths. Greff and Jozefowicz proposed the addition of a forget gate to the LSTM in 
2015 to address such issues [35]: 

i = 휎(U h + W x + b ) (4) 

o = 휎(U h + W x + b ) (5) 

f =  휎 U h + W x + b  (6) 

c = f ⊙ c + i ⊙ tanh(U h + W x + b ) (7) 

h = o ⊙ tanh (c ) (8) 

In the formulas, 푥  is the input vector of the time node, 푡, moment; U , U , U , and 
U  are the regular weight matrix between the input and the hidden layer; W , W , W , and 
W  are a matrix of recursive weights between the hidden layer and itself at the adjacent 
time step; vectors b , b , b , and b  are bias parameters which allow each node to learn 
bias; h  represents the vector, of which hidden layer is at time node, 푡; h  is the value 
of the previous output of each memory cell in the hidden layer; ⊙ represents dot-multi-
ply; 휎 is the sigmoid function; and i  and o  represent the vectors of input gate and out-
put gate at the 푡 moment, respectively. 

To better develop the advantages of the forget gate, based on classical LSTM model 
[36], FGRNET model is proposed. Such a model removes the input gate and output gate, 
and only set a forget gate. Jos and Joan then combined the input and forget mechanism 
modulation to achieve the pheromone accumulation and association. 

On the one hand, because the 푡푎푛ℎ activation function of h  causes the gradient to 
shrink during back propagation, thus exacerbating the vanishing gradient problem on the 
other hand, because the weight value U∗  may accommodate values outside the range 
[−1,1], we can remove the unnecessary, potentially problematic 푡푎푛ℎ nonlinear function. 
The structure of FGRNET is shown as below: 

f = 휎 U h + W x + b  (9) 

c = f ⊙ c + (1 − f ) ⊙ tanh(U h + W x + b ) (10) 

h = c  (11) 

In commonplace, having the accumulation of information slightly more than that of 
forgotten is feasible, making the analysis of time sequence more easily. According to the 
empirical evidence, it is feasible to subtract a predetermined value of 훽 from the compo-
nent of the input control variable: 

f = U h + W x + b  (12) 

c
~

= tanh(U h + W x + b ) (13) 

c = 휎(s ) ⊙ c + 1 − 휎(s − 훽) ⊙ c
~

 (14) 

h = c  (15) 

where f  represents the forget gate; c
~

 is the representation of new storage cells acquired 
by the model from forgotten information; c  is the information storage cells before for-
getting; h  is the hidden layer in the model. 

In the FGRNET model, 훽  is often independent of the dataset, Westhuizen et al. 
proved that, when 훽 = 1, the performance of the model is the best [37]. 
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The flowchart of the FGRNET model is shown in Figure 4, in which the information 
fluxes in the loop unit is demonstrated as well. Unlike the RNN and LSTM models, FGR-
NET is only able to share information in the hidden state: 

FGRNET FGRNET FGRNET
C1 C2

X1 X2 X3

C3

 
Figure 4. Forget-gate recurrent network (FGRNET) structure. 

2.5.1. Initialization of Forget Gate 
Focusing on the forget gate bias of LSTM, Tallec and Ollivier [32] proposed a more 

appropriate initialization method called chrono-initialization, which begins with the im-
provement of the leakage unit of the RNN [38]: 

h = 훼 ⊙ tanh (Uh + Wx + b) + (1 − 훼) ⊙ h  (16) 

Through the first-order Taylor expansion, ℎ(푡 +  훿푡) ≈ ℎ(푡) + 훿푡 ( ), and the addi-
tion of the discrete units 훿푡 = 1, we get the following formula: 

푑h(푡)
푑푡

= 훼 ⊙ tanh(Uh(푡) + Wx(푡) + b) − 훼 ⊙ h(푡) (17) 

Tallec [32] proved that in the free regime, after a certain time node 푡 , the input stops, 
we have 푥(푡) = 0, (푡 > 푡 ); then we set b = 0, U = 0, and Formulas (12)–(14) turn into the 
following: 

dh(푡)
d푡

= −훼h(푡) (18) 

1
h(푡) dh(푡) = − 훼 d 푡 (19) 

h(푡) = h(푡 )exp (−훼(푡 − 푡 )) (20) 

According to the Formulas (18)–(20), the hidden state h will reduce to 푒  of its 
original value in the time proportional to 1/훼, where 1/훼 can be viewed as the charac-
teristic forgetting time, or a constant, of the recurrent neural network. Hence, when mod-
eling a timeseries that has dependencies in the range [푇 , 푇 ], the forgetting time of 
the model used should lie in roughly the same time frame, i.e., the 훼 ∈ [ , ] , where 
푑 is the hidden cell. 

As to the LSTM, the time-varying approximation of 훼 and (1 − 훼) are respectively 
learned by the input gate i and the forget gate f. 

Then we apply the chrono-initialization on the forget gate of the FGRNET, whose 
active function is as follows: 

휎(log(푇 − 1)) =
1

1 + exp (−log (푇 − 1) →
⎯⎯⎯⎯⎯ 1 (21)

The chrono-initialization can fulfill the skip-like connections between the memory 
cells, mitigating the vanishing gradient problem. 

2.5.2. Gradient Descent Function of FGRNET 
Combining the Equations (1)–(8), the pre-activation function can be written as fol-

lows: 
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S , , , = U , , , ℎ + W , , , 푥 + b , , ,  (22)

The memory units of single-layer FGRNET is compared with single-layer LSTM, and 
then make an analysis through calculating the objective function 퐽 and the differential  
of an arbitrary memory vector 푐 . The Functions (6) and (7) can be rewritten as follows: 

f = 휎(s ) (23)

c = f ⊙ c + (1 − f ) ⊙ tanh (s ) (24)

The gradient descent function of the objective function 퐽 is characterized as follows: 

∂퐽
∂퐜

=
∂퐽

∂퐜
[
∂퐜

∂퐜
] (25)

where 

∂c
∂c

= U 휎 (s ) ⊙ c + 휎(s ) + (1 − 휎(s )) ⊙ (U tanh  (U c ))

−휎 (s ) ⊙ (U tanh (U c ))
 (26)

As the time series follows, both the input and the hidden layer converge wirelessly 
to 0, which means that 휎(s ) converges to 1. Hence, Equation (26) can be reduced to 

퐜
퐜

≈ 1, which means that the gradient of the memory unit c  is not affected by the 
length of the time series. 

For example, a network whose structure is 푛 × 푛  and the numbers of the input and 
the hidden cells are 푛  and 푛  respectively. Classical LSTM model contains 4 elements: 
input gate, output gate, forget gate, and the memory vector, 푗 = {푖, 표, 푓, 푐}, and the number 
of the total elements are 4(푛 푛 + 푛 + 푛 ). Compared with the LSTM, FGRNET contains 
only two elements, the forget gate and the memory vector, 푗 = {푓, 푐}, and the number of 
total elements is 2(푛 푛 + 푛 + 푛 ), which is reduced to a half to that of the LSTM. 

To demonstrate the superb characteristics of FGRNET, an experiment based on a 
public dataset is conducted. Because later the prediction part will be discussed, the MNIST 
experiment shows the superb ability of FGRNET for classification, making a pre-valida-
tion for the feasibility of FGRNET. 

These public data contain the MNIST, permuted MNIST (pMNIST) [33], and MIT-
BIH (a database for the study of cardiac arrhythmias provided by the Massachusetts In-
stitute of Technology) arrhythmia datasets [39]. Through BioSPPy package, single heart-
beats are extracted from longer filtered signals on channel 1 of the MIT-BIH dataset [40]. 
The signals were filtered by using a bandpass FIR filter between 3 and 45 Hz. Four heart-
beat classes which can present different patients are chosen: normal, right bundle branch 
block, paced, and premature ventricular contraction. The dataset contains 89,670 heart-
beats, each of length 216 time steps. The dataset is set according to the rule (70:10:20), 
which is also applied on MNIST dataset. 

For the MNIST dataset, a model with two hidden layers of 128 units is performed, 
whereas a single layer of 128 units was used for the pMNIST. The networks are trained 
through Adam [41] with the learning rate of 0.001 and a mini-batch whose size is 200. The 
output of the recurrent layers is set as 0.1 and the weight decay factor is used as 1 × 10 . 
The training epoch is set as 100 and the best validation loss was employed to determine 
the performance of the model. Furthermore, the gradient norm was clipped at a value of 
5. 

Table 2 presents the results of three datasets. In additional to FGRNET and LSTM, 
RNN and other RNN modifications are demonstrated as well. The means and standard 
deviations from 10 independent runs are reported. 
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Table 2. Comparison of accuracy of training results of different networks against dataset (%). 

Model MNIST pMNIST MIT-BIH 
FGRNET 99.0 ± 0.120 92.5 ± 0.767 89.4 ± 0.193 

LSTM 91.0 ± 0.518 78.6 ± 3.421 87.4 ± 0.130 
RNN 98.5 ± 0.183 87.4 ± 0.130 73.5 ± 4.531 

uRNN [39] 95.1 91.4 - 
iRNN [42] 97.0 82.0 - 
tLSTM [43] 99.2 94.6 - 

stanh RNN [44] 98.1 94.0 - 
MNIST, a database of handwritten digits performed; pMNIST, permuted MNIST; MIT-BIH, a da-
tabase for the study of cardiac arrhythmias provided by the Massachusetts Institute of Technol-
ogy; LSTM, long short term memory; RNN, recurrent neural networks; uRNN, unitary evolution 
recurrent neural networks; iRNN, an RNN that is composed of ReLUs and initialized with the 
identity matrix; tLSTM, Tensorized LSTM. 

It is indicated that FGRNET is better than the standard LSTM, and is among the top 
performing models of the analyzed dataset. 

Larger layer sizes are experimented. In Figure 5, the test set accuracies during train-
ing for different layer sizes of the LSTM and the FGRNET are illustrated. Moreover, a 
well-performed accuracy (96.7%) achieved by WaveNet is also demonstrated [34]. The 
FGRNET clearly improves with a larger layer and performs almost as well as the Wave-
Net. 

 
Figure 5. Comparison of classification accuracy of MNIST datasets by different network models 
(%). 

The effectiveness of FGRNET could be attributed to the combination of fewer non-
linearities and chrono initialization. This combination enables skip connections over en-
tries in the input sequence. the skip connections created by the long-range cells allow in-
formation to flow unimpeded from the elements at the start of the sequence to memory 
cells at the end of the sequence. For the standard LSTM, these skip connections are less 
apparent and an unimpeded propagation of information is unlikely due to the multiple 
possible transformations at each time step. 
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2.6. Convolutional FGRNET 
To enhance the ability of LSTM to deal with sequence data and make the feature 

extraction better, Graves proposes a fully connected LSTM (FC-LSTM) [45]. However, FC-
LSTM layer, on the one hand, adopted by the model does not take spatial correlation into 
consideration; Although the FC-LSTM layer has proven powerful for handling temporal 
correlation, it contains too much redundancy for spatial data on the other. 

Based on FC-LSTM, Shi et al. proposes the Convolutional LSTM (ConvLSTM), which 
appears with the purpose that a LSTM network takes into account nearby data, both spa-
tially and temporally [46]. The mechanism of ConvLSTM is shown from Formulas (27)–
(29): 
(1) When an input 푋  arrives, the input gate 푖 , the forget gates 푓 , the new memory 

cell 퐶  are obtained. 

푖 = 휎(W ∗ X + Ui ∗ H + V ∘ C + 푏 ) (27) 

f = 휎(W ∗ X + U푓 ∗ H + V ∘ C + 푏 ) (28) 

퐶 = tanh (W ∗ 푥 + U푐 ∗ ℎ + 푏 ) (29) 

where * is the convolutional operation and ∘ is the Hadamard product. 

(2) The output gate, 푂 , is computed as follows: 

O = 휎(W ∗ X + U표 ∗ H + V ∘ C + 푏 ) (30)

(3) Hidden state, ℎ , is calculated as follows: 

퐻 = 푂 ⋅ tanh (퐶 ) (31)

In the same way that the ConvLSTM has been proposed, the ConvFGRNET is pro-
posed, which is used to assimilate temporal relationships in a group of time series. 

(4) An input 푋  arrives, and the forget gate, 푓 , is obtained as follows: 

푓 = 휎(W ∗ X + U ∗ H + 푏 ) (32) 

(5) The new memory cell is created and added: 

C = 푓 ∘ C + (1 − 푓 ) ∘ tanh (W ∗ X + U ∗ H + 푏 ) (33) 

(6) The state of the hidden layer is calculated as follows: 

퐻 = C  (34) 

The active function of fully connected layer is chosen as 푠푖푔푚표푖푑, which is used to 
evaluate the health of the equipment, estimating the RUL. The calculation of fully con-
nected layer can be defined as follows: 

푝 = 휎(푤 ∙ 퐻(푡) + 푏 ) (35) 

where the output is the decimal between 0 and 1, indicating the health status of the equip-
ment; 퐻(푡) is the output of the hidden layer; 푤  is the weight value of the fully con-
nected layer; and 푏  is the bias. 

The structure of ConvFGRNET is shown in Figure 6. 
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Figure 6. ConvFGRNET structure. 

2.7. AM-FGRNET 
Although the ConvFGRNET can achieve better generalization than the LSTM does 

on synthetic memory tasks, it cannot process multi-data series simultaneously. Hence, it 
is difficult for ConvFGRNET to learn the relationships among time series, meaning that 
RUL prediction in sophisticated equipment cannot be accurately performed because it 
cannot deal time series and relations between variables. 

In view of those considerations, attention mechanism is employed and embedded 
into ConvFGRNET model. The AM-ConvFGRNET model is shown as Figure 7. 
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Figure 7. Structure of AM-FGRNET. 

In the attention mechanism, the lower part is the decoder structure, which is com-
posed by bi-directional RNN, with forward RNN inputting signal in order, while back-
ward RNN inputting signal verse order. Splicing the hidden states of two RNN units at 
the same time to form the final hidden state output ℎ , which contains not only the infor-
mation of the previous moment of the current signal, but also contains that of the next 
moment. The upper part is the Encoder structure, which is a uni-directional RNN. The 
middle part is attention structure, which is calculated as follows: 

푐 =   훼 ℎ  (36) 

The weight 훼  of each annotation ℎ  is computed by the following: 

훼 =
exp 푒

∑   exp (푒 )
 (37) 

where 푒 = 푎(푠 , ℎ ). 

2.8. Health Status Evaluation 
After combing the information and calculating, the learned feature information is 

smoothed into 1D feature data, and then the data are input into the fully connected net-
work and calculated as follows: 
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푝 = 휎(푤 ∙ 퐻 + 푏 ) (38) 

where 푝 is the output of the fully connected layer, and is a number between 0 and 1, 
indicating the health status of the equipment; 휎 is the active function which is chosen as 
푠푖푔푚표푖푑 ; w  is the weight value in the fully connected layer; 
퐻  푖푠 푡ℎ푒 푖푛푝푢푡, 푎푛푑 푖푠 푡ℎ푒 표푢푡푝푢푡 표푓 ℎ푖푑푑푒푛 푙푎푦푒푟; b  is the bias. 

2.9. RUL Prediction 
The remaining life of the current equipment can be predicted based on its perfor-

mance parameters and historical operation data. Combined with the health status p of 
the equipment, the historical operating time series can be used to predict the RUL. 푦  rep-
resents the remaining life of the current equipment at t moment. 푦  is calculated as fol-
lows: 

푦 = inf(푦: 푝(퐻 ) ≥ 훾) + 휀 (39) 

where inf (∙) is the lower limit of the variable; 푓(퐻 ) is the health status of the equipment 
at the moment 퐻 ; 훾 is the failure threshold; 휀 represents the errors arising from net-
work models. According to Sateesh Babu [47], Li [48], and Zhang et al. [49], 휀 obeys the 
normal distribution: 

휀~풩(푓(퐻 ),  휎 (푥 )) (40) 

where  휎 (푥 ) is the variance of prediction error. 

The health state of the equipment is characterized by a number between 0 and 1, with 
1 being the failure threshold. 푡 is the current running time, and 푝(퐻 ) is the current 
health state of the machine. Hence, RUL can be written as follows: 

푦 =
푡

푝(퐻 )
− 푡 (41) 

Because the remaining life of the equipment is influenced by various factors, the pre-
dictions are probabilistically distributed. Moreover, the values and the distributions of the 
predictions can be obtained through multi-calculations, from which the accuracy of the 
tested model can be achieved as well. 

2.10. Evaluation Indications 
RMSE and Score [50] are chosen as the evaluation benchmark of the prediction re-

sults, whose definitions are shown as below. 
RMSE: 

(d)
푛

 (42) 

This matric is used to evaluate prediction accuracy of the RUL. It is commonly used 
as a performance measure since it gives equal weights for both early and late predictions. 

Score: 

푠 =

⎩
⎪
⎨

⎪
⎧ 푒 ( ) − 1  for d < 0 

푒( ) − 1 for d ⩾ 0

 (43) 

where 푠 is the score (cost) of the model; 푛 is the is the number of units in the test set; 
푑 is the difference between the predicted values and the real values, 푑 = 푅푈퐿 − 푅푈퐿  
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(estimated RUL − true RUL, with respect to the 푖푡ℎ data point). 푎  and 푎  are the con-
stant coefficients and are set as 10, 13 respectively. The higher the score, the greater the 
deviation of the model prediction from the true value. 

The characteristic of this scoring function lean towards early predictions (i.e., the es-
timated RUL value is smaller than the actual RUL value) more than late predictions (i.e., 
the estimated RUL value is larger than the actual RUL value) since late prediction may 
result in more severe consequences. 

Using RMSE in conjunction with the scoring function would avoid to favor an algo-
rithm which artificially lowers the score by underestimating it but resulting in higher 
RMSE. 

Figure 8 illustrates the differences between the scoring function and the RMSE func-
tion. 

 
Figure 8. Illustration of the scoring function vs. RMSE. 

3. Case Study 
3.1. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) Dataset 

Considering the difficulty of collecting the operating data during the full life cycle of 
a turbo engine, NASA uses a software called Commercial Modular Aero-Propulsion Sys-
tem Simulation (C-MAPSS) to simulate the working condition of turbofan and then to 
generate the data. C-MAPSS is able to simulate the Pratt & Whitney F100 turbofan under 
different operating conditions and different types of failure modes, and it can simulate 
the degradation of different turbofan components by varying the operating conditions of 
the equipment, controlling the equipment parameters, and adding different levels of noise 
in each simulation. 

C-MAPSS then generates four sets of time series with sequential increases in com-
plexity. In each time series, the behavior of the turbofan is shown for 21 parameters of 
sensors of the system and other three parameters that show turbofan’s operating condi-
tions. The number of failure modes and operating conditions are summarized in the Table 
3. 

Table 3. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset details. 

Dataset 
Operating 
Conditions 

Faults 
Model 

Training 
Samples 

Testing 
Samples 

FD001 1 1 100 100 
FD002 1 2 259 260 
FD003 6 1 100 100 
FD004 6 2 248 249 
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Included in FD001 are 21 sensor signals and three parameters. Those features consist 
of four temperature measurements, four pressure measurements, and six angular velocity 
measurements. Comprehensively, those 24 measurements reflect the operation conditions 
of subsystems in the turbofan. Hence, from the C-MAPSS dataset, RUL can be predicted. 
The detailed list is shown in Table 4. 

Table 4. Features from operating turbofan considered in this case. 

Feature Description Unit 
퐶  Inlet temperature of fan Rankine degree (°R) 
퐶  Outlet temperature of low-pressure compressor Rankine degree (°R) 
퐶  Outlet temperature of high-pressure compressor Rankine degree (°R) 
퐶  Outlet temperature of low-pressure turbine Rankine degree (°R) 
퐶  Inlet pressure of fan Pound force/square inch (psi) 
퐶  Bypass pressure of pipeline Pound force/square inch (psi) 
퐶  Outlet pressure of high-pressure compressor Pound force/square inch (psi) 
퐶  Actual angular velocity of fan Revolution/minute (rpm) 
퐶  Actual angular velocity of core machine Revolution/minute (rpm) 
퐶  Ratio of engine pressure N.A. 
퐶  Outlet statistic pressure of high-pressure compressor Revolution/minute (rpm) 

퐶  Ratio of fuel flow to static pressure of high-pressure-
compressor outlet 

(Pulse/second)/(pound force/square 
inch) 

퐶  Speed of fan conversion Revolution/minute (rpm) 
퐶  Speed of core machine Revolution/minute (rpm) 
퐶  Bypass ratio N.A. 
퐶  Oil to gas ratio of combustion chamber N.A. 
퐶  Enthalpy of extraction N.A. 
퐶  Required angular velocity of fan Revolution/minute (rpm) 
퐶  Required conversion speed of fan Revolution/minute (rpm) 
퐶  Cooling flow of high-pressure turbine Pound/second (lb/s) 
퐶  Cooling flow of low-pressure turbine Pound/second (lb/s) 
퐶  Flight altitude × 1000 feet (ft) 
퐶  Index of machine N.A. 
퐶  Throttling parser angle Pound (lb) 

N.A., no physical unit. 

Each turbofan begins with different degrees of initial use and unknown manufactur-
ing conditions although this initial use and manufacturing conditions are considered nor-
mal, i.e., it is not considered a failure condition [51]. 

Hence, turbofan’s sequences shown normal or nominal behavior at the beginning of 
each time series and in some point begin to degrade until predefined limit in which it is 
considered that the turbofan can no longer be used. 

In this work, the method which retains RUL greater than a certain number of cycles 
as constant is considered feasible. This makes sense because the parameters showing tur-
bofan behavior would show normal operating conditions at those points, i.e., the data 
show a slight variation, reducing the feasibility of making different and accurate predic-
tions for each point. 

In contrast, the data since the failure reveal a lot of information and allow for the best 
results. It is then assumed that there is a time from the start of the run, so that with 99% 
probability the turbofan is working properly. 
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3.1.1. Parameter Analysis 
Figures 9 and 10 demonstrate that signals can have different characteristics based on 

the operation stage of the turbofan. For example, outlet temperature of high-pressure 
compressor generally increases with the number of operating cycles, while the actual an-
gular velocity of core machine decreases. Hence, when considering improve the RUL pre-
diction of the turbofan, elements should be comprehensively employed since different el-
ements reflect the status of the engine. 

 
Figure 9. Outlet temperature of high-pressure compressor. 

 
Figure 10. Actual angular velocity of core machine. 

In each dataset, the correlations between parameters influence the health status eval-
uation, so as the RUL prediction. Given the complex structure of the turbofan engine, the 
correlations between each element during operation vary. Figure 11 shows the Pearson 
correlation coefficient between each element in FD001. The white and black part indicate 
the strong positive and negative correlations; the red part means weak correlation. 
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Figure 11. Correlation between elements in FD001. 

From Figure 11, it is obvious that in FD001, inlet temperature of fan (퐶 ) is correlated 
strongly with bypass pressure of pipeline (퐶 ), oil to gas ratio of combustion chamber 
(퐶 ), while outlet temperature of low-pressure compressor (퐶 ) is with outlet temperature 
of low-pressure turbine (퐶 ), ratio of fuel flow to static pressure of high-pressure-compres-
sor outlet (퐶 ), and cooling flow of low-pressure turbine (퐶 ). To better exploit the dis-
persion among samples and to generalize the model, improving the accuracy, dataset re-
construction is necessary. 

3.1.2. Dataset Reconstruction 
Since the complexity of the C-MAPSS dataset increases sequentially from FD001 to 

FD004, with the FD001 the simplest and the FD004 the most complex. Hence, FD001–
FD003 can be considered as special cases of FD004, obtaining better results and making 
network model more generalized. 

Therefore, in order to increase the data size of the more complex case FD004 dataset, 
to obtain better training effect and to enhance the generalization of the network, the sim-
ple dataset can be crossed with the complex dataset. However, test sets will not be joined 
because the idea is to compare the Neural Networks separately with the previous results 
of other works, even so, as it has to FD004 covers the greatest amount of possibilities, it is 
also that its results show in a consistent way the generalization that a model has when it 
has been trained with the set with all the datasets. Therefore, the training datasets for each 
testing dataset are as follows (Table 5): 

Table 5. The reconstructed dataset of C-MAPSS. 

Dataset Operating Conditions Faults Mode Training Sample Testing Sample 
FD001 1 1 100 100 

FD001–4 1 2 707 260 
FD001–3 6 1 200 100 
FD001–4 6 2 707 249 
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However, despite the fact that in the cases FD001 and FD003 have the same amount 
of training examples, the truth is when the time window approach is applied to each of 
these examples of time series of a turbofan, the least number of temporary windows gen-
erated, i.e., examples, is in the dataset FD001. Then the number of parameters that net-
works should have cannot be greater than the number of points in this dataset, in other-
wise it would incur over-fitting. 

In this way, the training-set size of FD001 is maintained in only 100 examples of units, 
since this is also useful to test the generalization capacity of the models in the simplest 
and smallest case of training sets. Moreover, the models must also be able to generalize 
the more complex cases such as FD002 and FD004 in which all the datasets are used for 
their training and where the biggest obstacle lies in the number of faults that the Neural 
Network must assimilate. Moreover, in the particular case of the dataset FD004, there are 
units with time series smaller than those of the rest; these time series are simply omitted 
for the training of FD002, because, in the testing of this dataset, the minimum is 21, and it 
is simply considered that they are examples that do not contribute to that particular test. 

For training of FD003, it is not considered FD002 or FD004 but FD001, because it is 
wanted to see the capacity of the models to assimilate different quantities of operating 
settings, and not if this particular simple case can be integrated into the training of FD002 
or FD004. 

In conclusion, with FD001, it is seen that the feasibility of the size of the networks 
when training is with a small dataset and if they are able to generalize well in that case. 
With FD003 it is seen the capacity of the networks to assimilate the operating settings. 
Finally, the ability to integrate more than one failure mode is measured with FD002 and 
FD004 datasets as well as they are the largest of all datasets. 

From the considerations above, the dimensions of the databases used in FD001 and 
FD003 are as follows: Cycles, Sensor Measurement 2, Sensor Measurement 3, Sensor Meas-
urement 4, Sensor Measurement 7, Sensor Measurement 8, Sensor Measurement 9, Sensor 
Measurement 11, Sensor Measurement 12, Sensor Measurement 13, Sensor Measurement 
14, Sensor Measurement 15, Sensor Measurement 17, Sensor Measurement 20, and Sensor 
Measurement 21. Meanwhile in FD002 and FD004 cases, in addition to the previous di-
mensions, the three operating settings given are also included. 

The feature scaling method is employed to normalize the dataset, as shown below: 

푥 =
푥 − 푥
푥 − 푥

 (44) 

Finally, all input datasets are divided into training and validation sets. The validation 
set accounts for 15% of the original training set and is used to adjust the hyperparameters 
of the neural network. 

Figure 12 shows the outlet temperature of low-pressure compressor and the outlet 
temperature of high-pressure compressor in reconstructed FD002, where the gray is the 
original data in FD002, and the blue, red, and green lines represent the merged data, re-
spectively. Though all the signals have the same trend, the performance in each cycle is 
different, making the dataset have more conditions and elements. 
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Figure 12. Visualization of the reconstructed FD002. 

3.2. Ball Screw Experiment 
3.2.1. Experiment Setup 

To further validate the proposed model, an experiment based on the operating ball 
screw is conducted. The experimental test platform is first built up to investigate the deg-
radation behavior of the ball screw. The specification of the test platform is list in Table 6, 
and the schematic and photograph of the ball screw test platform are shown in Figure 
13a,b. 

Table 6. Specification of the ball screw test platform. 

C Specification Main Parameters 
Ball screw BNK2020-3.6G0-C5-742 Dynamic load: 7 kN 

Linear guide SV2R-MX33-760 Dynamic load: 11.7 kN 
Motor A5II-MSMJ082G1U Power: 750 W 

Controller MCDKT3520E / 
PLC FX3U-32MT/ES-A / 

Accelerometer HD-YD-216 Axial sensitivity: 100 mV/g 
PLC, programmable pogic controller. 

  

(a) (b) 

Figure 13. (a) Schematic of the ball screw test platform. (b) Photograph of the ball screw test platform. 

To validate the performance of the proposed AM-FGRNET method, one accelerated 
degradation test (ADT) is designed based on a completely new ball screw. In order to 
accelerate the degradation process, the ball screw is kept running at 400 mm/s constantly 
with an 800 mm reciprocating stroke. Throughout the ADT, an external load (50 kg) is 
applied to the worktable, which is located on the ball screw nut. In addition, no further 
lubrication is applied to the ball screw except at the beginning stage, and the linear guides 
are lubricated every 50 h to ensure the ball screw wears faster than the guide. At the end 
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of ADT, a total of 550 h vibration data of the ball screw are collected with a sampling rate 
of 25,600 Hz. The details and equipment of data acquisition of accelerated degradation 
process is shown in Figure 14. 

 
Figure 14. Data acquisition of accelerated degradation process. 

3.2.2. Validation of the State Function 
It is difficult to measure the real wear depth of ball screw during the ADT process, 

so the proposed wear state equation by Deng et al. is used and verified through the rec-
orded positioning accuracy [22]. The difference 푑ℎ  between the positioning accuracy 
with wear condition and original condition can be formulated by the cumulative wear 
depth [52], which can be defined as follows: 

푑ℎ =
푉(푡)

휋푎푏퐿 푠푖푛훼
푑푡 (45) 

where 휋푎푏  is the contact ellipse area of screw and ball, 푎  and 푏  represent the half 
lengths of the major axis and the minor axis, respectively, and 퐿  is the total sliding dis-
tance of ball screw during the period 푑푡. The initial parameters of the testing ball screw 
are given in Table 7. 

Table 7. Initial parameters of the ball screw. 

Parameters Value Unit 
Nominal radius, 푅 10.375 mm 
Helix pitch, 퐿 20 mm 
Distance between the contact point and ball center, 푟 , 푟   1.651 mm 
Semi-major axis in the contact ellipse, 푎 1.3 mm 
Semi-minor axis in the contact ellipse, 푏 0.14 mm 
Contact angle, 휃 , 휃  45 degree 
Helix angle, 훼 17.4 degree 
Axial load, 퐹   150.3 N 
Rotation angular velocity of the screw, 휔 20 rad/s 
Ball number, 푍 36 / 
Ball screw hardness 62 HRC 
Sliding-to-rolling ratio at the screw contact point, 푅  0.23 / 
Sliding-to-rolling ratio at the nut contact point, 푅  1.55 / 
Wear coefficient, 퐾 3.3 × 10  / 

HRC, the the C-scale of the Rockwell scale for measuring the indentation hardness of a material. 
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According to Deng et al., the parameter in Table 6 can be used to calculate the theo-
retical wear depth [22]. The theoretical wear value calculated by the state equation and 
the positioning accuracy are demonstrated in Figure 15, in which the equivalent wear co-
efficient K at the initial point, middle point and the final point during ADT is marked 
according to Tao et al. [53]. It shows that the state function roughly reflects the degrada-
tion process of the ball screw, and then reflects the RUL. 

 
Figure 15. Accumulated wear value of ball screw during accelerated degradation test (ADT). 

3.2.3. Dataset Preparation 
The size of the raw measurement data is tremendous, with 550 × 256,000. Firstly, the 

sliding window with 2560 points is used to iterate over the raw data. Secondly, a total 16 
types of features are obtained, whose details are shown in Table 8. 

Table 8. Extracted tri-domain features. 

Time Domain Feature  Equations 

Root Mean Square 푥mean = 푥(푖) /푁 

Peak Value 푥peak = 푚푎푥[푥(푖)] − 푚푖푛[푥(푖)] 
Maximum Absolute Value 푥 = 푚푎푥|푥(푖)| 

Skewness Factor 푥skewenss = [푥(푖) − 푥 ] /[(푁 − 1)푥 ] 

Kurtosis Factor 푥kurtosis = [푥(푖) − 푥 ] /[(푁 − 1)푥 ] 

Frequency Domain Feature Equations 

Central Frequency 푓cf = 푓(푖) ⋅ 푑푓 

Spectrum Kurtosis 푓skewness =
푓(푖) − 푓(푖)

휎
푆[푓(푖)] 

Spectrum Power 푓power = 푓(푖) 푆[푓(푖)] 

Time–Frequency Domain Feature Equations 
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Wavelet Energy 푤energy = wt (푖)/푁 

The features from ball screw contain the noisy elements and are correlated, making 
them are not all suitable for RUL prediction. For example, the Monotonicity low frequency 
and Rms correlated strongly. The correlations of features as shown in Figure 16 Hence, 
feature selection is first conducted, and the top three features (RMS, wavelet energy#1 and 
wavelet energy#2 in the low frequency band) are selected as the measurement variables 
according to the method proposed by Deng et al. [22]. 

 
Figure 16. Correlations between elements in the ball screw dataset. 

4. Results and Discussion 
4.1. Results Based on C-MAPSS Dataset 
4.1.1. Model Training 

For all the different datasets, 0.001 is set as the learning rate, to avoid increasing the 
number of steps required for network training and evaluation. All simulated experiments 
under all datasets are used 1024 as the batch size. 

The number of examples used in FD002 and FD004 are close to triple and double 
what they would be if only their respective datasets will be used. 

Moreover, two parallel cases can be compared, such as FD001 and FD004, with the 
first being a simple and small-size set (10% of the size of FD004), and the second a complex 
and large set. In this way, it can be seen the feasibility of the models for the particular use 
of prognosis. The overview of the training parameters is shown in Table 9. 

Table 9. Overview of the training parameters proposed and obtained from validation. 

 FD001 FD002 FD003 FD004 
Training samples 15071 111738 33618 111738 
Testing samples 2659 19718 5932 19718 

Window size 30 × 15 21 × 18 30 × 15 19 × 18 
Batch size 1024 

Learning rate 0.001 
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Steps 2000 30000 20000 30000 

The overall structure of proposed model for FD001 is shown in Table 10. 

Table 10. Structure of AM-FGRNET based on FD001. 

Layer Output Data Size Numbers of Parameters 
conv1d_1 (batch_size, 30, 15) 416 

max_pooling1d_2 (batch_size, 30, 15) 0 
conv1d_2 (batch_size, 30, 30) 544 

max_pooling1d_2 (batch_size, 30, 30) 0 
fgrnet_1 (batch_size, 30, 30) 374,400 

activation_1 (batch_size, 30, 1024) 0 
dropout_1 (batch_size, 30, 1024) 0 
fgrnet_2 (batch_size, 1024) 963,200 

attention_layer (batch_size, 1024) 160,400 
activation_2 (batch_size, 1024) 0 
dropout_2 (batch_size, 1024) 0 

fc_1 (batch_size, 50) 20,050 
activation_3 (batch_size, 50) 0 
dropout_3 (batch_size, 50) 0 

fc_2 (batch_size, 1) 51 
activation_4 (batch_size, 1) 0 

We first make a comparison between the original ConvFGRNET and improved AM-
ConvFGRNET, the results are shown in Table 11. The accuracy and calculation speed of 
AM-FGRNET are better than that of FGRNET because the attention mechanism has the 
flexibility to capture global and local connections. In the other way, attention mechanism 
compares the element in time series with the other, a process in which the distance be-
tween each element is 1. Hence, the processed results are better than those performed by 
RNN and other methods which get good long-term dependencies through recuring step 
by step. 

Table 11. Comparison between FGRNET and AM-FGRNET. 

Dataset Model RMSE Score Training Time (s) 

FD001 
FGRNET 12.8 ± 0.37 321.25 ± 26.90 18.28 ± 0.14 

AM-FGRNET 12.67 ± 0.27 262.71 ± 18.93 40.02 ± 0.25 

FD002 
FGRNET 16.66 ± 0.60 1542.49 ± 238.60 267.42 ± 0.98 

AM-FGRNET 16.19 ± 0.23 1401.95 ± 251.11 527.43 ± 0.52 

FD003 
FGRNET 11.79 ± 0.48 246.97 ± 27.12 189.49 ± 0.81 

AM-FGRNET 12.82 ± 0.45 333.79 ± 60.79 395.84 ± 0.34 

FD004 
FGRNET 19.55 ± 0.33 2259.53 ± 185.71 255.40 ± 0.51 

AM-FGRNET 19.15 ± 0.28 2282.23 ± 226.58 490.95 ± 0.63 

Taking the result of FD001 as an example, its training results are shown in Figure 17, 
which shows the distribution of the predicted and true remaining life values, and it can 
be seen that the values predicted by AM-ConvFGRNET model are similar to the true val-
ues, and the accuracy of the model is improving as the number of training steps increases. 
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Figure 17. Comparison of results predicted by FGRNET and AM-FGRNET for the FD001. (a,b) Predicted results of FGR-
NET and AM-FGRNET, respectively. 

4.1.2. Comparative Experiment 
To further validate AM-ConvFGRNET, methods are chosen to compare with the pro-

posed model, including LSTM, GRU, Multi-Layer Perceptron (MLP), support vector ma-
chine (SVM), CNN, and auto-encoder bi-directional long short-term memory (BiLSTM), 
proposed by Zhou et al. [54]; multi-objective deep belief networks ensemble (MODBNE), 
proposed by Zhang et al. [55]; LSTM + feedforward neural network (FNN), proposed by 
Zheng et al. [56]. 

From Table 12, it can be obtained that model with attention mechanism generally 
outperforms the structure without that. If it is by measured RMSE and Score, AM-FGR-
NET is the one that gets the best results. On the one hand, the smaller number of param-
eters that it uses decreases the entropy of the model because in general it should have a 
smaller number of redundant parameters. The attention mechanism is able to process the 
entered data with greater property. Therefore, using a smaller number of parameters, the 
attention mechanism is capable of even obtaining better results than normal cases that 
have a greater number of parameters. Moreover, it is also notable that the AM-FGRNET 
takes a longer time to train, this possibly has to do with the fact that its number of param-
eters is also lower than in normal cases. 

Table 12. Model performance comparison for RUL prediction. 

Model 
RMSE Score 

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004 
RNN         
LSTM 12.92 17.59 12.39 20.75 336.64 1645.92 288.99 2513.57 
GRU 12.75 16.48 11.64 20.23 262.13 1457.82 238.96 2265.37 
SVM 20.96 24.54 22.13 27.75 285.35 1947.32 274.22 2632.85 
MLP 37.65 45.94 36.32 44.57 285.89 2213.35 295.23 2799.47 
CNN 18.45 22.57 19.31 26.04 353.31 1843.21 271.58 2612.49 

Auto-BiLSTM 12.86 16.66 11.79 19.55 321.25 1542.49 246.97 2259.53 
MODBNE 15.04 25.05 12.51 28.66 334.36 1596.03 422.71 2483.42 

LSTM + FNN 16.14 24.49 16.18 28.17 375.92 1671.94 386.92 2463.25 
AM-ConvFGRNET 12.67 16.19 12.82 19.15 262.71 1401.95 333.79 2282.23 
GRU, gate recurrent unit; SVM, support vector machine; MLP, MultiLayer Perceptron; CNN, convolutional neural net-
work; AM-ConvFGRNET, attention-convolutional; Auto-BiLSTM, auto-encoder bi-directional long short-term memory; 
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MODBNE, multi-objective deep belief networks ensemble; LSTM + FNN, long short-term memory and feedforward neural 
network. 

By comparing the scores, the results of GRU, Auto-BiLSTM, and AM-ConvFGRNET 
are the top three among comparison methods. In FD001 and FD002, AM-ConvFGRNET 
demonstrates the second best and the best performance, indicating that in relatively less 
complex working condition, AM-ConvFGRNET is feasible. From Figure 18, it is also no-
ticeable that in FD003, the difference between prediction and true RUL is the greatest. In 
the case of testing in the dataset FD003, as to RMSE and Score, it can be seen that the worst 
performance of the model is AM-ConvFGRNET. It can be believed that in this particular 
case the number of convolutional filters takes precedence over the processing that a De-
coder can give, and the lack of parameters in the model AM-ConvFGRNET is the cause of 
this discrepancy. In spite of this, it is also observed that, in three of four cases, the AM-
ConvFGRNET model presents the best results in terms of RMSE, and in two of four, with 
respect to score. Thus, it can be thought that the AM-FGRNET model is the best proposed 
model since in most cases it presents the best results both when evaluating and evaluating 
Score. It can also be thought that this model can be improved by increasing the number of 
convolutional filters, along with using the regularization-dropout technique. The compar-
ison of predicted scores and calculation time of GRU, Auto-BiLSTM, and AM-ConvFGR-
NET is shown in Figure 19. 

  

(a) (b) 

  

(c) (d) 

Figure 18. Comprehensive comparison of prediction RUL of AM-FGRNET. (a–d) Represent the FD001–FD004 datasets, 
respectively. 
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Figure 19. Comparison of predicted scores and calculation time of GRU, Auto-BiLSTM, and AM-
FGRNET. 

4.2. Results Based on Ball Screw Experiment 
The learning rate is chosen as 0.001 and the training time is set to 20. The dataset is 

selected from a randomly 80% of the training database for training, while 20% for valida-
tion. The predicted RUL and true RUL of the ball screw are shown in Figure 20. 

 
Figure 20. Comparison between prediction RUL and the true RUL of ball screw data. 

To further verify the performance and competence of the proposed model, RNN and 
LSTM are chosen to test the dataset. 

From Table 13, it can be observed that the RMSE and Score of comparative methods 
are close. Hence, the main comparison is focused on the running time. 
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Table 13. Model performance comparison for RUL prediction based on ball screw dataset. 

Method RMSE Score Time (Second) 
RNN 0.0152 0.0168 31.55 
LSTM 0.0136 0.0141 21.43 

AM-ConvFGRNET 0.0149 0.0145 16.78 

Because every calculation in each time step depends on the results from the previous 
time step, making the processing time especially long in dealing with the long-time se-
quence, a problem that limits the number of RNN stacked by the deep RNN model. More-
over, RNN has the problem of gradient disappearance and gradient explosion. To deal 
with such problems, LSTM, which can forget some unimportant information, was pro-
posed. However, LSTM contains three gates, which can complicate the structure, slowing 
the processing time. The proposed model takes less time to perform and is well-suited for 
applications to continuous time series. 

Modern neural networks move towards the use of more linear transformations 
[57,58]. These make optimization easier by making the model differentiable almost every-
where, and by making these gradients have a significant slope almost everywhere. Effec-
tively, information is able to flow through many more layers provided that the Jacobian 
of the linear transformation has reasonable singular values. Linear functions increase in a 
single direction, meaning that modern neural networks are designed for local gradient 
information which corresponds to moving to a distant solution. What this means for the 
LSTM, is that, although the additional gates should provide it with more flexibility than 
the proposed model, the highly nonlinear nature of the LSTM makes this flexibility diffi-
cult to utilize and so potentially of little use. 

5. Conclusions 
With the continuous development of smart manufacturing, it becomes increasingly 

important to use massive historical data to predict the remaining life of equipment, detect 
potential problems as early as possible, and reduce the cost of manual inspection. The four 
classes of datasets of C-MAPSS is firstly learnt through the AM-ConvFGRNET model. The 
four classes of databases have different levels of complexity, and the simpler dataset, such 
as FD001, is a subset of the most complex data, such as FD004. The datasets are first 
crossed, so that each type of dataset contains multiple failure modes and working scenar-
ios, and the generalization ability of the model is enhanced; then the constructed data 
matrix is input into the AM-ConvFGRNET model, to calculate the remaining life of the 
turbofan, and the accuracy is analyzed and compared with other methods; finally, the 
AM-ConvFGRNET model is improved by the code–decoding structure. The experimental 
results show the following: (1) The AM-FGRNET model has a better prediction accuracy 
than LSTM, other machine learning methods, and other deep learning methods; (2) com-
pared with LSTM, the AM-ConvFGRNET model reduces the number of forgetting gates 
and performs better in terms of computational power and computational speed; and (3) 
the improved FGRNET model with the attention mechanism improves the accuracy of 
computation, but the computational speed decreases slightly, and the future AM-Con-
vFGRNET model is expected to be more accurate. 

The second case is based on the ball screw experiment. Though the results show the 
nearly equal accuracy of RNN, LSTM, and the proposed method, the training time of the 
proposed model is shorter, verifying its calculation anility. 

With some success, many studies have proposed models more complex than the 
LSTM. This has made it easy, however, to overlook a simplification that also improves the 
LSTM. The AM-FGRNET provides a network that is easier to optimize and therefore 
achieves better results. Much of this work showcased how important parameter initiali-
zation is for neural networks. 
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In future work, the model can be improved by increasing the number of convolu-
tional nuclei and hidden neurons in the full connective layer and using the dropout tech-
nique. It is also known that in measurements there are rare, inconsistent observations with 
the largest part of population of observations, called outliers. Because the raw vibration 
signals are directly used as the input, the model for diagnosis needs more complex net-
work structure to ensure the accuracy of results, causing a large calculation load. Hence, 
the model combing deep learning with signal preprocessing method will be researched to 
discard redundant information and attain characteristics of faults. 

Furthermore, the two cases used here do not consider the uncertainty of the RUL 
prediction, only point prediction is estimated. The point prediction, however, point pre-
diction is volatile in non-linear noisy environments and provides limited value to guide 
maintenance decisions in practical engineering applications. RUL prediction considering 
uncertainty is the process of incorporating multiple sources of uncertainty and individual 
variability into the RUL prediction distribution to obtain confidence intervals for the pre-
dicted results. Some researchers have attempted to develop Bayesian neural network-
based RUL prediction models to solve the uncertainty problem [59,60]. A Bayesian neural 
network converts parameters in an ordinary neural network from deterministic values 
into random variables that obey a specific distribution in order to estimate the uncertainty 
of the model. A Bayesian neural network can be used to obtain the distribution of predic-
tions and thus the confidence interval, which is given to ensure confidence in the predic-
tion, provide information about the accuracy of the RUL prediction, and is valuable for 
maintenance of equipment systems and scientific decision making. Although Bayesian 
neural networks can be used to solve the uncertainty problem of RUL prediction, the high 
cost of training has limited the practical application of Bayesian neural networks. In future 
research, on the one hand, the application of Bayesian neural networks can be further 
studied to try to solve some of the shortcomings of Bayesian neural networks; on the other 
hand, we can try to introduce uncertainty research methods based on deep learning from 
other fields into this field, such as the Monte Carlo dropout and loss function improve-
ment method proposed in the field of computer vision [61,62]. The dropout layer could 
bridge the gap of lacking the model uncertainty quantification when utilizing data-driven 
model and enhance the robustness of the measurement equation. 
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