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Abstract: Recent speech enhancement research has shown that deep learning techniques are very
effective in removing background noise. Many deep neural networks are being proposed, show-
ing promising results for improving overall speech perception. The Deep Multilayer Perceptron,
Convolutional Neural Networks, and the Denoising Autoencoder are well-established architectures
for speech enhancement; however, choosing between different deep learning models has been mainly
empirical. Consequently, a comparative analysis is needed between these three architecture types
in order to show the factors affecting their performance. In this paper, this analysis is presented
by comparing seven deep learning models that belong to these three categories. The comparison
includes evaluating the performance in terms of the overall quality of the output speech using
five objective evaluation metrics and a subjective evaluation with 23 listeners; the ability to deal
with challenging noise conditions; generalization ability; complexity; and, processing time. Further
analysis is then provided while using two different approaches. The first approach investigates how
the performance is affected by changing network hyperparameters and the structure of the data,
including the Lombard effect. While the second approach interprets the results by visualizing the
spectrogram of the output layer of all the investigated models, and the spectrograms of the hidden
layers of the convolutional neural network architecture. Finally, a general evaluation is performed
for supervised deep learning-based speech enhancement while using SWOC analysis, to discuss the
technique’s Strengths, Weaknesses, Opportunities, and Challenges. The results of this paper con-
tribute to the understanding of how different deep neural networks perform the speech enhancement
task, highlight the strengths and weaknesses of each architecture, and provide recommendations for
achieving better performance. This work facilitates the development of better deep neural networks
for speech enhancement in the future.

Keywords: deep learning; deep neural networks; noise reduction; speech enhancement; speech
processing

1. Introduction

Speech enhancement is the process of improving the quality and intelligibility of
a speech signal by removing any other signals propagating with it, being defined as
noise. There are many applications for speech enhancement, for example, it is an essential
process in hearing aids, mobile communication systems, Automatic Speech Recognition
(ASR), headphones, and VoIP (Voice over IP) communication [1]. Speech enhancement is
a longstanding issue that has attracted the attention of signal processing researchers for
decades and it remains unsolved. Many techniques have been proposed in order to tackle
this challenging task, starting from the classical techniques that were first proposed in the
70s [2], which are based on statistical assumptions of the noise presented in the speech
signal, to the more advanced techniques that researchers have reached nowadays, based on
deep learning algorithms [3]. The classical techniques have been previously widely used,
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and they are based on analyzing the relationship between speech and noise while using
statistical assumptions. Although some of these techniques were reported to be effective
in enhancing the noisy speech [4,5], it was proven that these methods are more effective
when applied to environments with a relatively high Signal to Noise Ratio (SNR), or in
the case of stationary noise conditions [2]. It was also reported that these techniques are
not effective in improving speech intelligibility [6,7]. However, in deep learning-based
supervised speech enhancement, a Deep Neural Network (DNN) is trained while using
pairs of clean and noisy speech signals, in order to learn the mapping function that gives
the best prediction of the clean speech without using any statistical assumptions [8].

Deep learning-based speech enhancement has made a clear contribution in this re-
search area, and some proposed DNNs have managed to output speech with much better
perception, as compared to the classical techniques. However, the learning process of
a DNN for speech enhancement is affected by many factors, which are summarised in
Figure 1. These factors can be divided into three categories: the used model setup, data
structure, and learning hyperparameters. In the following Sections 1.1–1.3, these factors
are explained in more detail, while the problem definition and contribution of this research
will be discussed in Section 1.4.

Figure 1. The three main factors affecting the performance of Deep Neural Networks (DNNs) for speech enhancement:
Model Setup, Data Structure, and Learning Hyperparameters. The parts investigated in this study are shaded in grey. All
acronyms are defined in Sections 1.1–1.3.

1.1. Model Setup

Many DNN architectures that can perform speech enhancement, including the deep
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Denoising Autoen-
coder (DAE), Recurrent Neural Network (RNN), Generative Adversarial Network (GAN),
and hybrid architectures. These architectures are discussed in more detail in Section 2.
These architectures have their own mathematically defined internal operations [9]; how-
ever, the presence of the large numbers of network hyperparameters makes it difficult
to determine how much the DNN architecture type is contributing to solving the speech
enhancement problem. These hyperparameters include layer-specific parameters, such as
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the unit number in the case of dense layers; and, the convolution type, number of filters,
kernel size, padding type, and dilation rate, in the case of convolution layers [10]. More-
over, the number of layers, or network depth, and the activation functions used are factors
that also affect performance [11]. The Rectified Linear Unit (ReLU) [12] and its edited
versions: Leaky ReLU (LReLU) [13], Exponential Linear Unit (ELU) [14], and Parametric
ReLU (PReLU) [15], are the most commonly used activation functions in the hidden layers.
While, Linear, TanH, and Sigmoid are common activation functions in the output layer.

1.2. Data Structure

Deep learning, as a data-driven approach, is also affected by the structure of the
data that are used in the training process. The speech and noise corpora and their sizes
highly impact the learning process. Moreover, it is common to do some preprocessing
operations before feeding the data to a DNN for speech enhancement, such as choosing
between 8 kHz and 16 kHz sampling frequency in order to feed the network with the most
relevant band of speech frequencies; the frame size used, frame overlap percentage, and
the window function [16] in order to ensure the efficiency of the training process; the used
normalization type to ensure generalization and facilitate the training process [17]; and,
the chosen training SNR to adjust the intensity of the background noise. The chosen setup
for all of these preprocessing operations affects the performance of the DNN.

Another factor that has a great impact on performance is the representation of the
speech signal in either time or frequency, as different speech features that can be extracted
based on the chosen representation. In the time domain, it is common to use the original
representation of the waveform or use short time frames and extract some features, such as
energy, entropy, and the Zero Crossing Rate (ZCR) [18]. While, in the frequency domain,
many meaningful features can be extracted, including Short Time Fourier Transform
(STFT), Mel-Frequency Cepstral Coefficients (MFCC) [19], Gammatone Frequency (GF),
Gammatone Frequency Cepstral Coefficients (GFCC) [20], and Perceptual Linear Prediction
(PLP) [21].

The training target is another factor that affects performance. With speech enhance-
ment, the training target is one of two types: mapping or masking [22,23]. The problem
can be seen as a regression problem if the target is mapping to clean speech time frames,
spectrogram, or cochleagram. It can also be considered to be a classification problem if the
target is to produce a mask that classifies every portion of the signal as either speech or
noise, and then by weighting the noisy speech with this mask, the enhanced speech signal
can be generated. There are many masking targets used in speech enhancement, such as
Ideal Binary Mask (IBM) [24], Ideal Ratio Mask (IRM) [25], and Spectral Magnitude Mask
(SMM); also known as Fast Fourier Transform mask (FFT-mask) [22], complex Ideal Ratio
Mask (cIRM) [26], and Phase-Sensitive Mask (PSM) [27].

1.3. Learning Hyperparamters

The learning process of a DNN also has some hyperparameters, such as the learning
rate, loss function, optimization technique, regularization technique, batch size, number
of epochs, and the framework that was chosen for implementation [28]. The setup of all
these hyperparameters is the third factor that impacts the performance of DNNs for speech
enhancement.

1.4. Problem Definition and Research Contribution

Because deep learning is affected by so many factors, understanding how DNNs work
through the investigation of these factors is a controversial subject in many research areas,
including speech enhancement. The study in [29] investigated the use of different speech
features for a classification task in order to estimate the IBM at low SNR. In Reference [30],
an investigation is presented on the two speech enhancement learning domains, time, and
frequency; while, the work in [31] explains how CNNs learn features from raw audio time
series. In Reference [22], the effect of the speech enhancement training targets used for the
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MLP architecture was studied; and recently, this study was extended to include different
architectures [32]. The use of different loss functions for the time domain approach for
speech enhancement was also recently evaluated in [33]. Moreover, recommendations were
given in [34] for the best values of training hyperparameters: learning rate, batch size, and
optimization techniques; while, the work in [35] presents a study of different frameworks
that are used in the training process of DNNs.

The outcome of all this research helps in understanding DNNs and aims to change
the trial and error nature of the training process. However, further work is needed in
order to investigate deep learning-based speech enhancement from the model setup and
data structure perspective. Based on the research in the literature, the following gaps
were found.

1. According to our knowledge, no work was found to compare and analyze the per-
formance of different single channel speech enhancement DNNs, while considering
different deep learning and speech enhancement aspects, such as generalization,
processing time, challenging noise environments, etc.

2. The investigation of network-related hyperparameters, as shown in Figure 1, was not
fully covered in the literature.

3. The visualization of the hidden layers of CNNs has been effective in understanding
how DNNs operate for many research areas; however, this approach was not applied
for speech enhancement.

4. The effect of data structure related factors, such as preprocessing techniques and the
Lombard effect, needs further investigation.

5. A general evaluation of deep learning-based speech enhancement is needed in order
to highlight its advantages and disadvantages.

In an attempt to fill these research gaps and contribute to the above-mentioned
investigations in the literature, the focus of this work is to evaluate different DNNs for
single channel supervised speech enhancement and investigate the effect of the chosen
model setup and the structure of the data on the performance. This is achieved while using
two different investigation approaches: numerical results and spectrogram visualization.
The main contributions of this paper are as follows.

1. A numerical analysis was conducted on deep learning-based single channel speech
enhancement while using the seven best performing DNN speech enhancement
architectures. These architectures belong to three broad categories: MLP, CNN, and
DAE. The choice of more than one architecture from the same category was based
on specific adjustments that were applied to the architecture that makes it perform
differently, as discussed in Section 3. The numerical analysis performed covers a
complete comparison between the seven architectures, concerning: overall quality
of the output speech using objective and subjective metrics, the performance in
challenging noise conditions, generalization ability, complexity, and processing time.
The outcome of this investigation highlights the advantages and disadvantages of
each architecture type.

2. Investigating the effect of changing network-related hyperparameters, as shown in
Figure 1, to provide recommendations for the best hyperparameter setup.

3. Visualizing the spectrograms of the outputs from all the investigated DNNs and the
internal layers of a CNN architecture, to give further explanation of the obtained
numerical results, obtained from 1 and 2.

4. Showing, by numerical analysis, the effect of the data structure on the performance
of different DNNs. This investigation includes the effect of the sampling frequency,
training SNR, the number of training noise environments, and the Lombard effect.
This investigation concludes the best practice setup of training data, and how the
Lombard phenomenon will affect testing results.

5. A general evaluation was conducted on deep learning-based speech enhancement
techniques using SWOC analysis, to reveal its: Strengths, Weaknesses, Opportunities,
and Challenges. This evaluation can serve as recommendations for future research.
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The rest of this paper is organized, as follows. Section 2 presents a survey of DNN-
based speech enhancement architecture types. Section 3 illustrates the details of the
implemented seven DNN architectures. Section 4 explains the datasets used and the
experimental setups. Section 5 presents the results and discussion of the conducted ex-
periments. The SWOC analysis is discussed in Section 6. Finally, Section 7 provides the
conclusion of this paper.

2. DNN Speech Enhancement Architecture Types

Many DNN architecture types have been recently employed for speech enhancement;
a review of these types is presented in the following subsections.

2.1. Deep Multi Layer Perceptron (MLP)

An MLP is the most basic and simplest speech enhancement architecture, in which all
of the nodes of the network are fully connected. Many speech enhancement DNN models
are based on the MLP and they are reported to achieve a significant improvement when
compared to the classical approaches. In Reference [36], the authors proposed an MLP
network of three hidden layers, while the work shown in [37] is based on four hidden layers,
and the use of reverberant speech as a target instead of clean speech, to further improve
speech intelligibility in both noisy and reverberant conditions. An MLP architecture is also
used in [38], in which 84 speech features feed the network, and unsupervised learning
is first used as an initialization process for the network weights, followed by supervised
learning for the main training process. The work shown in [39] investigated the large scale
training effect on the generalization capability, by training an MLP architecture while using
a large number of noise environments. Many other architectures are also found in the
literature using MLP for speech enhancement [40,41].

The power of the MLP is its ability to represent the input features and learn the
mapping function through the huge number of connections between the layers’ nodes.
However, the obvious drawback is the complexity of the architecture due to the huge
number of computations, which increases the computational cost and processing time. For
that reason, Graphical Processing Units (GPUs) are needed to speed up processing time,
but they are more expensive than standard Central Processing Units (CPUs) [42]. Moreover,
the fully connected nodes result in a large number of parameters that lead to a big model
size that may not fit onto the hardware of some speech enhancement applications [10],
such as hearing aids and mobile communication. The MLP also failed to perform time
domain-based speech enhancement [30,43] and, because of this, it cannot be considered to
be a generalized architecture type.

2.2. Convolutional Neural Network (CNN)

A CNN is an architecture used to solve the computational problem of the MLP by
using the convolution operation in both forward and backward propagation steps, in order
to reduce network parameters. CNNs were first made for image-related tasks to be able
to work with the huge amount of parameters, but, recently, they have proven to be very
effective in audio processing [44]. The advantage of the CNN is its dependence on the idea
of convolution, which results in fewer network parameters because of parameter sharing
and the sparsity of connections. Parameter sharing means that a feature takes advantage
of other features in a certain part of the input and uses it in another part, while sparsity
of connections means that the output value in each layer does not depend on all of the
inputs of the previous layer [45]. Some speech enhancement CNN-based architectures are
based on a two-dimensional (2D) convolution, while, recently, 1D convolutions are widely
used. One-dimensional (1D) convolution is very effective when applied to sequence data,
such as audio processing. Moreover, it results in a lower computational cost, which makes
the network suitable for real-time applications [46,47]. The convolution operation also has
many hyperparameters, such as padding size, stride size, and dilation rate. Changing these
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hyperparameters will lead to different types of convolution that impact the performance of
the CNN.

CNNs have been widely used in speech enhancement. The work shown in [48] used a
CNN-based speech enhancement architecture of 2D convolutions, max pooling, and fully
connected layers in order to predict the log power spectra of the clean speech. Another
work, [49], is also based on CNN; while, in Reference [43], another version of a CNN is
proposed, named Fully CNN (FCNN), in which the fully connected layers are replaced
with 2D convolutional layers in an attempt to decrease the computational cost that is added
by the fully connected layers. A comparison was also conducted in the same work between
the MLP, the basic CNN architecture, and the FCNN for speech enhancement in the time
domain, and the results show that the FCNN is the best performing. Recently, the work
shown in [50] and [51] used a combination of 1D and 2D dilated convolutions in order to
implement a FCNN, and reported a further improvement.

2.3. Denoising Autoencoders (DAE)

The autoencoder is a type of DNN that aims to output a similar representation to the
input while using two separate networks: an encoder and decoder. The encoder compresses
the input by removing any unimportant information to finally generate a compact form of
the input data, and then the decoder reconstructs an estimated form of the input [45]. The
autoencoder is considered to be an unsupervised learning scheme, because it only relies on
the input data.

Taking advantage of the compression process on the input data in the encoder net-
work, DAEs have been widely used recently in supervised speech enhancement. The
idea of DAEs is based on the fact that noise is considered to be unimportant information
when trying to map from noisy to clean speech, so it is significantly reduced during the
compression process in order to produce clean speech bottleneck features, and then the
decoder reconstructs the clean audio [52]. In this case, the autoencoder can be considered
as a supervised feature extraction procedure for DNNs, preceding the clean speech predic-
tion task. Bottleneck features have been proven to be very effective and they resulted in
significant improvement in many research areas [53,54]

DAEs could be implemented while using any one of the architectures discussed earlier,
and they are widely used for speech enhancement. For example, the work done in [55]
used an MLP-based autoencoder speech enhancement architecture, also known as Deep
DAE (DDAE), while, in Reference [56], a CNN-based one was proposed. A Convolutional
DAE (CDAE) is the most commonly used speech enhancement architecture in recent
research [50,57,58], because of the lower number of parameters and promising results.
However, autoencoders. in general, may not perfectly reconstruct a similar representation
of the input, which means the output will experience a loss, and this is the main issue of this
type of DNN architecture [59]. Even though this compression helps the network to remove
noise, it may result in speech distortion that negatively affects the overall speech quality.

2.4. Other Speech Enhancement DNNs

The previously discussed DNNs belong to a category called feed-forward neural
networks, as the signal flows in one direction from input to output. Another category of
neural networks is the RNN, in which the output of the hidden node is fed back to the
same node while also being an input to the next node; so, when making a decision, it
takes the current input and also what was learned from the previously received inputs into
consideration [9]. These feedback connections are useful when working with sequence
data that change in time, and, in the case of sequence to sequence mapping, such as the
speech enhancement task [60].

According to reported results, an RNN proved to be a powerful and competing
architecture for speech enhancement [61]. The work in shown [62] used a Long Short-
Term Memory (LSTM) based RNN architecture with multiple training targets, and then
a comparison was made with a basic MLP architecture. The work presented in [63] also
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compared RNNs with an MLP architecture after adding an extra time-frequency masking
layer that enforced some reconstruction constraints when converting from the frequency
domain back to the time domain. Recently, a Gated Recurrent Unit (GRU) based RNN is
used for real-time speech enhancement [64].

The Generative Adversarial Network (GAN) is another DNN architecture for speech
enhancement [65]. This architecture is a combination of two networks: the discriminator
network and generator network. The generator network works in the same way as an
autoencoder, as its role is to generate a similar representation of the input data, while the
discriminator network acts as a binary classifier that is trained to discriminate between
a real and fake input representation. The generator output is fed to the discriminator
as an input and then, based on the decision of the discriminator, the generator network
adjusts its parameters in order to produce a better representation of the input data [66].
The advantage of this network over DAEs is that it is not only trying to remove the noise
while using a bottleneck representation, but it also takes another important parameter into
consideration, which is the correlation between the input and output. However, training
DNNs, in general, is challenging; and, here, two DNNs are being trained to work together,
which increases the difficulty of the training process [67]. It was also reported that GANs
are sometimes not very effective for speech enhancement, and specific adjustments are
needed in order to obtain good results [68].

Other speech enhancement approaches use a combination of two types of architectures,
such as combining a CNN with an RNN [69,70]. The role of the CNN network is to extract
more advanced features from the input data; these features are then concatenated and fed
to the RNN for the learning and estimation processes. Moreover, other research is based
on integrating deep learning-based speech enhancement techniques with the classical
techniques [71], or with other learning techniques, such as reinforcement learning [72].
These approaches have proven to be promising; however, the complexity that may arise
from integrating different techniques is a drawback, which may restrict some speech
enhancement real-time applications. Although all of these other types of DNN were also
employed for speech enhancement and showed promising results, the investigation of
these architectures is outside the scope of this research.

3. Methodology: The Seven Implemented DNNs

In this work, seven DNN architectures were implemented, which belonged to the
three broad categories of MLP, CNN, and DAE, as discussed in Section 2. These seven
DNNs are based on architectures existing in the literature; however, some modifications
were performed in order to make a fair comparison between model and show the effect of
specific network-related parameters on the overall performance. Moreover, the training
setup and other speech enhancement related factors were kept the same for all architectures,
in order to conduct a fair evaluation and comparison, and then the effect of some of these
factors was separately discussed in the Results section. Figure 2 represents the seven
implemented architectures and Table 1 describes their configuration.

From the first category, MLP, the basic MLP architecture [36,38] was implemented, as
in Figure 2a. The architecture has three fully connected hidden layers of 2048 units and
ReLU activations. Each hidden layer is followed by a batch normalization layer in order to
improve performance and training stability, and 20% rate dropout layer to avoid overfitting.

From the second category, CNN, two architectures were implemented. The first is the
basic CNN architecture [48,49], as in Figure 2b, and it has three 2D convolutional layers
with ReLU activations, followed by two fully connected layers for predicting the output.
However, we edited this architecture by removing the max pooling layers, in order to
prevent information loss due to the absence of a speech reconstruction step; moreover, the
removal of these layers was proven to enhance the performance [73]. The number of filters
in each convolution layer was set to 64, and we used kernels of size (3 × 3) in all layers.
512 hidden units were used in the first fully connected layer with ReLU activations, while
linear activations were used in the last prediction layer. The second architecture from this
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category is the FCNN [43], as in Figure 2c, with six 1D convolution layers with PReLU
activations, and a final convolution output layer with linear activations. The used filter
size was 64 and the kernel size was 20, and they are constant across all layers.

Table 1. The configuration of the seven implemented DNNs. This table represents the different types of layers used:
Batch Normalization (BN), Fully Connected (FC), and Convolution (Conv). It also represents the number of units (Units),
activation function (Activation), dropout ratio (Dropout), kernel size (Kernel), number of filters (Filters), and the sizes of
max pooling (MP), upsampling (US), and stride.

Architecture (a) Architecture (d)

Type Units Activation Dropout BN Type Units Activation Dropout BN

BN - - - - BN - - - -
FC 2048 ReLU 0.2 yes FC 2048 ReLU 0.2 yes
FC 2048 ReLU 0.2 yes FC 500 ReLU - yes
FC 2048 ReLU 0.2 yes FC 180 ReLU - yes

FC 500 ReLU - yes
FC 2048 ReLU 0.2 yes

FC [o/p] 129 Linear - no FC [o/p] 129 Linear - no

Architecture (b) Architecture (c)

Type Kernal Activation Filters Units Type Kernal Activation Filters Units

2D-Conv (3 × 3) ReLU 64 - 1D-Conv 20 PReLU 64 -
2D-Conv (3 × 3) ReLU 64 - 1D-Conv 20 PReLU 64 -
2D-Conv (3 × 3) ReLU 64 - 1D-Conv 20 PReLU 64 -

FC - ReLU - 512 1D-Conv 20 PReLU 64 -
1D-Conv 20 PReLU 64 -
1D-Conv 20 PReLU 64 -

FC [o/p] - Linear - 129 1D-Conv [o/p] 20 Linear 1 -

Architecture (e) Architecture (f)

Type Kernal Activation Filters MP/US Type Kernal Activation Filters BN

2D-Conv (3 × 3) ReLU 64 MP(2 × 2) 2D-Conv (7×7) ReLU 64 yes
2D-Conv (3 × 3) ReLU 64 MP(2 × 2) 2D-Conv (5×5) ReLU 128 yes
2D-Conv (3 × 3) ReLU 64 MP(2 × 2) 2D-Conv (3 × 3) ReLU 256 yes
2D-Conv (3 × 3) ReLU 64 US(2 × 2) 2D-Conv (3 × 3) ReLU 256 yes
2D-Conv (3 × 3) ReLU 64 US(2 × 2) 2D-Conv (5×5) ReLU 128 yes
2D-Conv (3 × 3) ReLU 64 US(2 × 2) 2D-Conv (7×7) ReLU 64 yes

2D-Conv [o/p] (3 × 3) Linear 1 - 2D-Conv [o/p] (7×7) Linear 1 yes

Architecture (g)

Encoder Decoder

Type Kernal Activation Filters strides Dropout Type Kernal Activation Filters US Dropout

1D-Conv (7×7) PReLU 64 2 - 1D-Conv (3 × 3) PReLU 256 2 -
1D-Conv (7×7) PReLU 64 2 - 1D-Conv (3 × 3) PReLU 256 2 -
1D-Conv (7×7) PReLU 64 2 0.2 1D-Conv (3 × 3) PReLU 256 2 0.2
1D-Conv (5×5) PReLU 128 2 - 1D-Conv (5×5) PReLU 128 2 -
1D-Conv (5×5) PReLU 128 2 - 1D-Conv (5×5) PReLU 128 2 -
1D-Conv (5×5) PReLU 128 2 0.2 1D-Conv (5×5) PReLU 128 2 0.2
1D-Conv (3 × 3) PReLU 256 2 - 1D-Conv (7×7) PReLU 64 2 -
1D-Conv (3 × 3) PReLU 256 2 - 1D-Conv (7×7) PReLU 64 2 -
1D-Conv (3 × 3) PReLU 256 2 0.2 1D-Conv (7×7) PReLU 64 2 0.2

1D-Conv [o/p] (7×7) TanH 1 - - - - - -

From the third category, DAE, four architectures were implemented; one DDAE
architecture [55] and three CDAE architectures. The DDAE architecture, as in Figure 2d,
has two fully connected layers of 2048, and 500 hidden units, respectively, in each of the
encoder and decoder networks. A bottleneck fully-connected layer of 180 hidden units
between the encoder and the decoder. ReLU activations and batch normalization were
used in all layers, and a 20% dropout rate was used in the first layer of the encoder and the
last layer of the decoder.

The second architecture, as in Figure 2e, is the basic CDAE architecture [56]. The
encoder and decoder both consist of three 2D convolution layers with ReLU activations.
A max pooling layer was added after every convolution layer in the encoder network,
while convolution layers are followed by upsampling layers in the case of the decoder. The
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number of filters in each convolution layer was 64, while the max pooling and upsampling
sizes were (2 × 2). ReLU is the activation function that is used in all layers, except the final
convolution layer, in which a linear activation is used in order to predict the target.

Figure 2. The seven DNN-based speech enhancement architectures: (a) MLP, (b) the basic CNN, (c) the FCNN, (d) the
DDAE, (e) the basic CDAE, (f) a special type of CDAE, and (g) the deep CDAE.

The third architecture [57] is a special type of CDAE. This architecture, as in Figure 2f,
has three 2D convolution layers in each of the encoder and decoder circuits. However, no
max pooling and upsampling layers were used in this architecture, in order to decrease the
number of layers and prevent information loss. This network operates by increasing the
filter size across the encoder network; 64, 128, and 256 filter sizes were used, and decreasing
the kernel sizes; seven, five, and three kernel sizes were used. Afterwards, the reverse filter
and kernel sizes were used in the decoder network. Batch normalization is used in all layers
for training stability. Consequently, another feature extraction method is addressed in this
network, which is the increase of the number of filter through convolution layers, instead of
the bottleneck feature extraction method using max pooling layers, which was addressed
in the previous architecture. This will be the main factor affecting the performance of this
architecture when compared to other similar architectures.

The final architecture [58,65] is also a CDAE, as in Figure 2g, and it combines all of
the techniques that were addressed in the previous three CDAE networks, in addition
to the effect of 1D strided convolutions and increased depth. This network has nine 1D
convolutional layers with PReLU activation functions in the encoder and decoder, and a
final convolution output layer of TanH activations. Strided convolutions of size 2 were
used in the encoder network, while upsampling was used in the decoder. Every three
successive layers have the same filter and kernel size. The filter size increases after every
three hidden layers; 64, 128, and 256 filter sizes were used, while the kernel size decreases;
seven, five, and three kernel sizes were used. A dropout layer of rate 20% was included
after every three layers in order to overcome overfitting. Skip connections are added to this
architecture in order to avoid information loss that might occur as the processing proceeds
deeper through the network.

The chosen architectures are from the best performing models belonging to the three
main categories under investigation. Referring to Figure 2 and Table 1, the setup of these
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models was chosen in order to fairly compare specific features that are unique for each
architecture type.

For the fully-connected architectures, a and d, it is clear that the configuration of both
architectures is the same, the difference in architecture d is a decrease in the number of
hidden nodes and the addition of a decoder network for audio reconstruction. Therefore,
architecture d is an autoencoder version of architecture a, and it will show the effect of
autoencoder related operations when compared to architecture a. The same applies to the
convolution-based architectures, b and e. Architecture e is an autoencoder version of b,
by removing the fully-connected layers and using max pooling layers, for dimensionality
reduction, and a decoder network for audio reconstruction.

For the CNN architectures, b and c, architecture c is a FCNN version of b. The
main differences between these architectures are: replacing the fully connected layers
with convolutional layers, the processing the audio while using one-dimensional (1D)
convolutions instead of 2D, and using PReLU activations instead of ReLU. The effect of
these three factors will be separately discussed in the Results section.

Regarding the CDAE based architectures, the difference between architectures e and
f is the feature extraction method, because architecture e is based on max pooling layers,
while architecture f is based on increasing the number of filters through the hidden layers
without max pooling layers. Consequently, feature extraction is the point of comparison
here. Finally, architecture g addresses the use of 1D strided convolutions for DAEs and the
effect of increasing the depth with the use of skip connections.

4. Experimental Setup
4.1. Dataset Selection

There are many training datasets found in the literature for speech, noisy speech,
and noise. Table 2 provides a review of these datasets. In this work, we used the most
commonly used datasets for speech enhancement that were available online. Three clean
speech datasets were used: the Voice Bank corpus [74], LibriSpeech corpus [75], and the
176 Possible Languages corpus [76]. Five hours of clean English speech was randomly
selected from the Voice Bank corpus to be used in the training process of the DNNs, while,
for testing purposes, 30 min. of clean speech, not seen in the training process, was selected
from the same corpus. The other two clean speech corpora were used in order to test the
generalization ability of the networks, so another 30 min. of clean speech was selected
from each. The 30 min. of speech from the 176 Possible Languages corpus contains 90
different languages. It should be noted that five hours of clean speech is enough for the
architectures to converge, and no significant improvement was found when increasing the
training dataset size, based on practical trials.

On the other hand, different noise environments were used for training and testing
purposes. In the training process, a total of 105 noise environments were selected from two
corpora: 90 from the 100 Environmental Noise corpus [77] and 15 from the NOISEX-92
corpus [78]. In order to test the effect of increasing the number of noise environments
used in the training procedure, further noise environments were selected from the ESC
50 dataset [79], Urban Sound dataset [80], and DEMAND Dataset [81], to make a total
of 1250 different noise environments. In the testing process, 20 noise environments were
used, half-seen and half-unseen in the training process. These noise environments are a
mixture of human-generated noise, such as crying, yawning, and human crowd sounds;
and, other non-human generated noise, such as Additive White Gaussian Noise (AWGN),
phone dialling, shower noise, tooth brushing, and wood creaks. Figure 3 represents the
spectrograms of the noise environments that were used in the testing process. This figure
shows how these noise environments are varying and challenging, which proves that the
evaluation and obtained results in this work are non-biased.
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Figure 3. Spectrograms of the noise environments used in the testing process.

In order to evaluate the networks’ performance in challenging conditions, an online
dataset for reverberant speech was used [82], and babble noise audio files were taken from
this online dataset [83]. The Lombard GRID corpus [84] was used while investigating the
effect of Lombard phenomena.

Table 2. A review of the available speech, noisy, and noise datasets.

Corpus Description

Clean Speech Datasets

TIMIT English speech recording for 630 speakers, 10 sentences for each speaker, sampled at 16 kHz [85]

Voice Bank English speech recording for 500 speakers, 400 sentences for each speaker, sampled at 48 kHz [74]

LibriSpeech 1000 h of read English speech, sampled at 16 kHz [75]

ATR 16 h of English speech, sampled at 48 kHz [86]

TED-LIUM 118 h of English speech recorded from TED talks, sampled at 16 kHz [87]

WSJCAMO 140 speakers each speaking about 110 British English utterances, all sampled at 16 kHz [88]

Free ST 350 English utterances for 10 speakers, sampled at 16 kHz [89]

176 Spoken Languages 12,320 different Speech Files, each containing approximately 10 s of speech recorded in 1 of the 176
Possible Languages Spoken, sampled at 16 kHz [76]

Lombard GRID A total of 5400 utterances, 2700 utterances with Lombard effect and 2700 plain reference utterances,
spoken by 54 native speakers of British English [84]

Noisy Speech Datasets

AMI 100 h of real meeting recordings in three different rooms with different acoustic properties. These
recordings include close-talking and far-field microphones, individual and room-view video
cameras [90]

Reverberant An artificial reverberant speech version of the Voice Bank clean speech corpus [82]

Voice bank Noisy version of the Voice Bank clean speech corpus, created by artificially adding real noise to the
speech [74]

Noise Datasets

NOISEX-92 Recording of various noises including: babble, factory, HF channel, pink, white, and military noise [78]

UrbanSound8K 8732 recordings of 10 urban noises including: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gunshot, jackhammer, siren, and street music [80]

Baby Cry About 400 different recordings of different baby cry sounds [91]

Demand A collection of multi-channel recordings of acoustic noise in diverse environments including: park,
office, cafe, and street [81]

ESC 50 A collection of 2000 recordings for 50 environmental noises, 40 for each, including: animal, nature, and
urban sounds [79]

CHiME3 4 noise environments including: cafes, street junctions, public transport (buses), and pedestrian
areas [92]

USTC 15 home noise types including: AWGN, babble, car, and musical instruments sounds [93]

100 Noise 100 non speech environmental sounds including: wind, bell, cough, yawn, and crowd noise [77]
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4.2. Training Setup

The speech signal is corrupted by the training noise environments at 0 dB SNR in order
to create the training noisy speech. The training data are then normalized to zero mean
and unit variance to facilitate the training process. The input audios were downsampled to
8 kHz to feed the network with the most relevant band of frequencies, and a Hamming
window of frame length 32 ms (256 samples) with 50% overlap was used. The magnitude
power spectrum of the signal was then extracted with 256 FFT size, and the noisy phase
was kept to be added to the estimated clean speech, while assuming that the phase is less
affected by the noise [94]. Magnitude spectrogram mapping is the training target used in
all evaluations in order to ensure the good generalization for all architecture types [32].

The seven DNN architectures, as discussed in Section 3, were implemented while
using the Keras library with Tensorflow backend. Minimum Mean Square Error (MMSE)
is the loss function that is used during the training process as the default choice, because
our goal here is to improve all of the evaluation metrics, not a specific one [33]. The Adam
optimizer was used; learning rate = 0.001, β1 = 0.1, β2 = 0.999. A batch size of 128 was used,
and 10% of the training data was used in validation in order to monitor the performance of
the networks, to avoid overfitting. For all DNNs, no improvement in the performance was
detected after 40 epochs, so the training process of all architectures is based on 50 epochs.

5. Results and Discussion

In this section, the results will be presented, followed by explanations and critical
discussion. The experiments are divided into two parts. Part 1 aims to show the effect of
the DNN model on the performance through a comprehensive analysis of the seven DNNs
while using five objective metrics, a subjective test, an evaluation in challenging noise
environments, testing the generalization ability, and analyzing the networks’ complexity
and processing time. Furthermore, the investigation of network-related hyperparameters
is considered. Additionally, Part 2 is an examination of the effect of some data structure
related factors, such as the Lombard effect and the dataset preprocessing effect. The pre-
sented results and conclusions are based on a variety of architectures, noise environments,
and evaluation methods; for the conclusions to be as generalized as possible.

5.1. Objective Evaluation

Table 3 shows the results of the five standard, commonly used speech enhancement
objective measures: Perceptual Evaluation of Speech Quality (PESQ) [95], Short Time
Objective Intelligibility (STOI) [96], Log Spectral Distortion (LSD) [97], Signal to Distortion
Ratio (SDR) [98], and Segmental Signal to Noise Ratio difference (∆SSNR) [99], for the
seven implemented architectures. The results are based on the average of three high SNR
levels: 20 dB, 15 dB, and 10 dB; and three low SNR levels: 5 dB, 0 dB, −5 dB. The average
of low and high SNRs is also provided in the table and it is shown for PESQ and STOI
scores in Figure 4.

The MLP network, a, generated clean speech with good overall perception concerning
all of the evaluation metrics, in the case of low SNRs, as compared to the basic CNN
network, b. However, network b performs better at high SNR levels. Furthermore, an
enhancement in the overall performance of MLP-based networks can be achieved using
bottleneck features, such as in the DDAE, d. The FCNN, c, performs better than the fully-
connected networks, a and d, especially in terms of speech intelligibility (STOI). Regarding
CDAE networks, e, which is the basic autoencoder version of network b, generates speech
with the poorest overall performance. However, increasing the number of filters through
the hidden layers and removing max pooling layers, such as in the CDAE network, f,
results in a better overall performance. Additionally, a significant enhancement in the
overall performance is achieved in the case of increasing the depth of the architecture and
the use of 1D strided convolutions, such as in the case of the deep CDAE, g.

It is also clear that most of the networks are not enhancing the noisy speech at high
SNR, especially for STOI; moreover, the average results of the noisy speech are better than
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the processed speech for some networks, such as a, b, e, and f, and this is due to the effect
of DNN de-noising processing, which negatively affects the output speech quality, and it
results in worse performance than the noisy version at high SNRs.

Table 3. PESQ, STOI, LSD, and, ∆SSNR results at high SNR levels: 20 dB, 15 dB, and 10 dB; low SNR
levels: −5 dB, 0 dB, 5 dB; and, the average of high and low SNRs (ave).

Metric Noisy a b c d e f g

PESQ
high 2.620 2.334 2.540 2.828 2.706 1.923 2.392 2.804
low 1.818 1.959 1.869 2.178 2.142 1.647 1.886 2.282
ave 2.219 2.147 2.205 2.503 2.424 1.785 2.139 2.543

STOI
high 0.871 0.805 0.840 0.860 0.831 0.636 0.799 0.868
low 0.715 0.715 0.688 0.751 0.739 0.569 0.704 0.772
ave 0.793 0.760 0.764 0.805 0.785 0.602 0.751 0.820

LSD
high 1.633 1.115 1.564 1.236 1.277 1.918 1.305 1.408
low 2.430 1.408 2.142 1.676 1.597 2.125 1.586 1.650
ave 2.032 1.261 1.853 1.456 1.437 2.021 1.445 1.529

∆SSNR
high 0.000 7.041 5.519 7.609 7.340 2.955 7.036 7.689
low 0.000 7.483 5.273 7.474 7.503 4.181 7.146 6.888
ave 0.000 7.262 5.396 7.542 7.422 3.568 7.091 7.288

SDR
high 0.732 3.457 2.957 4.523 4.569 1.064 4.229 4.596
low −0.555 3.019 2.494 3.957 4.016 1.061 3.600 3.989
ave 0.089 3.238 2.726 4.240 4.293 1.062 3.914 4.292

Figure 4. Average PESQ and STOI results for the seven DNNs at six SNR levels.

The spectrograms shown in Figure 5 show the clean, noisy, and estimated speech from
the seven DNNs when tested while using noisy speech with tooth brushing unseen noise
at 0 dB SNR. All of the models managed to remove most of the background noise and
output enhanced speech with some remaining noise, highlighted with the dashed black
line. The output speech from all of the networks also suffers from distortion, highlighted
with the solid black line. The amount of distortion and residual noise are the main factors
affecting the performance of each model, for example, network (a) and (e) suffer from very
high distortion, and this explains why they have poor performance. Moreover, the output
from network (e) experiences high-intensity noise and some distortion that affects the
fundamental frequencies; for this reason, it has the poorest performance when compared
to other models. Network (b–d,f) have some remaining high intensity noise that affects the
fundamental frequencies of speech; however, they have less distortion when compared
to network (a) and (e); consequently, they outperformed them. Moreover, network (g) is
the only one that managed to mitigate the noise affecting the fundamental frequencies
with a good reconstruction of the speech signal as well. Although network (f) managed
to remove more noise as compared to (g), the fact that it has some residual high-intensity
noise affecting the fundamental speech frequencies makes it perform worse than (g).
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Figure 5. The spectrograms of clean speech, its noisy version with toothbrush noise, and the output estimated clean speech
from the seven DNNs. Solid black and dashed lines highlight high distortion and high intensity residual noise, respectively.

5.2. Subjective Evaluation

A subjective speech quality test was performed while using 23 volunteer listeners
with no hearing issues. The listeners were asked to listen to enhanced speech produced by
the seven DNNs, and to the noisy one. They were asked to give a score ranging between 1
and 5 for each sound file, based on the quality of the heard speech; higher values indicate
better noise removal with understandable speech. The speech that was used in this test
was corrupted in order to consider a variety of challenging conditions. The noisy audio
consists of two English speakers, one male and one female, with two different background
noise, one seen and one unseen by the networks during training. The noises used are
human-generated non-periodic crowd noise and non-human generated periodic phone
dialling noise. The noise and speech intensity are kept the same, so this evaluation is based
on 0 dB SNR.

Table 4 shows the statistical analysis of the obtained results. The average (Ave) and
the Standard Deviation (SD) were first calculated. It is noticed that network c is the best
performing based on the human listeners’ opinion, not g, as shown before by the objective
evaluation. The reason for this mismatch is the different preferences of listeners, because
some listeners may prefer the existence of some remaining noise with a clearer speech,
such as in the case of network c rather than removing most of the background noise
with non-perfect speech reconstruction, as in the case of network g, while a computer
algorithms output is negatively affected by any residual noise. Consequently, although the
compression process in DAEs and depth of the architecture help in removing the noise,
it may have a negative impact on the quality of the heard speech. The listeners’ different
preferences are also proven by the high SD in the case of the noisy speech, because some
listeners seem to find the noisy speech version better than the processed clean speech,
because the enhanced speech from any DNN experiences a level of distortion, which affects
speech intelligibility. The mode was then calculated in order to show the score value
with the highest occurrence among listeners for each architecture, and the percentage of
occurrence of this score was also calculated. This also shows that most of the listeners
preferred the processed speech by network c. Moreover, the original noisy speech and
network (e) have the lowest score, the same as reported by the objective evaluation. Finally,
the P-value was calculated to show the significance of the results as compared to the noisy
speech, the two-tailed T-test was performed with a 95% confidence level. It was found that
there is no significant difference between the average scores of network (a) and (e) when
compared to the noisy speech, and this is due to the high distortion of these networks,
as shown in Figure 5. The same test was also performed between all combinations of
architectures, and the results show that there is no significant difference between network
(d) and (g), and network (b) and (f).
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Table 4. Subjective evaluation results.

Metric Noisy a b c d e f g

Ave 2.13 2.57 2.70 3.70 3.09 2.09 2.78 2.96

SD 1.36 0.95 1.06 0.93 1.00 1.08 1.13 1.02

Mode 1 3 3 4 3 1 2 3

Mode % 43% 48% 35% 43% 43% 39% 39% 39%

p-value - 0.13 0.03 0.00 0.002 0.87 0.03 0.02

5.3. Evaluation in Challenging Conditions

Although deep learning-based speech enhancement is proven to be very efficient
in generating clean speech with relatively high quality and intelligibility, some noise
environments are still considered to be very difficult for a DNN to deal with. Figure 6
shows the effect of three challenging noise environments: speech babble noise (N1), having
two noises in the background instead of one (N2), and reverberant speech (N3). These
results are based on testing the seven architectures at six SNRs from −5 to 20 with a step of
5, and then the average was calculated.

Figure 6. PESQ, STOI, LSD, and ∆SSNR results for three challenging noise environments: babble noise, N1; two background
noises, N2; and reverberation, N3; compared to the average of seen and unseen noise shown in Table 3, Ave.

It is clear that there is a degradation in the performance of all the architectures in the
cases of speech babble noise and having two noise environments. However, architecture g
is still the best performing architecture, and the negative effect is acceptable in most of the
architecturesm as the output speech is still of quite good quality and intelligibility, except
for architecture e, which was originally producing a bad performance. It should also be
noted that network b shows a good generalization for the speech babble noise environment
concerning all evaluation metrics, excluding STOI. Moreover, all of the networks have high
∆SSNR for two noise environments, which is logical due to the removal of more noise.
Regarding reverberant speech, there is a significant negative impact on the performance
of all networks, especially the intelligibility of the output speech (STOI). Based on these
results, it can be interpreted that reverberation is the most challenging environment for
DNNs; consequently, reverberation can be considered to be an extra task for the DNN
besides the de-noising task. A solution to this issue is to train the DNN to output de-noised
reverberant speech in the case of reverberation [37], and then de-reverberation can be
performed as a second stage if needed.
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5.4. Evaluation of the Generalization Ability

A common problem of deep learning-based speech enhancement is having a network
that performs well on the training dataset; however, it is unable to generalize and maintain
the same good performance for unseen data. This problem is technically known as variance
or the overfitting problem. Consequently, testing the generalization ability of the networks
is crucial for making a fair comparison between them. The generalization ability of the
seven implemented DNNs was evaluated by testing the networks’ performance under
three mismatched conditions: unseen noise environments (C1), the unseen LibriSpeech
English speech dataset (C2), and unseen 90 different languages (C3). These results, as
shown in Figure 7, were generated by testing the DNNs on six SNRs that ranged from
−5 to 20 with a step of 5, and then the average was calculated.

Figure 7. PESQ, STOI, LSD, and ∆SSNR results for the processed unseen noisy speech from the same training dataset,
C1; from unseen dataset, C2; and, speech from 90 different languages, C3, as compared to the average results shown in
Table 3, Ave.

Most of the architectures maintained good performance in the case of unseen noise
and speech from the same training dataset, C1. However, a remarkable deterioration in
the performance happened for the other two mismatched conditions, unseen dataset, C2,
and unseen language, C3, concerning all of the evaluation metrics, except STOI. However,
architecture f shows a very good generalization ability in the case of using different
languages, and this proves the power of extracting speech features by increasing the number
of filters through the convolutional layers, which is the specific property of this architecture.
An explanation of the increase in the STOI score in the case of these mismatched conditions
is that the network does not harshly remove noise, as shown in the ∆SSNR results, so
this results in more intelligible speech. This shows a tradeoff between noise removal and
speech intelligibility and it gives a reason why DNNs output speech with lower STOI than
the noisy version at high SNRs, as discussed in Results Section 5.1 and shown in Table 3.

5.5. Complexity Comparison

DNNs are generally complex and they have huge computational costs. Analyzing the
complexity of the network is very important in evaluating its applicability in a real-time
implementation, as complex architectures might not fit onto the device hardware, such as
mobile devices and hearing aids. Moreover, the complexity of the network increases the
processing time, which is another factor limiting the network applicability. A complexity
comparison was carried out between the seven speech enhancement DNNs by looking
into the three factors that are related to network complexity: the number of parameters,
number of layers, and processing time. Table 5 provides this comparison.
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Table 5. Comparing different networks’ parameters: number of network parameters (Parm.) and
layers (Layers), and testing processing time (time).

Metric a b c d e f g

Parm. 8,948,357 50,497 462,081 2,784,677 112,001 1,075,717 3,078,081

Layers 15 10 14 20 16 21 49

Time(s) 21.5 14.7 24 15.5 16.7 18.4 34.5

The number of parameters for the fully connected architectures (a and d) is very
high, while convolutional-based architectures: b, c, and e have a much lower number of
parameters. Although architecture f is a convolution-based network, the increased number
of parameters is due to increasing the number of filters through the hidden layers. It is the
same for architecture g, besides the deep nature of this network. The processing time was
calculated by processing 224 speech audio files of approximately 15 min. duration in total.
The algorithm was running on an NVIDIA Quadro M3000M GPU with clock 1050 MHz
and 160 GB/s memory bandwidth. The processing time is inversely proportional to the
depth of the architecture, which is represented by the number of layers. It also depends
on the architecture type, as convolutional-based DNNs are faster. Overall, architecture
b is the least complex concerning of the metrics presented in Table 5, since it is a CNN
shallow network.

Figure 8 shows the loss curves of the training and validation data for the seven
architectures during the training process in order to show how the complexity and type of
network affect the training process. It can be seen that the fully-connected architectures,
(a) and (d) converge the fastest, as the high number of parameters and connections between
hidden nodes enables the network to learn speech features faster. The same fast converging
behaviour can be seen with the convolutional network (f) and that shows the power of
increasing the number of filters through the hidden layer in extracting the features. The
other convolution-based DNNs (b), (c), (e), and (g) show a more smoothly decreasing loss
curve. Although these DNNs take a longer time for the learning curve to saturate, some of
them end up with a better performance, such as architectures (c) and (g).

Figure 8. The training loss curves of the seven DNNs for the training and validation data.

5.6. Network Related Hyperparameters Effect
5.6.1. MLP Architectures

Many experiments were found to show the effect of different factors on the perfor-
mance of MLPs; for this reason, we did not perform experiments on this architecture.
In Reference [36], the effect of the depth of the network was investigated, and it was proved
that increasing the depth leads to improved performance. However, in the same work, the
performance decreased if the MLP became too deep, because the network starts to overfit
to the training data. The study presented in [100] shows that the more hidden units the
better the performance; as a result, the number of neurons with an acceptable performance
should be selected, using the trial and error approach, to decrease computational cost and
complexity whilst maintaining reasonable performance.
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5.6.2. CNN Architectures

ReLU is the most common activation function used today, which outputs zero if the
input is negative and gives the input value for a positive input. ReLU was found to be the
most similar function to the non-linearity computations in biological neurons and it proved
to produce a better performance [13,101]. Moreover, ReLU has been proven to solve the
vanishing and exploding gradient problem for DNNs [102]. However, a negative effect of
ReLU, known as Dying ReLU [11], occurs when the ReLU neurons became inactive and
output zero for any given input. LReLU, ELU, and PReLU are edited versions of ReLU
that give a small value output for a negative input instead of zero, to overcome the Dying
ReLU problem. Table 6 provides the effect of changing the activation function from ReLU
to its edited versions for the CNN architecture b, which results in PReLU being the best
performing activation function concerning all evaluation metrics.

Table 6. Effect of CNN related hyperparameters: activation functions, e Rectified Linear Unit (ReLU)
(CNN(b)), Leaky ReLU (LReLU), Exponential Linear Unit (ELU), and Parametric ReLU (PReLU);
increasing filters and kernel sizes in hidden layers; the use of one-dimensional (1D) convolutions.

Metric CNN(b) LReLU ELU PReLU filters K(5×5) CNN1D

PESQ 2.205 2.188 2.274 2.342 2.371 2.413 2.537

STOI 0.764 0.764 0.752 0.771 0.784 0.773 0.795

LSD 1.853 1.891 1.700 1.534 1.569 1.455 1.438

∆SSNR 5.396 6.071 6.043 6.649 6.698 6.917 7.388

In order to understand how CNNs deal with the speech enhancement problem and
show the effect of changing the activation function, a visualization to the spectrograms
of the hidden layers is shown in Figures 9–12. Figure 10 represents 32 filters and their
activations for the first hidden layer of network b, where the ReLU was used. The figure
shows the output of the network tested while using noisy speech (N) and its corresponding
clean one (C), in order to show the behaviour of the network in both cases. It was noticed
that CNNs manage to solve the speech enhancement task by applying a set of filters; these
filters are separately represented in Figure 9 and described in the Table 7, below it. Some of
the filters are responsible for the de-noising process, such as f1, which mitigates the noise
and outputs enhanced speech. f2 is also a de-noising filter; however, this filter attempts to
enhance the speech signal by smoothing the noise intensity in order to highlight speech
and then outputs enhanced speech with the same intensity noise. Another interesting filter
is f3, which works the same way as f2; however, the output of this filter is noise, so it acts
as a noise detector. Other types of filters are responsible for extracting speech features,
such as f4, which acts as a bandpass filter that outputs high and low speech frequency
components. It was also found that there is a kind of filter that acts as a buffer, such as f5,
which does not affect the original input signal. This filter is suggested to help the network
in reconstructing the clean speech and avoid the loss of essential information. Figure 11
shows randomly selected filters and their activations from the second and third hidden
layers of the same network; it was noticed that the same set of filters also exists in these
layers, with an extra filter f6 that acts as a high pass filter that outputs the high-frequency
speech components.

The dying ReLU problem is clear in Figures 10 and 11, as ReLU is turning off many
filters, empty (white) diagrams. However, this problem was not detected when visualizing
the network hidden layers when using PReLU, as show in Figure 12. This is a reason
why PReLU outperforms ReLU; it can be seen from this visualization that the output after
PReLU is either an enhanced speech signal or noise.

Referring to Table 6, “filters” and “K5×5” columns, the effect of increasing the filters
through hidden layers is also addressed by using 64, 128, and 256 filters in the first, second,
and third layers, respectively, instead of fixing the number of filters to 64. This has a
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positive impact on the overall performance of the network. Moreover, a kernel of size (5×5)
was used instead of (3 × 3) in order to show the effect of increasing the kernel size, and it
can be seen that this also has a positive impact on the performance. Finally, 1D convolutions
with PReLU were used, instead of 2D with ReLU, with a kernel size of 20. A remarkable
enhancement is shown in this case, as compared to the original CNN network, b. The
implemented network after applying these modifications, (CNN1D) shown in Table 6,
reached a performance closer to network c and g. Moreover, this network was included
in the subjective testing, as in Section 5.2, and it obtained an average score of 3.87, with
0.81 SD. Additionally, the output of the T-test shows that there is no significant difference
between the average of this model and network c.

Figure 9. Six spectrograms randomly selected from the hidden layers of network b, explaining
the different Convolutional Neural Network (CNN) filters for speech enhancement, for a pro-
cessed noisy speech (N) and its clean version (C), f and a represent the convolution filters and
activations, respectively.

Table 7. Description of CNN filters for the speech enhancement task.

Filter Description Activation Output

f1(Denoising) Mitigate the noise De-noised Speech

f2(Smoothing) Mitigate noise by smoothing Speech with same intensity noiseits intensity to highlight speech

f3(Noise Detector) Smoothing noise intensity Noiseand highlight speech

f4(Band Pass) Passes only high & low frequency bands High & low frequency speech components

f5(Buffer) Gives output same as input Original noisy speech

f6(High Pass) Passes only high frequency bands High frequency speech components
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Figure 10. The spectrograms of 32 randomly selected convolution filters (wider spectrogram) and ReLU activation outputs
from the first hidden layer of the CNN architecture b, for a processed noisy speech (N) and its clean version (C), f represents
convolution filters, a represents activations.

Figure 11. The spectrograms of 32 randomly selected convolution filters (wider spectrogram) and ReLU activation outputs
from the second and third hidden layers of the CNN architecture b, for a processed noisy speech (N) and its clean version
(C), f represents convolution filters, a represents activations.

Figure 12. The spectrograms of 32 randomly selected convolution filters (wider spectrogram) and the PReLU activation
outputs for the first hidden layer of the CNN architecture b, for a processed noisy speech.
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5.6.3. DAE Architecture

Table 8 shows the results of the experiments for DAEs. The effect of depth was
investigated; moreover, the function that was used for dimensionality reduction and the
factors that affect CNN architectures, as discussed above, were investigated. The results
refer to DDAE (d), and a deeper version of it, ddeep, with two more layers in each of the
encoder and the decoder. The number of hidden nodes used are: 2049, 1024, 500, 250,
and 180. Increasing the depth of DDAE was found to degrade the performance due to
network overfitting, as in the case of the MLP. However, another reason for this degraded
performance is the compression in the bottleneck layer, which may result in a loss of
information for deep networks. The use of skip connections is a solution to this issue,
although the effect of them was not investigated in our work for the DDAE, it was proven
to improve the performance [41].

The basic 2D CDAE network, e, was edited by using strided convolutions instead
of max pooling, estrided. It can be noticed that strided convolutions lead to better results.
Afterwards, the use of strided 1D convolutions with PReLU and increasing the number of
filters through the hidden layers were considered, network eedited, which results in further
enhancement in the performance, as proven in the previous subsection. Finally, one more
layer was added to each of the encoder and the decoder to show the effect of increasing the
depth, as shown in edeep. It can be concluded that increasing the depth of CDAE models
results in a significant gain in the performance.

Table 8. Effect of Denoising Autoencoder (DAE) related hyperparameters: increasing the depth ddeep

and edeep; the use of strided convolutions, estrided; and, the use of one-dimensional (1D) strided
convolutions with PReLU eedited.

Metric d ddeep e estrided eedited edeep

PESQ 2.424 2.310 1.785 1.802 1.887 2.457

STOI 0.785 0.773 0.602 0.637 0.695 0.774

LSD 1.437 1.548 2.021 1.983 1.938 1.472

∆SSNR 7.422 7.335 3.568 3.549 3.779 7.310

5.7. Lombard Effect

In real conditions, the speakers normally raise their voices in noisy environments in
order to increase speech intelligibility, the phenomena known as the Lombard Effect [103].
In order to address the effect of this phenomena on the implemented DNNs, an audio-visual
Lombard speech corpus [84] was used, which contains 5400 utterances, 2700 Lombard, and
2700 plain reference utterances, spoken by 54 native speakers of British English. A testing
duration of 30 min. of speech, the same as the one used in the previous evaluation, was
selected from each of the Lombard and plain speech audios, and then these audios were
corrupted by the same 10 unseen noisy environments used before, at the same SNR levels.
All the DNNs in Figure 2 were tested using these data, and the average of the results was
calculated, as shown in Table 9.
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Table 9. Average results for PESQ, STOI, LSD, and ∆SSNR when testing the seven DNNs using plain
(P) and Lombard effect simulated speech (L) at six SNR levels, from −5 to 20 with a step of 5.

Metric a b c d e f g

PESQ P 1.337 1.530 1.753 1.635 1.105 1.530 1.880
L 1.315 1.554 1.772 1.626 1.071 1.554 1.841

STOI P 0.592 0.637 0.706 0.664 0.517 0.637 0.728
L 0.604 0.663 0.733 0.684 0.518 0.663 0.729

LSD P 1.606 1.569 1.465 1.557 2.107 1.569 1.540
L 1.607 1.579 1.395 1.486 2.039 1.579 1.476

∆SSNR P 6.686 5.709 5.442 5.623 4.171 5.709 6.066
L 8.552 7.882 8.174 7.997 5.183 7.882 8.394

The Lombard effect simulated speech results with better speech intelligibility for all of
the tested DNNs and better overall performance for most of the architectures. Although
the Lombard effect simulated speech is considered to be unseen data to the DNN, it results
in improved speech intelligibility. Based on this fact, it can be concluded that DNNs are
reacting in the same way as the human brain to this phenomena and the learned features
during the training process made the network robust to the change in the speech features
that result from this phenomena. These results also support what was reported in [104];
however, here, the authors trained a DNN while using Lombard simulated speech, and it
was proven to result in a better performance than training the network with normal speech.

5.8. Dataset Preprocessing Effect

DNN-based speech enhancement is a data-driven approach, so having a good archi-
tecture is not the only factor to achieve better performance. The dataset used in the training
procedure and how these data are prepared before being fed to the network are other
factors that have an impact on the network output. The effect of the training dataset was
investigated while using the four best performing DNN speech enhancement networks
from each category: a, d, g, and the modified better performing architecture CNN1D, as
discussed in Section 5.6. It is shown how the networks’ performance is affected by three
factors, the input sampling frequency, the training SNR, and the number of training noise
environments. Figure 13 shows the results of these experiments.

Figure 13. PESQ, STOI, LSD, and ∆SSNR results when training the network at different SNR levels, when using sampling
frequency 16 kHz instead of 8 kHz, and when increasing the number of noise environments to 1250 instead of 105.
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Regarding the effect of the training SNR, training the DNN at 0 dB SNR leads to the
best performance concerning all of the evaluation metrics at the tested SNR levels (−5 to
20 with a step of 5). However, architecture a shows a higher PESQ and STOI score in the
case of training the network with high SNR (5 dB), but the other metrics are negatively
affected. Therefore, the noise and speech intensity level is an important feature that the
DNN looks at in the training process, so it is recommended to work at 0 dB as the default
SNR, or try a range of SNRs and choose the best, depending on the evaluation metric with
the highest priority to improve, and the real-time testing conditions.

Concerning the effect of the down-sampling operation, it can be noticed that all of
the architectures output speech with better quality and higher ∆SSNR when trained using
8 kHz audio. Furthermore, the fully-connected-based DNNs (MLPa, DDAEd) perform
better when using the 8 kHz sampling frequency with respect to all of the metrics. However,
convolution-based architectures (CNN1D, CDAEg) output speech with a slightly higher
intelligibility score and lower distortion when operating in the 16 kHz sampling frequency.
It should be mentioned that 8 kHz processing outperforms in terms of the de-noising
task; however, when listening to the enhanced audios, although the noise in the enhanced
16 kHz speech is more audible, the quality of the speech signal is better.

In the final experiment, the DNNs were trained with 1250 noise environments instead
of 105. Increasing the number of noise environments has a positive impact on output
speech quality and intelligibility. However, the results also show that exposing the network
to a larger number of noise environments during the training process may have a negative
impact on speech distortion (LSD) and the network’s ability to remove noise (∆SSNR).
This is due to increasing the network’s generalization ability to a large range of noise
environments, which decreases its ability to remove noise. However, this helps the network
to better learn clean speech features and, hence, output speech with better PESQ and
STOI scores.

6. SWOC Analysis

In this section, a SWOC analysis will be presented for deep learning-based speech en-
hancement in order to highlight its Strengths, Weaknesses, Opportunities, and Challenges,
to finally determine the position of the technique in the field. This is a general analysis
to DNN based speech enhancement, to identify the strength of this technique and why
it is a hot topic. It also defines, through weaknesses and challenges, the current issues of
the technique and what research points need further investigation. While, opportunities
suggest the ideas that will result in further improvements in the research area. Figure 14
shows the SWOC matrix.

Figure 14. SWOC Matrix.
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6.1. Strengths

Regarding performance, as compared to the classical techniques, deep learning-based
speech enhancement has a much greater ability to remove the noise that is accompanied
with the target speech signal, even at a very low SNR. The technique is also able to output
speech with good quality and intelligibility. Furthermore, the well-known problem of
musical noise [105] for the classical techniques, especially the spectral subtraction method,
is not present in deep learning-based methods. This is a real advantage of this approach,
as the musical noise problem results in unsatisfactory performance for customers who
use devices, such as hearing aids, when classical speech enhancement techniques are
applied [106].

Concerning the training procedure of DNNs, which requires a huge amount of data to
better predict the clean target speech, the datasets that are available online have massively
increased over the previous decade, and there are many clean and noisy speech data
available nowadays that can be used in the training process. Moreover, the idea of transfer
learning [107] makes the technique more powerful, which is based on the reuse of a network
originally trained with a huge amount of data for a certain task as a starting point to another
task. Afterwards, the network is tuned with a small amount of data in orderto perform the
new task, so the collection of a huge dataset is not always necessary [108].

From the implementation aspect, there are many deep learning libraries and frame-
works available nowadays that make development much easier [109]. Additionally, GPU-
based hardware equipment is readily available now, which leads to faster network training
and real-time testing.

6.2. Weaknesses

Regarding performance, although some deep learning-based speech enhancement
techniques managed to remove approximately all of the noise in the speech signal, the
algorithm cannot effectively deal with interference or babble noise, which is another speech
signal interfering with the target one. Most of the architectures show a degradation in
the performance when tested while using babble noise, since this de-noising technique
is based on learning speech features in general without having the ability to separate
different speech sources. Furthermore, most evaluations of deep learning-based speech
enhancement techniques in the literature are based on testing the technique using only one
background noise; however, a speech signal in the real world is typically accompanied
with more than one noise environment. This will make the de-noising process more
challenging, leading to a poorer performance than the one that was reported with one
background noise, as shown here in this work. Reverberation was also proven to be a very
challenging noise environment that has a significant negative impact on the performance
of all DNN architectures.

Concerning the training process, overfitting is a common problem in deep learning-
based techniques, which decreases the network generalization ability. Overfitting arises
from the fact that deep learning is a data-driven approach, so, the more the algorithm is
fed with data, the better the performance. A network trained with a huge amount of data
will perform very well in removing the noise from data that are similar to that used in
the training process; however, it might not be able to generalize this performance on data
under different conditions [110]. Additionally, as shown in this work, the training process
of DNNs is sensitive to any change in the network’s parameters or data structure, which
makes the training process difficult to tune.

From the implementation aspect, deep learning techniques are generally complex
and of huge computational cost. This will be an obstacle when trying to implement the
technique in real-time and may restrict its applicability for certain applications due to
hardware and memory restrictions. Moreover, this complexity results in long processing
times, which may not be suitable for some applications. Very fast GPUs can solve this
issue; however, this will lead to higher product costs, thus decreasing its affordability.
Finally, although deep learning frameworks make the developing process much easier,
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switching between frameworks may affect the performance. Consequently, it is not granted
that a certain technique will perform the same if the framework is changed for real-time
implementation purposes [35].

6.3. Opportunities

There has been an exponential increase of data recently, and this is expected to con-
tinue [111]. This ever-growing data will help in improving the performance of deep
learning-based speech enhancement techniques, leading to better speech quality and intel-
ligibility. Moreover, the technology of synthetic data is gaining popularity in the field of
deep learning due to its proven positive impact on performance [112], as it can be used as
a substitute in the case of data scarcity. Synthetic data are also solving the issues that are
related to real data privacy and restricted use regulations and they provide more flexibility
in manipulating data and creating challenging conditions to learn in the training process,
which will finally result in improved performance [113]. The idea of cascading two or
more DNNs to perform the speech enhancement task is also very promising [69,70,114],
and some combinations of architectures have not been visited yet, which may lead to
further improvements. The integration of deep learning and other techniques, such as
reinforcement learning [72] and non-negative matrix factorization [115], is another field
that opens the opportunity for enhancing the performance of deep learning techniques.

From the implementation aspect, advances in technology and hardware equipment
will open the opportunity for deep learning techniques to invade the marketplace, because
it will help in solving the high computation cost and latency, or long processing time
problems [116].

6.4. Challenges

Noise levels are increasing due to the introduction of technology-related noise besides
the normal environmental noise. The fast development in technology will lead to the
invention of new machines, equipment, transportation, electronic devices, etc., with new
kinds of noise that deep learning techniques might not be able to deal with. Moreover, the
noise generated internally in electronic devices and machines [117] acts as another challenge
to deep learning-based speech enhancement techniques in real-time implementations.
These internal noises, which are rarely studied in the literature, are unpredictable and differ
from one device to another, so they may have a negative impact on the performance [118].
Another challenge is the differing speech rates for different speakers, which may result in
confusing patterns or features for the DNN. Additionally, different accents of a specific
language are considered to be a challenging task for the technique, because this can result
in different phonemes that may not exist in the target languages the network was trained
on. Our brain can amend and understand these incorrect phonemes or pronunciation;
however, it is not granted that a machine can properly deal with this issue.

The miniaturization of technology is another challenge to deep learning-based speech
enhancement techniques [119]. Electronic devices are shrinking to be more efficient and
portable; however, this trend may act as an obstacle when implementing deep learning
techniques. Consequently, deep learning-based speech enhancement techniques may
not cope with customers’ needs for smaller devices, because device miniaturization may
negatively affect the techniques’ performance and restrict its applicability.

The field of computer modelling and simulation is progressing, in which many mathe-
matical models are proposed to mimic certain phenomena or processes [120]. The mod-
elling of the functionality of the human ear gained attraction a long time ago [121], and
researchers are still developing more advanced models to simulate the complex functions
of the human ear [122]. These models are competitors to deep learning-based speech
enhancement techniques, as they are more understandable and controllable, while deep
learning-based techniques are still ambiguous. Although there is a study that combines
the two approaches to further enhance performance [123], developing a good model for
the entire human ear physiology, or having a model that mimics some of the ear and brain
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sound analysis functionality, may lead to the disappearance of deep learning-based speech
enhancement techniques.

7. Conclusions

In this work, we have completed an experimental analysis of three well-established
speech enhancement architectures: deep MLP, CNN, and DAE, in order to better under-
stand how these architectures deal with the speech enhancement process, and it is based on
two approaches. The first investigates two factors that affect the performance: the chosen
model and the structure of the data. Regarding the effect of the chosen model, an evaluation
was performed to compare seven DNNs that belong to the above mentioned three main ar-
chitectures, regarding speech quality using objective and subjective evaluation metrics, the
change in performance in challenging noise conditions, generalization ability, complexity,
and processing time. Furthermore, the effect of some network related hyperparameters was
investigated. The effect of the structure of the data used was explored by showing how the
performance changes by applying different preprocessing techniques to the training data,
and showing the effect of a real phenomena, the Lombard effect. The second approach
used in this analysis is visualization, using spectrograms in order to visualize the enhanced
speech from all of the investigated DNNs, and the output from the internal layers of a CNN
architecture. Finally, an overall evaluation of DNN-based supervised speech enhancement
techniques was presented through SWOC analysis.

Concerning the evaluation and comparison of different architectures, the deep con-
volutional DAE architecture type proved to be very powerful in enhancing noisy speech,
based on the objective measures; however, real listeners preferred the FCNN architecture
due to the lossy nature of DAEs. However, the convolutional based DAE was only proven
to be effective in the case of deep architectures, as the basic CNN and FCNN designs
outperform shallow architectures. Regarding fully connected architectures, the DDAE
was shown to outperform the basic MLP network. The output spectrograms support
this, as some architectures were found to aggressively remove noise at the expense of the
reconstruction of clean speech, which results in worse performance.

Regarding the effect of network-related hyperparameters, increasing the depth of fully
connected networks results in no improvement; conversely, it leads to a worse performance
due to network overfitting or the loss of essential information in the case of DDAE. For
CNN architectures, PReLU was shown to outperform other activation functions, and the
use of a 1D convolution with PReLU activation results in a remarkable improvement
in the performance when compared to 2D convolutions and other activation functions.
Furthermore, increasing the number of filters through the hidden layers and the kernel
size also led to further improvement. In the case of the convolutional based DAE, strided
convolution was shown to be better than the use of max pooling layers; moreover, the
depth of this architecture type was proven to be the main factor affecting the performance.

The spectrograms of the internal layers of the CNN architecture with ReLU activation
showed that CNNs deal with the speech enhancement task by applying filters with different
functionalities. Some are de-noising, while others extract different speech features, such as
the high and low-frequency components. Additionally, some filters were found to keep the
original noisy speech, and they are supposed to help in the reconstruction of the estimated
clean speech and avoid the loss of important information. However, the dying ReLU
problem was detected in this case, which results in turning off many of these filters, and
the use of PReLU instead was shown to solve this issue.

Challenging noisy environments, such as babble speech noise and the existence of
more than one noise environment, negatively affect the performance of the DNNs. How-
ever, the overall performance remains acceptable. On the other hand, reverberation causes
a significant negative effect on the overall performance of all DNNs, and it results in
unintelligible output speech. DNNs must have extra techniques to deal with this specific
type of noise environment differently from the denoising process.
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Although most of the DNNs show good generalization ability, overfitting remains
a problem for DNNs, even if a regularization technique, such as dropout, is applied. All
of the networks experienced a degradation in their ability to remove noise when tested
while using a different dataset from the one used in the training process, and when using
different languages.

The complexity and processing time of the DNNs is affected mainly by the depth and
type of network. Convolution based architectures are less complex as compared to fully
connected ones, due to the sparsity in the connections between layers.

In real scenarios, speakers raise their voice in noisy environments. Although this
pattern of speech with different acoustic features, such as pitch and rate, is considered to be
an unseen condition during the training process, the DNNs performance improved. Conse-
quently, the learned speech features enable the DNN to deal with the speech enhancement
task in a way that is similar to the human brain and to be robust to these mismatched
conditions.

Different preprocessing techniques for the input data were shown to affect the perfor-
mance of the DNNs. Training the network at 0 dB SNR was shown to be the default choice,
because maintaining the speech and noise power at the same level was an important factor
in the training process for some DNNs. Additionally, downsampling the input audio to
8 kHz results in better overall performance in terms of noise removal, while the 16 kHz
enhanced speech is of better quality, but more background noise exists. Increasing the
number of training noise environments improves the PESQ and STOI scores of the output
speech, as this increases the network generalization ability; however, it has a negative effect
on the overall network ability to remove noise.

Finally, it can be concluded that many hyperparameters and factors highly affect
DNN-based supervised speech enhancement, which all contribute to the overall quality of
the output speech. Exploring the effect of these factors is the key to understanding the way
this black box deals with the speech enhancement task and, hence, being able to improve
the performance.
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