
electronics

Article

Magniber v2 Ransomware Decryption: Exploiting the
Vulnerability of a Self-Developed Pseudo Random
Number Generator

Sehoon Lee 1, Myungseo Park 1,* and Jongsung Kim 1,2

����������
�������

Citation: Lee, S.; Park, M.; Kim, J.

Magniber v2 Ransomware

Decryption: Exploiting the

Vulnerability of a Self-Developed

Pseudo Random Number

Generator. Electronics 2021, 10, 16.

https://doi.org/10.3390/

electronics10010016

Received: 28 November 2020

Accepted: 20 December 2020

Published: 24 December 2020

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea;
dreamtree304@kookmin.ac.kr (S.L.); jskim@kookmin.ac.kr (J.K.)

2 Department of Information Security, Cryptology and Mathematics, Kookmin University, Seoul 02707, Korea
* Correspondence: pms91@kookmin.ac.kr

Abstract: With the rapid increase in computer storage capabilities, user data has become increasingly
important. Although user data can be maintained by various protection techniques, its safety has
been threatened by the advent of ransomware, defined as malware that encrypts user data, such as
documents, photographs and videos, and demands money to victims in exchange for data recovery.
Ransomware-infected files can be recovered only by obtaining the encryption key used to encrypt the
files. However, the encryption key is derived using a Pseudo Random Number Generator (PRNG)
and is recoverable only by the attacker. For this reason, the encryption keys of malware are known to
be difficult to obtain. In this paper, we analyzed Magniber v2, which has exerted a large impact in the
Asian region. We revealed the operation process of Magniber v2 including PRNG and file encryption
algorithms. In our analysis, we found a vulnerability in the PRNG of Magniber v2 developed by the
attacker. We exploited this vulnerability to successfully recover the encryption keys, which was by
verified the result in padding verification and statistical randomness tests. To our knowledge, we
report the first recovery result of Magniber v2-infected files.

Keywords: ransomware; magniber; decryption; cryptography

1. Introduction
1.1. Background

Ransomware, a compound word of ransom and software, is a malicious software
that encrypts important files such as documents, photos and videos and requires payment
for data recovery. Enabled by advanced IT technology, increased PC penetration rate,
and the advent of Bitcoin that allows anonymous transactions, ransomware attacks can
accrue financial benefits. Ransomware has transformed from non-targeted infection of
unspecified targets to targeted infection of companies or institutions. In March of 2019,
the Norwegian aluminum producer Norsk Hydro was infected with LockerGoga, a ran-
somware that enforced the shutdown of the extrusion process, and the separation of all
the company’s factories and operations networks from the global network. During this
process, some automated processes were switched to manually operation. The known
damage was approximately US $41 million [1]. In early March of 2019, computers in the
government offices of Jackson County, Georgia, were infected with Ryuk and many jobs
except 911 were paralyzed. As Jackson County City’s backup systems were also encrypted,
the government paid 100 bitcoins for quick recovery [2]. If the required ransom is paid,
the attacker notices not only the victims of the individual or group victims, but also that
their industry is willing to pay for recovering the information. It was also recently reported
that ISS World, which provides cleaning, catering, security and other services in UK, has
become a victim of a ransomware in 2020. The company’s website has been down since
Feb and the management at the London’s Surrey, Canary Wharf and Weybridge offices

Electronics 2021, 10, 16. https://doi.org/10.3390/electronics10010016 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10010016
https://doi.org/10.3390/electronics10010016
https://doi.org/10.3390/electronics10010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010016
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/16?type=check_update&version=2

Electronics 2021, 10, 16 2 of 17

consisting of 43,000 staff members are inaccessible emails since then. ISS officials say that
the database has been locked from being accessed because of file-encrypting malware
infection [3]. To overcome the damage caused by ransomware, a fundamental solution
other than ransom payment is required. One effective solution is recovery of the encryption
key that encrypted the file. Ransomware generates encryption keys by a PRNG. After
encrypting the files in the victim’s PC, the encryption keys are protected and can be re-
covered only by the attacker. One protection method is hybrid encryption that combines
symmetric- and asymmetric-key ciphers. The high-speed symmetric-key cipher is used for
data encryption and the asymmetric-key cipher is used for encrypting the encryption key
of the symmetric-key cipher. File encryption is performed by a symmetric-key cipher: the
attacker encrypts the encryption keys using their public key and places it in the victim’s
system. The encryption keys are safely protected because only the attacker’s private key,
which is not stored in the victim’s system, is imperative information for decrypting them.
Therefore, obtaining the encryption keys is notoriously difficult.

Magniber, a variant of Cerber ransomware, is mainly targeted South Korean victims
in the mid-2017. According to AhnLab statistics, Magniber’s sample rate was highest
from the fourth quarter of 2017 to the first quarter of 2018 [4]. The two existing versions
of Magniber (versions 1 and 2) were distributed via the Magnitude exploit kit. A main
feature of Magniber v1 is the encryption of all files by the same encryption key, which is
received from the Command and Control (C&C) server. If the C&C server closes or the
network is disconnected, the encryption key is not received and a hard-coded value is
used instead [5]. The hard-coded encryption key is identified by inspecting the extension
of the infected file. The decryption tool distributed by AhnLab can decrypt Magniber
v1-infected files using the hard-coded value, but cannot yet decrypt the encryption key
received from the C&C server [6]. Magniber v2 uses a hybrid encryption that combines
the symmetric-key cipher AES and the asymmetric-key cipher RSA. All files infected by
Magniber v2 are encrypted with AES using different encryption keys, which are themselves
encrypted using the attacker’s RSA public key. In other words, the victims need to obtain
the attacker’s RSA private key to decrypt the encrypted AES encryption keys and hence
recover the infected file. However, the asymmetric-key cryptography ensures that the
attacker’s private key is only owned by the attacker and cannot be obtained by another
party. In addition, cryptographic algorithms (including AES and RSA used in Magniber v2)
have been continuously researched for decades, ensuring sufficient security. For these
reasons, Magniber v2 remains as unrecoverable ransomware to date. Table 1 summarizes
the features of Magniber v1 and v2.

Table 1. Comparison of Magniber version 1 and 2.

Ransomware Magniber v1 Magniber v2

Crypto system AES128-CBC-PKCS7Padding AES128-CBC-PKCS7Padding
RSA2048-OAEP

Key generation 1. Receive from C&C server
2. Fixed in code Attacker’s PRNG

Key management None Encrypted AES key with RSA
stored in end of file

Key destruction Yes Yes

Decryption tool Yes No

Known extensions

kympzmzw, owxpzylj, prueitfik, rwighmoz,
bnxzoucsx, tzdbkjry, iuoqetgb, pgvuuryti,

zpnjelt, gnhnzhu, hssjfbd, ldolfoxwu,
zskgavp, gwinpyizt, hxzrvhh, cmjedin,

dzvtwtqz, pxynindl, sqzprtt, etc.

fprgbk, ihsdj, kgpvwnr, vbdrj,
skvtb, vpgvlkb, dlenggrl, dxjay,

fbuvkngy, xhspythxn, demffue, mftzmxqo,
qmdjtc, wmfxdqz, ndpyhss, dyaaghemy, etc.

In this paper, we provide (to our knowledge) the first decryption of files infected by
Magniber v2. Magniber v2 generates encryption keys for file encryption using a PRNG
developed by the attacker. However, our analysis revealed that Magniber’s PRNG is not
cryptographically secure. This crucial weakness is essential for encryption keys recovery.

Electronics 2021, 10, 16 3 of 17

We were able to reduce the range of encryption key candidates by exploiting the vulner-
ability of the PRNG. The encryption key was then recovered by verifying whether the
ciphertext decrypted by the encryption key candidates is plaintext or not. To distinguish
between plaintext and ciphertext, we employed padding verification and the statistical ran-
domness tests of the National Institute of Standards and Technology (NIST) SP800-22 [7].
For efficient encryption key recovery, we first performed a padding verification, which has
a relatively low execution cost, then the second verification through statistical randomness
tests on the encryption key candidates that passed the first verification. The correct encryp-
tion key was then selected as the encryption key candidate that passed both verifications.
Using this key, we were able to decrypt the infected files.

1.2. Our Contributions

This paper analyzes the encryption process of Magniber v2 and proposes a method
that decrypts Magniber v2 without requiring the attacker’s private key. Our contributions
are summarized below.

1. The existing decryption technique for Magniber-infected files decrypts only version
1, in which the main parameters are hard-coded key. Files infected by Magniber v2,
which uses hybrid encryption, cannot be decrypted. We present the first successful
decryption of Magniber v2-infected files. Our proposed method is experimentally
verified in a demonstration.

2. The existing ransomware generates the encryption keys for file encryption by a
random number generator (RNG). A typical RNG determines the security strength
from seeds generated by collecting various noise sources. Well-known RNGs such
as Hash DRBG and CTR DRBG, are deterministic algorithms that derive pseudo
random numbers by inputting seeds. However, Magniber v2’s RNG is developed by
an attacker and its security is not guaranteed. We reveal the inherent vulnerabilities
in Magniber v2’s RNG and exploit them to recover the key parameters such as
encryption key and initialization vector (IV). The vulnerability is derived from the
seed input and structure of the RNG.

3. Once the encryption key has been recovered, its correctness must be verified. Valid en-
cryption key verification can apply a fixed known value, commonly called an authenti-
cator. However, an authentication based verification is difficult when the ransomware
encrypts various files. To solve this problem, we apply padding verification and
statistical randomness tests. Padding verification is computationally cheaper than
randomness tests, but gives a high false-positive rate. To compensate this deficiency,
we perform additional randomness tests on the objects passed by the padding verifi-
cation. By reducing the number of randomness tests, we improve the efficiency of the
encryption key verification.

2. Related Work

There are various techniques and tools developed for detecting and decryption dif-
ferent types of ransomware. Ransomware detection systems determine whether it is ran-
somware through static or dynamic analysis. The static analysis-based detection identifies
ransomware by using information such as strings, Application Programming Interface
(API), signatures and metadata in the ransomware binary. Kanwal, Meet et al developed a
model that can statically detect ransomware in the Android system by collecting strings
that frequently used in ransom notes such as “_RANSOM”, “_locked”, and “_money” and
analyzing API [8]. Similarly, Andronio et al proposed a model that can detect ransomware
in Android systems by comprehensively analyzing API related to data encryption and
device locking [9]. Since static analysis-based detection analyzes binary files, it is possible
to diagnose before ransomware execution, which is a technique often used by antivirus.
However, it is difficult to apply the technique if the ransomware is packed or code ob-
fuscated [10]. The dynamic analysis-based detection collects and detects behavior data
generated when ransomware is running. The behavior data includes information such as

Electronics 2021, 10, 16 4 of 17

entropy, I/O frequency, API, etc. Unlike static analysis, the method has a high detection rate
as the behavior of the actual ransomware does not change even if obfuscation or packing
is applied. It also has a high detection rate in new variants. However, some files are lost
because the actual ransomware needs to be executed, and if false-positive occurs, all files
are at risk of being encrypted [11–15].

Recently, various ransomware detection studies using artificial intelligence techniques
have researched. Hasan, Md Mahbub et al developed a ransomware detection framework.
The Author extracted more than 60 features including API Call, registry, file system and pro-
cess operation, and trained using Support Vector Machine (SVM) algorithm [16]. Lee et al.
used machine learning algorithm to detect if files were encrypted before being copied to the
backup file system. Each file’s entropy was estimated using some of the NIST900-80b tests,
and it was trained via the model of k-NN, Decision Tree, kernel support vector machine and
Multi-Layer Perceptrons algorithms [17]. Almashhadani et al. described a detection system
that extracted the features exclusively from network traffic. The authors obtained twenty
features from the characteristics of TCP, HTTP and DNS traffic. They made a decision mak-
ing module based on two classifiers that one classifier was based on per-packet features,
the other was based on flow-based features. The classifiers evaluated were Random Forests,
Bayes Networks, SVM and Random Trees [18].

Decryption studies fall into two main categories: targeting multiple ransomware and
individual ransomware. Targeting multiple ransomware focuses on restoring the random
number used in the current encryption key by hooking or monitoring the PRNG function.
Kolodenker et al. focused on the fact that ransomware employing hybrid cryptosystem
creates symmetric-keys during infected [19]. Symmetric keys are encrypted and stored by
the attacker’s public key and can be decrypted by a private key held by the attacker. As the
private key is difficult to acquire, the authors suggested setting up a key escrow, observing
the symmetric keys used for file encryptions and hooking the Crypto API in Windows to
acquire the session keys. Similarly, Kim et al proposed that the cryptographically secure
pseudo random number generator (CSPRNG, provided by Windows as CryptoGenRan-
dom) can be replaced by a user-defined deterministic random bit generator (DRBG) [20].
They suggested storing the seed used in the DRBG in an external repository and reproduc-
ing the encryption key using stored seed when a ransomware infection occurs.

Meanwhile, individual ransomware is decrypted by guessing the key (exploiting,
if present, the cryptographic vulnerability of a ransomware), or extracting the key from
memory (exploiting the system vulnerability). Hidden-Tear is an open source ransomware
released in August 2015. Originally created for educational purposes, it has been modified
by cybercriminals to spread various ransomware. Hidden-Tear uses the AES algorithm
for file encryption and sends the key to the C&C server [21]. However, a vulnerability in
the Hidden-Tear design enables the decryption of infected files. In particular, the PRNG
seed of Hidden-Tear is predictable and uses a hard-coded IV and salt data. The author
has published the Hidden-Tear decryption tool, meaning that variants with the same
PRNG can be decrypted [22]. The PRNG of Donut ransomware, a variant of Hidden-Tear
that appeared in 2018, differs from that of Hidden-Tear, so cannot be decrypted with the
Hidden-Tear decryption tool. Lee et al. found that because the key of Donut is not deleted
from memory, it can be extracted from memory and used for file decryption [23]. They also
proposed a method that decrypts LooCipher, a ransomware that appeared in 2019 [24] and
encrypts all files with AES128-ECB using a unique key. They found that the LooCipher’s
PRNG uses a Random() function that is seeded with the current time, so the unique key
can be recreated using the time of infection.

WannaCry ransomware that has infected more than 200,000 computers in 150 countries
around the world since May of 2017 [25]. This ransomware encrypts files using AES
and encrypts an AES key with a locally generated RSA implemented through a Crypto
API [26]. However, in some versions of Windows XP and Windows 7, the prime number
of the RSA private key of the Crypto API is not deleted from memory. By exploiting
these vulnerabilities, the decryption tool Wanakiwi was developed to extract it existing

Electronics 2021, 10, 16 5 of 17

in memory to recovering the RSA private key [27]. Boczan reported the evolutionary
changes in the cryptographic algorithms of GandCrab ransomware (versions 1–5) and
the packing technique of GandCrab that bypasses antivirus software [28]. In GandCrab
versions 1, 2 and 3, the file encryption key and IV are generated by a CSPRNG, and the file
is encrypted using an AES. The AES key and IV are then encrypted with a locally generated
RSA public key and the RSA key pair is transmitted to the C&C server. In versions 4 and 5,
the AES is replaced by the stream cipher Salsa20 for faster encryption, the encryption
system newly encrypts the existing locally generated RSA private key with the attacker’s
public key to ensure that encryption works well even when communication is impossible.
Currently, the GandCrab v1, v4 and v5.0–v5.2 only are known to be decryptable. To prevent
the damage by GandCrab, the Federal Bureau of Investigation, several law enforcement
agencies, and individual companies have collaborated to obtain a master private key [29,30].
In addition, European law enforcement and IT Security companies have launched the
No More Ransomware project to mitigate the impact of ransomware on business and
individuals [31]. This collaborative project offers decryption tools for a range of ransomware.

3. Analysis of Magniber v2

This section details the encryption process of Magniber v2 together with its malicious
behavior process, which we reveal by reverse engineering.

3.1. Malicious Behavior Process

Figure 1 shows the 10 steps of the entire malicious behavior process. Magniber v2 be-
gins by running Loader.dll, which is installed and executed on the victim’s PC through the
malvertising technique. Loader.dll unpacks Payload.dll (1), which performs the malicious
actions, searches from the target process (2) and injects dll into process (3). After identifying
the system language, Payload.dll performs malicious actions on victim’s computers (4).

Figure 1. Entire process of malicious behavior by Magniber v2.

Thereafter, Payload.dll generates a mutex (5) that encrypts the files in a non-duplicable
way. For victim identification purposes, its PRNG generates a victim’s ID (6). The PRNG
is customized directly by the developer of Magniber v2 and generates both the IV and
encryption key. The structure of the Magniber v2 PRNG, which plays a major role in our
research, is detailed in the next section. The files to be encrypted are documents, media,
,image, audio and etc., with 748 extensions in total(7). Folders required for program files,
booting and running the operation system are excluded from encryption. Finally, the
ransomware deletes the Volume Shadow Copy (VSC) would otherwise allow a system
restore (8) and registers the ransom note and recovery guide browser on the task scheduler.
The ransomware then runs automatically at the designated time (9, 10).

Electronics 2021, 10, 16 6 of 17

A working sample of Magniber v2 has been obtained in a hybrid analysis [32].
The hash value of each object is as follows.

1. Loader.dll

• MD5: 72FCE87A976667A8C09ED844564ADC75
• SHA1: D3E17F5ECA5FB23B272549692D84CC449CF71527
• SHA256: 6E57159209611F2531104449F4BB86A7621FB9FBC2E90ADD2ECDFBE

293AA9DFC

2. Payload.dll

• MD5: 19599CAD1BBCA18AC6473E64710443B7
• SHA1: F9E2111E2903838BB9F4EFB557F75745D028BC3E
• SHA256: FB6C80AE783C1881487F2376F5CACE7532C5EADFC170B39E06E174

92652581C2

3.2. Encryption Process

Because our aim is to decrypt infected files, we first describe the encryption process in
detail. The order of file infection by Magniber v2 is determined by Depth First Search (DFS)
(Depth-first search is an algorithm that traverses or searches tree or graph data structures.
The algorithm starts at the root node (on a graph, the root is an arbitrary node) and explores
as far as possible along each branch before backtracking).

Folders at the same depth are searched and infected in ascending order of their folder
names. Next, files in the same folder are preferentially infected in ascending order of their
file names. File encryption by Magniber v2 proceeds in three steps: file encryption key
(FEK) and IV generation, FEK and IV encryption and file encryption. These steps are
applied to each target file. Each step of the Magniber v2 file encryption process is presented
in Figure 2 and described below.

Figure 2. Encryption process of Magniber v2.

3.2.1. FEK and IV Generation

Using its PRNG, Magniber v2 generates different 16-byte FEK and 16-byte IV for file
encryption. This PRNG (hereinafter referred as to the Magniber PRNG (MPRNG)) is not a
well-known algorithm such as Hash DRBG, HMAC DRBG and CTR DRBG, but is custom-
made by the attacker. MPRNG is seeded by the output of GetTickCount and outputs a
random string composed of ASCII characters from ’0’ to ’9’ and ’a’ to ’z’. As MPRNG
internally calls the GetTickCount function twice while generating each one-byte random
character, it calls the GetTickCount function 2n times when deriving an n-byte random
string. The structure of MPRNG is important for decrypting an encrypted file, as will be
explained in detail in the next section.

3.2.2. FEK and IV Encryption

Magniber v2 encrypts the key parameters of file encryption, FEK and IV, using the
hard-coded public key developed by the attacker. The use of a public (hard-coded) key
for encryption, which is the inability to decrypt the ciphertext (encrypted key parameters)

Electronics 2021, 10, 16 7 of 17

without the private key, are the main features of asymmetric (public-key) ciphers. The FEK
and IV are concatenated and encrypted with RSA2048-OAEP as shown in Equation (1).

C′ = RSA2048-OAEP(FEK||IV, PubKey) (1)

where C′ is the encrypted value of the concatenated FEK and IV, PubKey is the attacker’s
RSA public key, which is hard-coded in Magniber v2.

3.2.3. File Encryption

File encryption is performed by the encryption algorithm AES128 using the Cipher
Block Chaining (CBC) mode of operation and PKCS#7 padding (denoted AES128-CBC-
PKCS7Padding). This step is described by

C = AES128-CBC-PKCS7Padding(P, FEK, IV) (2)

Here, P is a file to be encrypted and C is an encrypted file. The encrypted file is created
by concatenating C to C′ (C and C′ are outputs of Equations (1) and (2), respectively).
Once the file encryption is completed, the FEK and IV are then zeroized, which prevents
their recovery through memory analysis.

4. Method for Finding the Encryption Keys of Magniber v2

In general, ransomware employing hybrid encryption can maintain its malicious
behavior provided that the the attacker’s private key is unknown. Although Magniber v2
uses hybrid encryption, we have found a technique that recover the FEK and IV of the file
encryption without requiring the attacker’s RSA private key, resulting in the success of
file decryption.

4.1. Magniber PRNG

The MPRNG derives the FEK and IV used in file encryption. The Magniber v2
RNG function is given in Algorithm 1. The inputs m and M determine the range of the
output r. The global parameter f eedback retains the stored value until the end of the
process. The RNG, which includes a Feedback Calculator (FC) and a filter, outputs a
one-byte r between m and M. The FC receives (as inputs) the previous f eedback and the
output of the GetTickCount function that returns the current tick used as a seed, and
outputs a four-byte f eedback. The current tick returned by the GetTickCount function is
the number of milliseconds that have elapsed since the system was started. The f eedback
passes through the Filter and outputs 1-byte r between m and M. When the RNG is first
called, the previous f eedback does not exist, so Steps 1 and 2 instead call the GetTickCount
function, which provides the tick input. In Step 9, the f eedback uses only 20 bits due to
masking with 0x11ee0fff. This vulnerability reduces the attack complexity of acquiring
f eedback, which can accelerate the FEK recovery, from 232 to 220. MPRNG is composed of
concatenated RNGs as shown in Figure 3, and it is called repeatedly to output a random
string composed of ‘0’ to ‘9’ and ‘a’ to ‘z’ characters. MPRNG inputs the desired length n
and outputs an n-byte R. MPRNG generates a one-byte random character through two
concatenated RNGs, and repeats this process n times to derive an n-byte random string. In
the one-byte random character generation, the input parameters m and M of the first RNG
are fixed at 0 and 1, respectively.

The output of the first RNG (0 or 1) determines the input of the second RNG: if
the output is 0, the second RNG’s input is ‘a’ and ‘z’; otherwise, its input is ‘0’ and
‘9’. The second RNG then outputs a one-byte character between ‘a’ to ‘z’ or ‘0’ to ‘9’.
Repeating this process n times generates an n-byte random string. The MPRNG algorithm
is given in Algorithm 2.

Electronics 2021, 10, 16 8 of 17

Algorithm 1 RNG of Magniber v2

Function RNG(m, M)

Input: Minimum m and maximum M values
Output: 1-byte random character r between m and M
Global: f eedback

// Initialization is performed only on the initial call.
1: if Initialization then
2: G← GetTickCount()
3: else
4: G← f eedback
5: end if

// subfunction Feedback Calculator
6: f eedback← G⊕ 1
7: tick← GetTickCount()
8: f eedback← (tick+ f eedback+(tick+ f eedback)
9: f eedback← (f eedback mod 0x3e8)&0x11ee0fff

// subfunction Filter
10: r ← m + f eedback mod (M−m + 1)
11: return r

Figure 3. Structure of Magniber’s Pseudo Random Number Generator (PRNG), Magniber PRNG
(MPRNG).

Algorithm 2 PRNG of Magniber v2

Function MPRNG(n)
Input: Desired random string length n
Output: n-byte random string R

1: for i← 0 to n− 1 do
2: m←0, M←1
3: if RNG(m, M) is zero then
4: m←‘a’, M←‘z’
5: else
6: m←‘0’, M←‘9’
7: end if
8: Ri ← RNG(m, M)

9: end for
10: return R

Electronics 2021, 10, 16 9 of 17

The MPRNG derives the victim’s ID, FEK and IV. To acquire the current tick used
as a seed, it calls the GetTickCount function 2n times and generates an n-byte random
string. Therefore, when attempting to recover an n-byte random string, we must acquire
the 2n ticks in order of their generation, which is an apparently intractable task. However,
we have observed that the number of tick changes is zero or very small. That is, an n-byte
random string can be recovered after significantly fewer guesses than intended by the
MPRNG developer. The security of MPRNG is guaranteed by the multiple ticks used as
seeds and the four-byte f eedback that continuously affects the next RNG output. However,
we found defects in two characteristics of MPRNG, which were exploited for FEK and IV
recovery as described in Section 4.2.

4.2. Generating File Encryption Key Candidates

Although we reverse-engineered the entire encryption process of Magniber v2, we could
not decrypt the infected file without acquiring the attacker’s RSA private key or FEK and
IV of each file. As the RSA private key is owned only by the attacker, we focused on
obtaining the FEK and IV of encryption infection.

The FEK candidates were generated by guessing their tick and f eedback values.
First, we found the ticks for deriving the FEK. Figure 4 shows four cases of all possi-
ble patterns of tick changes when generating an n-byte random string. Note that the same
number of ticks can be generated with different timings.

Figure 4. Tick changes during generation of an n-byte random string: (a) no tick changed, (b) one-tick
changed, (c) two-tick changed and (d) three-tick changed

For example, in Figure 4a, an n-byte random string is generated with the same tick.
However, if there is one tick change at the time-point of calling tick2 of R[l] (0 < l < n− 1)
(where R[l] denotes the l th byte of R), that tick endures from tick1 of R[0] to tick1 of R[l],
and also from tick2 of R[l] to tick2 of R[n − 1]. Therefore, we must guess the values of
the ticks not only from the number of tick changes, but also from the time-points of their
changes. We next found the four-byte f eedback. The f eedback is the value by which the
current call affects the next call in the MPRNG. Therefore, obtaining the f eedback injected
into the first byte of FEKi (0 ≤ i < n) is essential for a full FEKi recovery, where FEKi is the
encryption key of Filei. More specifically, we organized the relationship of the parameters
inserted to the MPRNG in chronological order. After injection, MPRNG is first called for
generating the victim’s ID. Thereafter, it is repeatedly called in the sequential derivation of
FEKi and IVi for the encryption of each Filei. As shown in Figure 5, the f eedback after the
victim’s ID generation is injected into the FEK0 derivation process, and the f eedback after
the IVi−1 generation is injected into the FEKi (i ≥ 1) derivation.

Electronics 2021, 10, 16 10 of 17

Figure 5. Entire process of MPRNG during infection.

Electronics 2021, 10, 16 11 of 17

The f eedback injected into the FEK0[0] derivation is generated after deriving the last
byte of the victim’s ID. Using the known victim’s ID included in the ransom note, which is
known (see Figure 6), the f eedbacks can be guessed by estimating the ticks alone.

As the MPRNG is initialized during the victim’s ID generation, we need only guess
the ticks; a separate f eedback guess is not required. If we derive the correct victim’s ID,
we automatically get the f eedback injected into the FEK0 derivation. The FEKi is generated
after File1 is injected with the f eedback generated after the IVi−1 derivation of Filei−1.
In our decryption process, finding the tick used to generate the victim’s ID is important
for another reason: the GetTickCount function returns the time elapsed (in milliseconds)
since the system is started. However, as the system startup times differ among the users,
we require a reference point for the tick inference. Here, we set the tick used in creating the
victim’s ID as the reference point.

Figure 6. Ransom note of Magniber v2 (the victim’s ID is enclosed in the red-edged box).

Once established, the reference provides a starting point for sequentially guessing
the ticks from the order of infection. If the tick changes during IVi−1 generation, the IVi−1
can be verified only when the first block of Filei−1 is fixed and known (unlike the case of
the victim’s ID). However, the first block of the file is rarely fixed. Even for files of known
format, such as doc, hwp and pdf files, the first block is a variable header area of limited
use in verification. Despite these limitations, the f eedback injected into the FEKi derivation
can be acquired by brute-force attack of the 220 possibilities without recovering the IVi−1,
but merely by exploiting the vulnerability of MPRNG described in Section 4.1. In the first
block that is not decrypted, file operation is possible only by filling an appropriate value
in a corresponding part in a known file format. The FEKi−1 recovery naturally acquires
the tick used for generating the FEKi−1[15]. This tick is continuously injected into the IVi−1
generation, and based on whether it changes or not, we can know the f eedback injected
with FEKi[0]. The acquisition of the f eedback greatly affects the efficiency of our decrypting
performance. If the f eedback is obtained, the attack burden of 220 possibilities can be
reduced. We therefore recover the FEKi assuming no tick change in the IVi−1 generation.
If the recovery fails, we perform the brute-force attack based on 220 f eedback candidates.
The recovery algorithm adopting this scheme is developed in the next section.

Algorithm 3 generates a list L of FEKi candidates with one tick change. The L is
compiled according to the position and interval of the changed tick relative to the reference
point (the base). An algorithm based on Algorithm 3 can also generate a list of FEKi
candidates with more than one tick change.

In Algorithm 3, pos represents the position of the tick change, and the time interval
ranges from the starting point (base) to the end point (endtick). Steps 4 and 5 generate FEK
candidates within the time range. We introduce a tick change in the MPRNG by modifying
the argument with two additional tick arguments, tick1 and tick2 for mPRNG(n,tick1,tick2),
which are input to the first and second RNG, respectively. The tick input to the mPRNG is
divided into tick before the change and duration after the change. In Step 4, candidateFEK1
is mPRNG(pos− 1, tick, tick)‖ mPRNG(1, duration, duration)‖ mPRNG(16-pos, duration,
duration), indicating a tick change to tick1 of pos position mPRNG. Similarly, in Step 5,
a tick change occurred at tick2 of the pos position mPRNG.

Electronics 2021, 10, 16 12 of 17

Algorithm 3 FEKi Candidates Generation Algorithm

Function DeriveFEKCandidates(base, ∆t)
Input: Reference point base, Time interval ∆t
Output: List of FEK Candidates L

1: for pos← 1 to 16 do
2: for tick← base to endtick← base + ∆t do
3: for duration← tick to endtick do
4: // A tick change tick1 occurs at pos position mPRNG.
5: candidateFEK1 ←mPRNG(pos− 1, tick, tick)‖mPRNG(1, duration, duration)‖

mPRNG(16− pos, duration, duration)
6: // A tick change tick2 occurs at pos position mPRNG.
7: candidateFEK2 ←mPRNG(pos− 1, tick, tick)‖mPRNG(1, tick, duration)‖

mPRNG(16− pos, duration, duration)
// Generate IV without changing tick

8: IV ←mPRNG(16, duration, duration)
9: Include candidateFEK1‖IV and candidateFEK2‖IV in L

10: end for
11: end for
12: end for
13: return L

5. Recovery of Encryption Keys and Decryption of Files Encrypted by Magniber v2
5.1. Verifying the Generated File Encryption Key Candidates

Now, we are ready to recover the FEKi. The FEKi recovery process is performed in
two steps: padding verification and statistical randomness tests to verify the correctness of
the FEKi candidates. We considered the point that it is possible to decrypt all the encrypted
blocks except the first block without the IVi as the error propagation property of the CBC
mode of operation used for file encryption. That is, if the guessed FEKi candidate is correct,
the padding verification accepts Filei, which is the decryption result by FEKi. However,
in some cases, the padding verification yields a false positive for an incorrect FEKi candi-
date. To remove these false candidates, we checked whether Filei was correctly decrypted in
statistical randomness tests. Although there tests reduce the false-positive rate of detecting
FEKi candidates, they incur much higher computational cost than padding verification.

Padding verification of decrypted files: The padding, which matches the length of
the plaintext before encryption to a multiple of the block length of the symmetric-key
cipher, occupies the last block. The ciphertext is obtained by encrypting the padded plain-
text. Conversely, the plaintext is obtained by decrypting the ciphertext and removing the
padding. Before removing the padding from the decrypted ciphertext, the correctness of
the padding must be verified. If the padding fails the verification test, then the decryption
of the ciphertext is incorrect. This mechanism can identify the correct FEKis among the
FEKi candidates. We decrypt the data Ci of Filei encrypted with FEKi, and then verify the
padding in the last block of decrypted Ci. In the padding verification, we decrypt only the
last block (not the entire encrypted file) for efficiency. The padding value of PKCS7Padding
used by Magniber v2 is determined by the padding length: for instance, a one-byte padding
length is padded with 0x01, whereas a four-byte padding length is padded with 0x04040404.
Therefore, we check the value from the last byte of the last block and verify the correctness
of the padding with that value. Padding verification is relatively inexpensive because it
performs a simple value-checking operation. However, we identified the occurrence of
false-positive FEKi candidates in the padding verification. The false positive probability
depends on the validated padding length. For example, if a padding value of 0x030303
passes the verification test, its probability of being a false positive is about 256−3. More
generally, the false-positive probability of a length-n padding is about 256−n. Clearly, the

Electronics 2021, 10, 16 13 of 17

false-positive rate of the padding verification increases with decreasing padding length.
Therefore, files that passed the padding verification were re-tested more rigorously to find
the correct FEKi candidates.

Randomness tests for decrypted files: Our verification method acknowledges that
plaintext can be recovered only by decrypting the infected file with the correct FEKi.
In other words, we must distinguish whether an infected file decrypted with a FEKi can-
didate is plaintext or ciphertext (an infected file decrypted with an incorrect FEKi is also
expressed as ciphertext). To distinguish between plaintext and ciphertext, we considered
the randomness feature of ciphertext and apply the statistical randomness suite NIST
SP800-22, which consists of 15 randomness tests. The randomness tests were performed
on the data of 600 files (100 files in each of the following formats: video, audio, image,
document, compressed and encrypted). The NIST recommends 25 runs of each test to en-
sure randomness. However, one run of each test is sufficient for our purposes. The statistical
randomness results of our test set are listed in Table 2.

Table 2. Results of statistical randomness tests on our test set.

Test List (ms/Test *) Video Image Audio Document Compressed Encrypted False Positive Rate
Frequency (4) 2 8 11 5 5 100 5.17%

Block frequency (2) 0 0 0 0 3 98 0.83%
Runs (4) 0 1 1 1 5 97 1.83%

Longest run (5) 33 0 4 10 31 100 13%
Rank (47) 8 7 50 33 55 99 25.67%
FFT (188) 4 2 32 12 41 98 15.5%

Non overlapping template (1167) 0 0 0 1 4 100 0.83%
Overlapping template (35) 28 8 4 1 24 100 10.83%

Universal (30) 0 0 0 0 8 96 2%
Approximate entropy (124) 0 0 0 0 4 100 0.67%

Serial (343) 0 0 0 0 8 97 1.83%
Linear complexity (1890) 17 10 47 23 56 100 25.5%

Cumulative sums (5) 1 0 0 1 4 100 1%
Random excursions (4) 0 0 0 0 2 65 6.17%

Random excursions variants (4) 0 0 1 0 2 62 6.83%

These tests are the results for p-value = 0.01. * Time per test in milliseconds.

Based on the experimental results shown in Table 2, we selected four randomness
tests (block frequency, runs, universal, cumulative sums) as suitable tests of FEKi recovery.
In selecting these tests, we considered not only the distinction rate between plaintext and
ciphertext, but also the test speed. The non-overlapping template, serial and approximate
entropy tests gave excellent distinction rates between plaintext and ciphertext, but were
slower than the other selected tests. Conversely, the frequency, longest run, random excur-
sions and random excursions variants ran quickly but yielded low distinction rates.

We applied four selected tests to the FEKi, which passed the padding verification.
Any FEKi candidate that passed the padding verification, but not passed randomness tests
was concluded as the correct FEKi.

5.2. File Encryption Key Recovery

Algorithm 4 gives our FEKi recovery algorithm developed through Section 4.2 and 5.1.
This algorithm inputs three arguments (Filei, base and ∆t) and outputs the correct FEKi.
Here, Filei is the i-th infected file to be decrypted. In the FEKi recovery process, the recovery
order of FEKi is important because the previous value of the MPRNG affects the next value.
The FEKis are recovered in the order of their file infection in Magniber v2 based on DFS.
The base value provides the reference point of each FEKi recovery. The initial base in
FEK0 recovery is the tick used to generate the last byte of the victim’s ID. In subsequent
recoveries, base is the tick used to generate FEKi−1[15]. ∆t represents the time-change range
of the tick.

Electronics 2021, 10, 16 14 of 17

This value is arbitrary but must be appropriately set to balance its trade-off relationship
with recovery time. Algorithm 4 is divided into two parts, depending on whether or
not the tick changes during the IVi generation. Steps 1–10 are executed when the tick is
unchanged in the IVi−1 derivation. Step 1 calls Algorithm 3, which generates the list L
of FEKi candidates. Here, f eedback applies the value generated after deriving FEKi−1[15].
Steps 3–9 are then executed on the FEKi candidates in L. First, Step 3 decrypts Filei with
AES128-CBC using candidate FEK and IV, and obtains plaintext P. Step 4 performs the
padding verification of P, and Step 5 performs the four randomness tests if P passes
the padding verification; that is, if candidate FEK corresponding to P is concluded as
the correct FEKi. If the FEKi recovery fails in Steps 1–9, the algorithm performs a 220

f eedback brute-force attack (Steps 11–24). Apart from the brute-force f eedback, this process
operates similarly to the previous process. RNG, a subfunction of MPRNG, is masked
with 0x11ee0fff, so the effective number of bits is reduced from 32 to 20. Steps 12 and
13 exploit this vulnerability in the f eedback reconstruction. After constructing the FEKi
candidate list L based on the reconstructed f eedback, the process executes identically to the
previous process.

Algorithm 4 FEKi Recovery Algorithm

Function recoveryFEK (Filei, base, ∆t)
Input: Encrypted file data Filei, Reference point base, Time interval ∆t
Output: Correct FEKi
Global f eedback

// Assume that the tick was not changed in the IVi−1 generation.
1: L = DeriveFEKCandidates(base, ∆t)
2: for CandidateFEK in L do
3: P← AES128-CBC(Filei, candidataFEK, IV)
4: if isPadding(P) is True then
5: if BlockFreqTest and RunsTest and CumSumTest and UniversalTest is not pass

then
6: FEKi ← candidataFEK
7: return FEKi
8: end if
9: end if

10: end for
// Assume that the tick was changed in the IVi−1 generation.

11: for i← 0 to 220 − 1 do
12: f eedback← ((i&0x80000)� 9)‖((i&0x78000)� 6)
13: f eedback← f eedback‖((i&0x7000)� 5)‖(i&0xfff)
14: L = DeriveFEKCandidates(base, ∆t)
15: for CandidateFEK in L do
16: P← AES128-CBC(Filei, candidataFEK, IV)
17: if isPadding(P) is True then
18: if BlockFreqTest and RunsTest and CumSumTest UniversalTest is not pass then
19: FEKi ← candidataFEK
20: return FEKi
21: end if
22: end if
23: end for
24: end for
25: return null

Electronics 2021, 10, 16 15 of 17

5.3. Experimental Result

The key recovery speed was measured in the following system: 2 GB RAM, 2 proces-
sors and Windows 7 32-bit virtual environment. Within the virtual environment, common
files were infected with Magniber v2, and the FEKs of the infected files were recovered
by running Algorithm 4. During the experiment, the modification time interval of the
encrypted files is not exceeded 50 ms. Therefore, we heuristically set ∆t to 50 ms.

Table 3 shows the experimental results. When the tick did not change during the
IVi−1 and FEKi generation, each FEKi was recovered in 0.140 s at most. When the tick
changed once and twice during the FEKi derivation but no tick change occurred during
IVi−1, the recovery times per FEKi were 2.465 s and 1.5 min at most, respectively.

Table 3. Experimental results of file encryption key (FEK) recovery.

Number of Tick
Changes during FEKi

No Tick Changes during
Generation of IVi−1

Tick Changes during
Generation of IVi−1

0 0.140 s 56 min.
1 2.465 s 17 hrs.
2 1.5 min. 29 day.

In these results, t was 50 ms.

Conversely, when the tick changed during the IVi−1 derivation but not during the
FEKi derivation, the maximum recovery time of including the brute force attack of f eedback
took 56 min, owing to the brute-force attack of f eedback. In this circumstance, we estimated
a one-tick and two-tick change in the FEKi derivation increased the recovery time to 14 h
and 41 h per FEKi, respectively.

Although a FEK with 2128 attack complexity cannot be found by normal approaches,
the above results show that our decryption method can recover a FEK within practical
time. Moreover, our experiment was performed on limited-resource hardware. The FEK
recovery speed would improve if the infected files were moved into an environment with
higher computing power, or if Algorithm 4 was parallelized during a feedback brute-force
attack. Finally, we successfully decrypted the files using the recovered FEKs, as shown in
Figure 7.

Figure 7. Cont.

Electronics 2021, 10, 16 16 of 17

Figure 7. (a) Encrypted files (b) Decrypted files after applying our proposed method.

6. Conclusions

We analyzed Magniber v2 from a cryptographic viewpoint and studied file decryp-
tion through FEK recovery. We exploited a vulnerability in the MPRNG of Magniber v2
to generate the FEK and IV. In addition, we proposed an encryption key verification
method that checks the existence of padding and performs statistical randomness tests.
We demonstrated that the proposed method can decrypt Magniber v2-infected file without
the knowledge of the attacker’s private key.

Most of the latest ransomware use hybrid cryptographic algorithms. Files corrupted
by these types of ransomware are commonly decrypted by acquiring the attacker’s private
key, which is used to encrypt the encryption keys of the corrupted files. However, if the
PRNG that generates the file encryption keys is vulnerable, they can be retrieved by repro-
ducing the seed at the time of the infection. We succeeded in decrypting infected files by
recovering the file encryption key for Magniber v2, but files infected by ransomware using
PRNG containing the same vulnerability can be decrypted using the proposed method.
To complement this study, we will conduct a study on a system that can automatically
detect vulnerabilities of PRNGs used in ransomwares.

Author Contributions: Formal Analysis, S.L.; Methodology M.P.; Writing—original draft, S.L.;
Writing—reveiew & editing, M.P.; Project administration, J.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by Institute for Information & communications Technology
Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-00520, Development of
SCR-Friendly Symmetric Key Cryptosystem and Its Application Modes.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Norsk Hydro Ransomware Incident Losses Reach $40 Million after One Week. Available Online: https://www.zdnet.com/

article/norsk-hydro-ransomware-incident-losses-reach-40-million-after-one-week/ (accessed on 17 December 2020).
2. Georgia County Pays a Whopping $400,000 to Get Rid of a Ransomware Infection. Available Online: https://www.zdnet.com/

article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/ (accessed on 17 December 2020).
3. BBC News, ISS World Hack Leaves Thousands of Employees Offline. Available Online: https://www.bbc.com/news/technology-

51572575 (accessed on 17 December 2020).
4. Maginber, The worst Ransomware in First Quarter. Available Online: https://www.ahnlab.com/kr/site/securityinfo/secunews/

secuNewsView.do?menu_dist=2&seq=27370 (accessed on 17 December 2020).

https://www.zdnet.com/article/norsk-hydro-ransomware-incident-losses-reach-40-million-after-one-week/
https://www.zdnet.com/article/norsk-hydro-ransomware-incident-losses-reach-40-million-after-one-week/
https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/
https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/
https://www.bbc.com/news/technology-51572575
https://www.bbc.com/news/technology-51572575
https://www.ahnlab.com/kr/site/securityinfo/secunews/secuNewsView.do?menu_dist=2&seq=27370
https://www.ahnlab.com/kr/site/securityinfo/secunews/secuNewsView.do?menu_dist=2&seq=27370

Electronics 2021, 10, 16 17 of 17

5. Magniber Ransomware: Exclusively for South Koreans. Available Online: https://blog.malwarebytes.com/threat-analysis/2017
/10/magniber-ransomware-exclusively-for-south-koreans/ (accessed on 17 December 2020).

6. Magniber Decryptor Release. Available Online: https://www.ahnlab.com/kr/site/securityinfo/secunews/secuNewsView.do?
seq=27312 (accessed on 17 December 2020).

7. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; SP 800-22; NIST: Gaithersburg, MD, USA, 2010.

8. Kanwal, M.; Thakur, S. An app based on static analysis for android ransomware. In Proceedings of the 2017 International
Conference on Computing, Communication and Automation (ICCCA),Greater Noida, India , 5–6 May 2017; pp. 813–818.

9. Andronio, N.; Zanero, S.; Maggi, F. Heldroid: Dissecting and detecting mobile ransomware. In International Symposium on Recent
Advances in Intrusion Detection; Springer: Berlin, Germany, 2015; pp. 382–404.

10. Moser, A.; Kruegel, C.; Kirda, E. Limits of static analysis for malware detection. In Proceedings of the Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430.

11. Continella, A.; Guagnelli, A.; Zingaro, G.; De Pasquale, G.; Barenghi, A.; Zanero, S.; Maggi, F. ShieldFS: A self-healing, ransomware-
aware filesystem. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Los Angeles, CA, USA ,
5–9 December 2016; pp. 336–347.

12. Mehnaz, S.; Mudgerikar, A.; Bertino, E. Rwguard: A real-time detection system against cryptographic ransomware. In International
Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Berlin, Germany, 2018; pp. 114–136.

13. Jung, S.; Won, Y. Ransomware detection method based on context-aware entropy analysis. Soft Comput. 2018, 22, 6731–6740.
[CrossRef]

14. Hampton, N.; Baig, Z.; Zeadally, S. Ransomware behavioural analysis on windows platforms. J. Inf. Secur. Appl. 2018, 40, 44–51.
[CrossRef]

15. Kharaz, A.; Arshad, S.; Mulliner, C.; Robertson, W.; Kirda, E. {UNVEIL}: A large-scale, automated approach to detect-
ing ransomware. In Proceedings of the 25th {USENIX} Security Symposium ({USENIX} Security 16), Austin, TX, USA,
10–12 August 2016; pp. 757–772.

16. Hasan, M.M.; Rahman, M.M. RansHunt: A support vector machines based ransomware analysis framework with integrated
feature set. In Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT),
Dhaka, Bangladesh, 22–24 December 2017; pp. 1–7.

17. Lee, K.; Lee, S.Y.; Yim, K. Machine learning based file entropy analysis for ransomware detection in backup systems. IEEE Access
2019, 7, 110205–110215. [CrossRef]

18. Almashhadani, A.O.; Kaiiali, M.; Sezer, S.; O’Kane, P. A multi-classifier network-based crypto ransomware detection system:
A case study of Locky ransomware. IEEE Access 2019, 7, 47053–47067. [CrossRef]

19. Kolodenker, E.; Koch, W.; Stringhini, G.; Egele, M. Paybreak: Defense against cryptographic ransomware. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, UAE, 2–6 April 2017; pp. 599–611.

20. Kim, H.; Yoo, D.; Kang, J.S.; Yeom, Y. Dynamic ransomware protection using deterministic random bit generator. In Proceedings
of the 2017 IEEE Conference on Application, Information and Network Security (AINS), Miri, Malaysia, 13–14 November 2017;
pp. 64–68.

21. García, H.M.; Us, L.C. Hidden Tear: Análisis del primer Ransomware Open Source. Av. Perspect. Innov. Investig. Vincul. Mérida
Yucatán M. 2015, 1, 31–54.

22. Destroying The Encryption of Hidden Tear Ransomware. Available Online: https://utkusen.com/blog/destroying-the-
encryption-of-hidden-tear-ransomware.html (accessed on 17 December 2020).

23. Lee, S.; Kim, S.; Kim, G.; Kim, D.; Park, Y.; Kim, J. A Study on the Decryption of Donut Ransomware through Memory Analysis.
J. Digit. Forensics 2019, 13, 13–22.

24. Lee, S.; Youn, B.; Kim, S.; Kim, G.; Lee, Y.; Kim, D.; Park, H.; Kim, J. A Study on Encryption Process and Decryption of Ransomware
in 2019. J. Korea Inst. Inf. Secur. Cryptol. 2019, 29, 1339–1350.

25. Cyber Attack Hits 200,000 in at Least 150 Countries: Europol. Available Online: https://www.reuters.com/article/us-cyber-
attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX (accessed on 17 December 2020).

26. Akbanov, M.; Vassilakis, V.G.; Logothetis, M.D. WannaCry ransomware: Analysis of infection, persistence, recovery prevention
and propagation mechanisms. J. Telecommun. Inf. Technol. 2019. [CrossRef]

27. Github, Wanakiwi. Available Online: https://github.com/gentilkiwi/wanakiwi (accessed on 17 December 2020).
28. Boczan, T. The Evolution of GandCrab Ransomware. Available Online: https://www.youtube.com/watch?v=b57VV9BC6tE&t=

1863s (accessed on 17 December 2020)
29. Bitdefender, Europol, Romanian Police, DIICOT team up for GandCrab Decryption Tool. Available Online: https://labs.

bitdefender.com/2018/02/bitdefender-europol-romanian-police-diicot-team-up-for-gandcrab-removal-tool/ (accessed on 17
December 2020).

30. Bleeping Computer, FBI Releases Master Decryption Keys for GandCrab Ransomware. Available Online: https://www.
bleepingcomputer.com/news/security/fbi-releases-master-decryption-keys-for-gandcrab-ransomware/ (accessed on 17 Decem-
ber 2020).

31. No More Ransom Project. Available Online: https://www.nomoreransom.org (accessed on 17 December 2020).
32. Hybrid Analysis. Available Online: https://www.hybrid-analysis.com (accessed on 17 December 2020).

https://blog.malwarebytes.com/threat-analysis/2017/10/magniber-ransomware-exclusively-for-south-koreans/
https://blog.malwarebytes.com/threat-analysis/2017/10/magniber-ransomware-exclusively-for-south-koreans/
https://www.ahnlab.com/kr/site/securityinfo/secunews/secuNewsView.do?seq=27312
https://www.ahnlab.com/kr/site/securityinfo/secunews/secuNewsView.do?seq=27312
http://dx.doi.org/10.1007/s00500-018-3257-z
http://dx.doi.org/10.1016/j.jisa.2018.02.008
http://dx.doi.org/10.1109/ACCESS.2019.2931136
http://dx.doi.org/10.1109/ACCESS.2019.2907485
https://utkusen.com/blog/destroying-the-encryption-of-hidden-tear-ransomware.html
https://utkusen.com/blog/destroying-the-encryption-of-hidden-tear-ransomware.html
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
http://dx.doi.org/10.26636/jtit.2019.130218
https://github.com/gentilkiwi/wanakiwi
https://www.youtube.com/watch?v=b57VV9BC6tE&t=1863s
https://www.youtube.com/watch?v=b57VV9BC6tE&t=1863s
https://labs.bitdefender.com/2018/02/bitdefender-europol-romanian-police-diicot-team-up-for-gandcrab-removal-tool/
https://labs.bitdefender.com/2018/02/bitdefender-europol-romanian-police-diicot-team-up-for-gandcrab-removal-tool/
https://www.bleepingcomputer.com/news/security/fbi-releases-master-decryption-keys-for-gandcrab-ransomware/
https://www.bleepingcomputer.com/news/security/fbi-releases-master-decryption-keys-for-gandcrab-ransomware/
https://www.nomoreransom.org
https://www.hybrid-analysis.com

	Introduction
	Background
	Our Contributions

	Related Work
	Analysis of Magniber v2
	Malicious Behavior Process
	Encryption Process
	FEK and IV Generation
	FEK and IV Encryption
	File Encryption

	Method for Finding the Encryption Keys of Magniber v2
	Magniber PRNG
	Generating File Encryption Key Candidates

	Recovery of Encryption Keys and Decryption of Files Encrypted by Magniber v2
	Verifying the Generated File Encryption Key Candidates
	File Encryption Key Recovery
	Experimental Result

	Conclusions
	References

