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Abstract: Positioning using Wi-Fi received signal strength indication (RSSI) signals is an effective
method for identifying the user positions in an indoor scenario. Wi-Fi RSSI signals in an autonomous
system can be easily used for vehicle tracking in underground parking. In Wi-Fi RSSI signal based
positioning, the positioning system estimates the signal strength of the access points (APs) to the
receiver and identifies the user’s indoor positions. The existing Wi-Fi RSSI based positioning systems
use raw RSSI signals obtained from APs and estimate the user positions. These raw RSSI signals can
easily fluctuate and be interfered with by the indoor channel conditions. This signal interference in the
indoor channel condition reduces localization performance of these existing Wi-Fi RSSI signal based
positioning systems. To enhance their performance and reduce the positioning error, we propose
a hybrid deep learning model (HDLM) based indoor positioning system. The proposed HDLM
based positioning system uses RSSI heat maps instead of raw RSSI signals from APs. This results in
better localization performance for Wi-Fi RSSI signal based positioning systems. When compared to
the existing Wi-Fi RSSI based positioning technologies such as fingerprint, trilateration, and Wi-Fi
fusion approaches, the proposed approach achieves reasonably better positioning results for indoor
localization. The experiment results show that a combination of convolutional neural network and
long short-term memory network (CNN-LSTM) used in the proposed HDLM outperforms other
deep learning models and gives a smaller localization error than conventional Wi-Fi RSSI signal
based localization approaches. From the experiment result analysis, the proposed system can be
easily implemented for autonomous applications.

Keywords: indoor localization; Wi-Fi RSSI signals; deep learning; CNN-LSTM; Wi-Fi RSSI heat maps

1. Introduction

Indoor positioning using Wi-Fi received signal strength indication (RSSI) signals
is a promising positioning technique when the inertial measurement unit (IMU) sensor
based [1] or the camera [2] based positioning systems face localization challenges. In Wi-Fi
RSSI signal based indoor positioning, the positioning system effectively utilizes the indoor
Wi-Fi access points (APs) signal strength for localization. The RSSI raw signals from the
APs give the user distance information from the APs to the receiver using free-space path
loss (FSPL) model [3]. The conventional Wi-Fi RSSI based localization approaches such
as trilateration [4], fingerprint [5] and weighted path loss [6] algorithms use the user dis-
tance information to estimate the user’s positions in the indoor environments. However,
the raw RSSI signals from APs are susceptible to signal fluctuations, multipath effects,
shadow fading, and signal blockage. To solve these challenges, we propose an indoor
positioning system, which uses the RSSI heat maps instead of raw RSSI signals to estimate
the user’s positions in indoor environments. As compared to the conventional localization
approaches which use raw RSSI signals, the proposed RSSI heat maps based positioning
technique reduces the challenges in indoor localization. The proposed positioning sys-
tem uses a hybrid deep learning model (HDLM) that comprises a convolutional neural
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network and long short-term memory network (CNN-LSTM). In HDLM, the CNN lay-
ers used for feature extraction of input data, are combined with LSTM layers to support
sequence prediction. CNNs are used in modelling problems with spatial image inputs
and give accurate image classification results. LSTMs on the other hand are used in mod-
elling tasks related to sequences and give the best prediction results in temporal sequence
tasks. To perform the tasks which need a sequence of images to predict user positions,
leveraging advantages from both ends makes HDLM the best choice for our application.
Further more, when compared to individual CNN and LSTM model based indoor po-
sitioning systems, the proposed HDLM based positioning system enhances the indoor
localization performance and achieves reasonable localization results. The major appli-
cation areas of the proposed system are object localization in airports, people tracking in
shopping malls, navigation in public transport, robot localization, vision-and-language
navigation [7-9], visual tracking [10-12] and autonomous car parking. The proposed posi-
tioning system can be easily implemented in these applications at low cost and provides
reasonable localization accuracy for real time localization.

Deep learning based Wi-Fi RSSI signal based positioning systems have been analyzed
using several localization approaches and the systems show significant improvement in
localization performance [13-16]. The existing Wi-Fi RSSI based localization technolo-
gies use models such as K-nearest neighbors (KNN), artificial neural network (ANN),
support vector regression (SVR), extreme learning machine (ELM), CNN and LSTM for
localization. These models give accurate localization results for Wi-Fi RSSI signal based
systems. However, hybrid models such as the CNN-LSTM model have better localization
performance and reduced localization error compared to other deep learning models. In this
paper, we investigate the significance of the hybrid model for indoor localization using
Wi-Fi RSSI heat maps. The main contributions of the paper are summarized as follows:

o  We formulated a Wi-Fi RSSI signal based positioning system using four APs and
collected the RSSI values using an Android based smartphone. The smartphone uses
an application which shows the RSSI signal strengths of the particular location in the
experiment area.

e  We generated a database of Wi-Fi RSSI heat maps from the RSSI data. The heat maps
indicate the RSSI signal strength from APs to the receiver for a particular location in the
experiment area. The proposed HDLM uses the generated heat maps for localization.

o  We implemented HDLM using CNN-LSTM. The model takes RSSI heat maps as
the input and predicts the user positions. The results from the proposed HDLM
approach have better localization accuracy and less error for localization compared to
conventional localization approaches.

The rest of the paper is organized as follows—Section 2 presents a discussion of related
work on the Wi-Fi RSSI signal based positioning systems and the existing challenges of Wi-
Fi RSSI signal based positioning systems. In Section 3, we proposed a hybrid deep learning
model based on an indoor positioning system and explained the HDLM architecture used
in the proposed system. The experiment and result analysis of the proposed HDLM is
discussed in Section 4 and we conclude our paper in Section 5.

2. Related Work

Indoor localization using Wi-Fi RSSI signal has been studied in the past as well as in
recent times based on RSSI signal strength [17], Wi-Fi channel state information (CSI) [18],
combined RSSI and CSI signals [19] and time of arrival of signals [20]. In this section
we focus on the previous work on the deep learning based Wi-Fi RSSI based localization
approaches and the advantages and limitations of the existing systems.

In the existing Wi-Fi RSSI signal based indoor positioning systems the RSSI signals
always suffer from severe multipath effects caused by the signal’s reflection, refraction,
diffraction and collision. To address this problem, an ANN based localization system
is proposed in [21]. The results from [21] show that using an ANN architecture in the
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presence of multipath effects from the indoor environments significantly improves the
localization performance of the Wi-Fi RSSI signal based positioning systems. However,
the unpredictable behavior of the ANN network reduces the trust on the localization re-
sults therefore requiring further improvements. To make a reliable localization system,
a deep neural network (DNN) based localization system is introduced in [22-25]. The DNN
based localization system improves the indoor position accuracy and the system can easily
identify the user positions in complex indoor environments. However, the difficulties
of training the DNN and large amount of training data are the major challenges of the
DNN based localization systems. An alternative approach to improve the localization
performance is to introduce a CNN. A CNN based localization, which uses RSS time-series
of a wireless local area network (WLAN) access points is introduced in [26]. The CNN
based Wi-Fi system provides accurate building and floor prediction for indoor localization.
However, the large memory requirements due to activations at each network layer increase
the system cost and it is difficult to implement a CNN based localization system with
limited resources. To make an accurate and advanced Wi-Fi RSSI signal based localiza-
tion system, a new time-series semi-supervised learning algorithm is proposed in [27].
The experimental results from [27] show that the semi-supervised learning algorithm gives
accurate position results than conventional Wi-Fi RSSI signal based positioning systems.
To reduce the calibration efforts of Wi-Fi fingerprint maps, a Wi-Fi localization system
which uses the ELM is explained in [28,29]. The fast learning speed of ELM reduces the
time and manpower costs for the Wi-Fi fingerprint maps and improves the localization
performance. However, the localization results from the ELM based system are not precise
and accurate as compared to deep learning based systems. A localization system which
utilizes the advantages of recurrent neural network (RNN) and LSTM models are presented
in [30-32]. These systems improved the localization performance and gave significant
localization results for real time implementation. A deep learning model based Wi-Fi
indoor localization system using RSSI and channel state information (CSI) is implemented
in [33] for better localization performances. The deep learning model based localization
approaches discussed here achieved superior performance compared to conventional Wi-Fi
RSSI signal based localization approaches. However, the deep learning model based Wi-Fi
localization systems use raw RSSI data from APs for localization. The raw RSSI data from
the APs is not stable in a particular indoor location and the RSSI values can easily fluctuate
with indoor channel conditions. To overcome these challenges of RSSI signals, we proposed
a Wi-Fi RSSI signal based positioning system, which uses RSSI heat maps instead of RSSI
raw values. The results from our experiments show that the proposed Wi-Fi RSSI heat
map based positioning system using HDLM gives the best localization accuracy from all
conventional deep learning approaches.

3. Proposed Hybrid Deep Learning Model Based Indoor Positioning System

The proposed localization approach uses RSSI heat maps and HDLM to identify
the user’s position. Figure 1 shows the block diagram of the proposed HDLM based
localization approach.

From Figure 1, the proposed system starts with the RSSI data collection. The collected
RSSI data is then converted into heat maps. For the heat map generation, we used a ‘plotly”
(https:/ /plotly.com/matlab/) graphing library for MATLAB [34]. The “plotly” graphing
library has the option to add the Wi-Fi RSSI values and it generates the corresponding
heat maps. The generated heat maps are used for the training and testing of the HDLM.
The CNN model is used for the feature extraction and the LSTM model is to support
location prediction. A CNN model consists of two parts: feature extraction part and the
classification part. The feature extraction part utilizes the convolutional + pooling layers
to perform the feature extraction from heat maps. The CNN model used in the proposed
system extracts the features from the input heat maps such as the RSSI colour pattern.
The RSSI colour pattern of each heat map is different for each location and the model
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Figure 1. Proposed hybrid deep learning model based indoor positioning system.

3.1. Proposed HDLM Model

The proposed HDLM model consists of two parts. The first part is the CNN model
followed by an LSTM model. Figure 2 shows the proposed HDLM.

CNN Model: The most popular neural network used for image classification is the
CNN model [35]. The most attractive and unique feature of the CNN model is that
it gives accurate classification results. This model is used for image recognition [36],
image classifications [37], object detections [38] and recognizing faces [39]. In the CNN
model, data features are extracted from local connection and layer-by-layer calculation.
The global information is synthesized through the full layer connection. The CNN model
consists of the convolutional layer (Conv2D), pooling layer (Max pooling) and the fully
connected layer. Figure 3 shows the structure of the CNN model.

From Figure 3, the convolutional layer operates the convolution process with input
data and each convolution kernel extracts the input data features. The weight sharing
method in the convolution operation helps to reduce the number of parameters and
decreases the training complexity of the neural network. The weight sharing process
increases the training speed of the network, and the pooling layer in the CNN model
reduces the dimension and size of the input data [40].
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Figure 3. Convolutional neural network (CNN) structure.

LSTM Model: LSTM model [41] is an improved version of the RNN [42] and is
capable of learning the sequence prediction problem such as predicting the user positions.
The model solves the gradient disappearance and gradient explosion problems in RNN.
The unique features of LSTM model shows that the model is suitable for processing long-
term sequence data and solves long-term dependence. The basic LSTM neutral network
consists of a memory unit and three gates which control the memory unit. The three gates
are referred to as input gate (IG), output gate (OG) and forget gate (FG). In the LSTM neural
network, gates are the structures that determine the selective passage of data. If the sigmoid
function gives the output as 0, the network discards the data completely. When the output
is 1, the network passes the data. The data processes in the three gates are summarized
as follows:

(i) Forget Gate (FG): The FG is used to determine the data discard process. This gate
decides which data should to be discarded or not. The output from the FG is defined as
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FGi = o(wrpgxt + Upghi—1 + brg) @

were 0 is the sigmoid function, wrg and Upg are the weight vectors for forget gate, brg is
the offset and h;_; is the output of the previous layer with the current input x;.

(ii) Input Gate (IG): The IG’s role in the LSTM neural network is to update based on
the existing information. In IG, we run the sigmoid function and estimate the value of
IG;. IG; decides which value will enter into the network, and based on the tanh function
a candidate value vector C; is obtained. The obtained C; is then multiplied with IG; and
added to the state C;. The expressions used in the IG are as follows:

IG; = (wigxt + Urghi—1 + big) ()
C = tanh(wigcxt + Ul-gcht,l + bigc) (3)
Ct = FG;.Cy_1 + IG1.C; 4)

(iii) Output Gate (OG): In this gate, the network estimates the output of the information
of the current point. After running the sigmoid function to get output, OG; and identifies
which part is the output, then cell state output C; is processed by the tanh function to
obtain a value between -1 and 1. Finally, the obtained value is multiplied with OG; to get
the ultimate output and the expressions are as follows:

OG; = o(wogxt + Uochi—1 + boc) ®)

hy = OG; tanh(Ct) (6)

Hybrid Deep Learning Model: The hybrid deep learning model takes the advantages
of the CNN and LSTM models and improves the system performances [43]. In the hybrid
deep learning model, we implemented a hybrid network and it uses a CNN model followed
by a LSTM model. The hybrid deep learning model block from the Figure 1 shows the
structure of the hybrid network. The first part of the hybrid model is the CNN which is
used for the data input and feature extraction. In CNN, the input is the feature graph
and which is arranged in time series. The CNN model uses two convolutional (Conv2D)
and pooling (MaxPooling2D) layers. After the convolutional and pooling layer, the CNN
model uses a fully connected layer (Dense) which extracts the characteristics of the data as
a one-dimensional vector array. The second part of the hybrid model is the LSTM section
which takes the outputs from the CNN as input. In the LSTM, our model uses one LSTM
layer and a fully connected layer and the outputs user position values.

3.2. Localization Process

The localization algorithm in the proposed system effectively used the HDLM and the
process is shown in Figure 4.

In Figure 4, the localization algorithm first uses the training RSSI heat maps for CNN
and LSTM models’ training. After the weight initialization of the models the system
uses testing heat maps for localization. In the testing phase, the CNN extracts the RSSI
information from the spatial domain and passes it to the LSTM model. The LSTM model
exploits the information in the temporal domain and predicts the user positions. The output
of the LSTM model is the user’s x and y position values.
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Figure 4. Localization process.

4. Experiment Setup and Result Analysis

To validate the performance of the proposed HDLM based indoor positioning sys-
tem, we carried out the experiments in our university building corridor with four APs.
The Smartphone, APs and experiment rooms used for the RSSI data collection is shown in
Figure 5.

Figure 5. Smartphone, access points (APs) and experiment rooms. (a) Smartphone. (b) Wi-Fi APs.
(c) Room-509. (d) Room-511. (e) Room-512. (f) Floor.

During the experiments, the RSSI data was collected by a user with the help of an
Android smartphone. The experiments were carried out strictly along the skeleton path.
The user held the smartphone in his hand and walked in the skeleton path. In the experi-
ment area, we selected the training locations based on the user movements. We assumed
the user has a constant walking speed with a 0.5 m step length. We used the starting
point of the user as the first training location and added each training location with 0.5 m
differences. The locations from two adjacent training locations are used as the testing places.
For the training and testing data collection, we used an Android 4.4.2 (KitKat) platform on
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a LG G3 smartphone with Snapdragon 801 processor and 3 GB RAM. The skeleton map of
the experiment is shown in Figure 6.

18
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Figure 6. Experiment skeleton map.

For the experiments, we used our three research lab rooms and we divided the lab
rooms into 30 training and test locations. The user started walking from room 509 into
room 511 and finished his walk in room 512. From the 30 training and testing locations,
we generated 3000 RSSI heat maps for model training and 1500 heat maps for model testing.
Figure 7 shows the generated RSSI heat maps.
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0 5
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(a) Location 1 (L1) (b) Location 2 (L2) (c) Location 3 (L3)

Figure 7. Received signal strength indication (RSSI) heat maps.

In RSSI heat maps, the four-square boxes indicate the 4 APs RSSI signal strength at a
particular location and the x and y- axis are the APs real coordinates. The four rectangles
with different box size show the RSSI signal characteristics from each APs. To classify
the APs signal strength and identify the signal strengths of each APs, the heat map uses
different size of rectangular boxes. The different size of the rectangular boxes indicates the
APs number starting from AP1 to AP4 based on the largest to smallest box sizes. From the
heat maps, it can be seen that the RSSI pattern is different for each location and the unique
RSSI pattern of a particular location in the experiment area can be used for user position
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estimation. The proposed model uses the unique features of the heat maps for model
training and testing.

To analyze the performance and accuracy of the proposed HDLM, we started our
simulation with hyperparameter tuning. In hyperparameter tuning, we train the model
with different hyperparameter settings and obtained the optimum values which gives
best model performance. Table 1 summarizes the hyperparameter values used in the
proposed model.

Table 1. Hyperparameter values used in the proposed model.

Hyperparameter Value
Kernel size for convolution 3x3
Pooling size 2x2
Activation function ReLU (rectified liner unit)
Number of epochs 150
Batch size 5
learning rate 0.001
Hidden nodes 32
Optimizer Adam
Loss Mean squared error (MSE)

To evaluate the impact of the proposed HDLM based approach, first we estimated
the deep learning model accuracy and compared the model accuracy with CNN [44],
LSTM [45] and ELM [46] models. For the model accuracy comparison, we used the same
experiment setup for ELM, CNN and LSTM based approaches. Figure 8 shows the accuracy
comparison of the proposed HDLM with other deep learning models.

T T

HDLM LST™M

90

T T
80 |
70
60 |
S
=50
[$]
o
3401
Q
<
30
20
10 F
0
CNN ELM

Figure 8. Accuracy comparison of models.

From Figure 8, the proposed HDLM model gives better accuracy for RSSI heat maps
than other models. The proposed model effectively utilizes the CNN and LSTM model
features and improves the model’s performance. The ELM model gives poor performance
for RSSI heat maps and it is not a suitable model for our application.

Next, we analyzed the training and testing time of the proposed model for RSSI
heat map data. The training and testing time are an influencing factor for real time
indoor localization. The model should predict the user’s position accurately without any
delay problems. Table 2 summarizes the training and testing time of the proposed and
other models.
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Table 2. Training and testing time of all models.

Time CNN ELM LSTM HDLM

Training time (s) 105.33  1.61 12752 14543
Testing time (s) 0.39 0.05 0.42 0.50

From Table 2, we can see that the training and testing time of the proposed HDLM
model is still much higher than the other models. However, when we consider the localiza-
tion performance of the proposed HDLM, these computational times are acceptable for
indoor localization [47]. The ELM model is capable of fast training and testing, however the
localization results from the ELM model are not suitable for our localization purpose.

The performance of the proposed localization system changes with the number of APs
used in the experiments. The APs number is an influencing parameter to determine the
system’s localization performance. To analyze the effect of the APs number for localization,
we did the experiment with varying the APs number from 2 to 4 and Figure 9 shows
the results.

2.5

EELM

=
un

mCNN

W LSTM

[

Proposed HDLM

Mean Localization Error (m)

0.5

3
Number of APs

Figure 9. Mean localization error results with different number of APs.

From Figure 9, the results show that the mean localization error decreases with increase
in the number of APs. The performance of the proposed approach maintains the localization
accuracy in all situations and gives best results. The results from LSTM model shows better
performance than CNN and ELM models and also maintains a reasonable localization
accuracy. The ELM model based localization approach shows the worst performance and
the system shows a high margin of localization error when we use a lower number of APs.
From the result analysis, it can be seen that the proposed approach shows best localization
performance in all situations.

To prove that the proposed system outperforms the conventional approaches we esti-
mated the average localization error, mean localization error and probability distribution
of the localization error. The proposed HDLM based localization approach is compared
with conventional Wi-Fi localization approaches such as fingerprint algorithm, trilateration
algorithm and Wi-Fi fusion algorithm [48]. For the performance comparison, we used
the same experiment setup such as smartphone, APs and experiment rooms. Figure 10
shows the average localization error results from the proposed HDLM based localization
approach and conventional localization approaches.
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From Figure 10, the proposed HDLM based localization approach gives the best
localization results when compare to other conventional Wi-Fi localization approaches.
In the conventional Wi-Fi localization approaches, the Wi-Fi fusion algorithm shows better
performance than trilateration and fingerprint approaches. From the average localization
error results, we estimated the mean, maximum, minimum and standard deviation of
localization errors and Table 3 summarizes the results.

Table 3. Performance of different localization approaches.

Localization Method Mean Error (m) Max. Error (m) Min. Error (m) Standard Deviation of Error (m)
Wi-Fi Trilateration Approach 1.8941 2.7727 0.1667 0.5453
Wi-Fi Fingerprint Approach 1.8197 2.4280 0.1214 0.4299
Wi-Fi Fusion Approach 1.5895 2.1993 0.1078 0.4560
Proposed HDLM Approach 1.0863 1.6901 0.1124 0.3172

From Table 3, the proposed localization approach gives least localization error than
conventional localization approaches. The mean localization error result from the Wi-Fi
fusion approach outperforms the Wi-Fi fingerprint and trilateration approaches. From the
mean localization error results, it is clear that the trilateration approach is not a suitable
approach for our localization purpose.

The localization performance of the proposed approach was also validated and ana-
lyzed by the probability distribution of localization error and Figure 11 shows the results
from all approaches.
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Figure 11. Probability distribution of localization error.

From Figure 11, the proposed method shows least mean and standard deviation
of localization error than conventional Wi-Fi localization approaches. The localization
error results indicate that the proposed localization system is a good choice for indoor
localization with minimum localization error. From all the experiments and result anal-
ysis, we demonstrated the superior performance of the proposed HDLM based indoor
localization and this approach has high influence for estimating the user positions in
indoor scenarios.

5. Conclusions

In this paper, we proposed a HDLM, a CNN-LSTM based localization system for
indoor localization with Wi-Fi RSSI heat maps. We experimentally verified the feasibility
of using Wi-Fi RSSI heat maps for indoor localization. We then presented the HDLM based
localization system, where we trained the HDLM using Wi-Fi RSSI heatmaps, and then
used newly generated Wi-Fi RSSI heat maps to estimate the user positions. The localization
results from our experiments show that the proposed HDLM based localization system
achieved reasonable localization accuracy for indoor localization. Through extensive exper-
imentation, we validated the superior performance of our proposed system to conventional
Wi-Fi based localization systems.
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