The Use of Cryotherapy in Cosmetology and the Influence of Cryogenic Temperatures on Selected Skin Parameters—A Review of the Literature
Abstract
:1. Background
2. Materials and Methods
3. Results
3.1. Analgesic Effect
3.2. Influence of Cryotherapy on the Level of Inflammatory Markers
3.3. Cryotherapy and Oxidative Stress and Skin
3.4. The Impact of Cryotherapy on Skin
Subjects | Intervention | Observation | |
---|---|---|---|
Piotrowska et al. [53] | women (n = 43) and men (n = 33) 23.63 (SD = 1.36) | 1 | Hydration: no impact TEWL: deterioration pH: no impact |
Skrzek et al. [54] | women (n = 20) 5.87 (SD = 7.54) | 10 | Hydration: improvement after the first 3 treatments, deterioration after the entire series pH: no impact Lubrication: no impact |
Kang [55] | women (11) 30–40 | 12 | Hydration: improvement Lubrication: improvement |
3.5. Cryotherapy in Dermatology
3.6. WBC vs. Body Fat
4. Conclusions
Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sieron, A.; Cieslar, G.; Stanek, A. Cryotherapy: Theoretical Bases, Biological Effects, Clinical Applications; α-Medica Press: Bielsko-Biała, Poland, 2010. [Google Scholar]
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole- and Partial-Body Cryostimulation/Cryotherapy: Current Technologies and Practical Applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Fayyad, D.M.; Abdelsalam, N.; Hashem, N. Cryotherapy: A New Paradigm of Treatment in Endodontics. J. Endod. 2020, 46, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Hermann, J. Kryotherapie. Z. Rheumatol. 2009, 68, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Waśkiewicz, Z.; Sousa, C.V.; Hill, L.; Nikolaidis, P.T. Cold Water Swimming—Benefits and Risks: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 8984. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, P.; Kokko, L.; Ylijukuri, V. Winter Swimming Improves General Well-Being. Int. J. Circumpolar. Health 2004, 63, 140–144. [Google Scholar] [CrossRef]
- Doets, J.J.R.; Topper, M.; Nugter, A.M. A Systematic Review and Meta-Analysis of the Effect of Whole Body Cryotherapy on Mental Health Problems. Complement Ther. Med. 2021, 63, 102783. [Google Scholar] [CrossRef]
- Kwiecien, S.Y.; McHugh, M.P. The Cold Truth: The Role of Cryotherapy in the Treatment of Injury and Recovery from Exercise. Eur. J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef]
- Rymaszewska, J.; Ramsey, D. Whole Body Cryotherapy as a Novel Adjuvant Therapy for Depression and Anxiety. Arch. Psychiatry Psychother. 2008, 2, 49–57. [Google Scholar]
- Cholewka, A.; Drzazga, Z.; Sieroń, A.; Stanek, A. Thermovision Diagnostics in Chosen Spine Diseases Treated by Whole Body Cryotherapy. J. Therm. Anal. Calorim. 2010, 102, 113–119. [Google Scholar] [CrossRef]
- Hohenauer, E.; Taeymans, J.; Baeyens, J.P.; Clarys, P.; Clijsen, R. The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0139028. [Google Scholar] [CrossRef]
- Stanek, A.; Sieroń, A. Współczesna Krioterapia Ogólnoustrojowa w Odnowie Biologicznej Contemporary Whole-Body Cryotherapy in Wellness. Acad. Med. Siles 2012, 66, 64–70. [Google Scholar]
- Lubkowska, A.; Dudzińska, W.; Bryczkowska, I.; Dołęgowska, B. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation. Oxid Med. Cell. Longev. 2015, 2015, 803197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, E.; Sandoval, M.C.; Camargo, D.M.; Salvini, T.F. Motor and Sensory Nerve Conduction Are Affected Differently by Ice Pack, Ice Massage, and Cold Water Immersion. Phys. Ther. 2010, 90, 581–591. [Google Scholar] [CrossRef]
- Hohenauer, E.; Deliens, T.; Clarys, P.; Clijsen, R. Perfusion of the Skin’s Microcirculation after Cold-Water Immersion (10 °C) and Partial-Body Cryotherapy (−135 °C). Skin Res. Technol. 2019, 25, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Malanga, G.A.; Yan, N.; Stark, J. Mechanisms and Efficacy of Heat and Cold Therapies for Musculoskeletal Injury. Postgrad. Med. 2015, 127, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Pertovaara, A.; Kalmari, J.; Med, B. Comparison of the Visceral Antinociceptive Effects of Spinally Administered MPV-2426 (Fadolmidine) and Clonidine in the Rat. J. Am. Soc. Anesthesiol. 2003, 98, 189–194. [Google Scholar] [CrossRef]
- Huttunen, P.; Lando, N.G.; Meshtsheryakov, V.A.; Lyutov, V.A. Effects of Long-Distance Swimming in Cold Water on Temperature, Blood Pressure and Stress Hormones in Winter Swimmers. J. Therm. Biol. 2000, 25, 171–174. [Google Scholar] [CrossRef]
- Algafly, A.A.; George, K.P. The Effect of Cryotherapy on Nerve Conduction Velocity, Pain Threshold and Pain Tolerance. Br. J. Sports Med. 2007, 41, 365–369. [Google Scholar] [CrossRef]
- Bleakley, C.; McDonough, S.; Gardner, E.; Baxter, G.D.; Hopkins, J.T.; Davison, G.W. Cold-Water Immersion (Cryotherapy) for Preventing and Treating Muscle Soreness after Exercise. Cochrane Database Syst. Rev. 2012, 2, CD008262. [Google Scholar] [CrossRef]
- Herman, J.; Rost-Roszkowska, M.; Skotnicka-Graca, U. Skin Care during the Menopause Period: Noninvasive Procedures of Beauty Studies. Postep. Derm. Alergol. 2013, 30, 388–395. [Google Scholar] [CrossRef]
- Smolander, J.; Leppäluoto, J.; Westerlund, T.; Oksa, J.; Dugue, B.; Mikkelsson, M.; Ruokonen, A. Effects of Repeated Whole-Body Cold Exposures on Serum Concentrations of Growth Hormone, Thyrotropin, Prolactin and Thyroid Hormones in Healthy Women. Cryobiology 2009, 58, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, E.; Olek, R.A.; Grzywacz, T.; Kaczor, J.J.; Antosiewicz, J.; Skrobot, W.; Kujach, S.; Laskowski, R. Whole-Body Cryostimulation as an Effective Way of Reducing Exercise-Induced Inflammation and Blood Cholesterol in Young Men. Eur. Cytokine Netw. 2014, 25, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Wyrostek, J.; Major, P.; Zuziak, R.; Piotrowska, A.; Czerwińska-Ledwig, O.; Grzybkowska, A.; Zasada, M.; Ziemann, E.; Żychowska, M. The Effect of Whole-Body Cryostimulation on Body Composition and Leukocyte Expression of HSPA1A, HSPB1, and CRP in Obese Men. Cryobiology 2020, 94, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Fazeli, B.; Bartuś, S.; Sutkowska, E. The Role of Endothelium in Physiological and Pathological States: New Data. Biomed. Res. Int. 2018, 2018, 1098039. [Google Scholar] [CrossRef] [PubMed]
- Wiecek, M.; Szygula, Z.; Gradek, J.; Kusmierczyk, J.; Szymura, J. Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules 2021, 11, 1041. [Google Scholar] [CrossRef]
- Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. Sci. Aging Knowl. Environ. 1956, 11, 298–300. [Google Scholar] [CrossRef]
- Harman, D. The Biologic Clock: The Mitochondria? J. Am. Geriatr. Soc. 1972, 20, 145–147. [Google Scholar] [CrossRef]
- Gruber, J.; Schaffer, S.; Halliwell, B. The Mitochondrial Free Radical Theory of Ageing–Where Do We Stand? Front. Biosci. 2008, 13, 6554–6570. [Google Scholar] [CrossRef]
- Lapointe, J.; Hekimi, S. When a Theory of Aging Ages Badly. Cell. Mol. Life Sci. 2010, 67, 1–8. [Google Scholar] [CrossRef]
- Buffenstein, R.; Edrey, Y.H.; Mele, J. The Oxidative Stress Theory of Aging: Embattled or Invincible? Insights from Non-Traditional Model Organisms. Age 2008, 30, 99–109. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Shadel, G.S. Rethinking the Mitochondrial Theory of Aging: The Role of Mitochondrial Gene Expression in Lifespan Determination. Cell Cycle 2007, 6, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciak, G.; Szymura, J.; Szygula, Z.; Gradek, J.; Wiecek, M. The Effect of Repeated Whole-Body Cryotherapy on SIRT1 and SIRT3 Concentrations and Oxidative Status in Older and Young Men Performing Different Levels of Physical Activity. Antioxidants 2021, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Mrowicka, M.; Malinowska, K.; Mrowicki, J.; Saluk-Juszczak, J.; Kȩdziora, J. Effects of Whole-Body Cryotherapy on a Total Antioxidative Status and Activities of Antioxidative Enzymes in Blood of Depressive Multiple Sclerosis Patients. World J. Biol. Psychiatry 2011, 12, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Wyrostek, J.; Piotrowska, A.; Czerwińska-Ledwig, O.; Zuziak, R.; Sadowska-Krępa, E.; Maciejczyk, M.; Żychowska, M. Blood Pro-Oxidant/Antioxidant Balance in Young Men with Class II Obesity after 20 Sessions of Whole Body Cryostimulation: A Preliminary Study. Redox Rep. 2021, 26, 10–17. [Google Scholar] [CrossRef]
- Sutkowy, P.; Woźniak, A.; Rajewski, P. Single Whole-Body Cryostimulation Procedure versus Single Dry Sauna Bath: Comparison of Oxidative Impact on Healthy Male Volunteers. Biomed. Res. Int. 2015, 2015, 406353. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dołegowska, B.; Szyguła, Z. Whole-Body Cryostimulation-Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men-Significance of the Number of Sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef]
- Sybilski, A. Skin–the Most Important Organ of Our Body. Let’s Take Care of It! Pediatr. Med. Rodz. 2012, 8, 375–379. [Google Scholar]
- Nguyen, A.V.; Soulika, A.M. The Dynamics of the Skin’s Immune System. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef]
- Chesterton, L.S.; Foster, N.E.; Ross, L. Skin Temperature Response to Cryotherapy. Arch. Phys. Med. Rehabil. 2002, 83, 543–549. [Google Scholar] [CrossRef]
- Cholewka, A.; Stanek, A.; Sieroń, A.; Drzazga, Z. Thermography Study of Skin Response Due to Whole-Body Cryotherapy. Skin Res. Technol. 2012, 18, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Darkenski, R.; Kazandjieva, J.; Tsankov, N. Skin Barier Function: Morpgological Basis and REGULATORY Mechanisms. J. Clin. Med. 2011, 4, 36–45. [Google Scholar]
- Kennet, J.; Hardaker, N.; Hobbs, S.; Selfe, J. Cooling efficiency of 4 common cryotherapeutic agents. J. Athl. Train. 2007, 42, 343–348. [Google Scholar] [PubMed]
- Jutte, L.S.; Merrick, M.A.; Ingersoll, C.D.; Edwards, J.E. The Relationship between Intramuscular Temperature, Skin Temperature, and Adipose Thickness during Cryotherapy and Rewarming. Arch. Phys. Med. Rehabil. 2001, 82, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Leppäluoto, J.; Westerlund, T.; Huttunen, P.; Oksa, J.; Smolander, J.; Dugué, B.; Mikkelsson, M. Effects of Long-Term Whole-Body Cold Exposures on Plasma Concentrations of ACTH, Beta-Endorphin, Cortisol, Catecholamines and Cytokines in Healthy Females. Scand. J. Clin. Lab. Investig. 2008, 68, 145–153. [Google Scholar] [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Waaijer, M.E.C.; Parish, W.E.; Strongitharm, B.H.; van Heemst, D.; Slagboom, P.E.; de Craen, A.J.M.; Sedivy, J.M.; Westendorp, R.G.J.; Gunn, D.A.; Maier, A.B. The Number of P16INK4a Positive Cells in Human Skin Reflects Biological Age. Aging Cell 2012, 11, 722–725. [Google Scholar] [CrossRef]
- Waaijer, M.E.C.; Gunn, D.A.; Adams, P.D.; Pawlikowski, J.S.; Griffiths, C.E.M.; van Heemst, D.; Slagboom, P.E.; Westendorp, R.G.J.; Maier, A.B. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age. J. Gerontol. -Series A Biol. Sci. Med. Sci. 2016, 71, 1022–1028. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Bulfone-Paus, S.; Griffiths, C.E.M.; Watson, R.E.B. Inflammaging and the Skin. J. Investig. Dermatol. 2021, 141, 1087–1095. [Google Scholar] [CrossRef]
- Campisi, J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef]
- Okazaki, M.; Yoshimura, K.; Uchida, G.; Harii, K.; Okazaki, M. Correlation between Age and the Secretions of Melanocyte-Stimulating Cytokines in Cultured Keratinocytes and Fibroblasts. Br. J. Dermatol. 2005, 2, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Aszklar, K.; Dzidek, A.; Ptaszek, B.; Czerwińska-Ledwig, O.; Pilch, W. The Impact of a Single Whole Body Cryostimulation Treatment on Selected Skin Properties of Healthy Young Subjects. Cryobiology 2021, 100, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Skrzek, A.; Ciszek, A.; Nowicka, D.; Dębiec-Bąk, A. Evaluation of Changes in Selected Skin Parameters under the Influence of Extremely Low Temperature. Cryobiology 2019, 86, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H. The Comparison about The Effect of Thermotherapy and Cryotherapy on The Skin. Kor. J. Aesthet Cosmetol. 2013, 11, 281–288. [Google Scholar]
- Shamsuddin, A.K.M.; Kuwahara, T.; Oue, A.; Nomura, C.; Koga, S.; Inoue, Y.; Kondo, N. Effect of Skin Temperature on the Ion Reabsorption Capacity of Sweat Glands during Exercise in Humans. Eur. J. Appl. Physiol. 2005, 94, 442–447. [Google Scholar] [CrossRef]
- Charkoudian, N. Mechanisms and Modifiers of Reflex Induced Cutaneous Vasodilation and Vasoconstriction in Humans. J. Appl. Physiol. 1985, 109, 1221–1228. [Google Scholar] [CrossRef]
- Dąbrowska, A.K.; Spano, F.; Derler, S.; Adlhart, C.; Spencer, N.D.; Rossi, R.M. The Relationship between Skin Function, Barrier Properties, and Body-Dependent Factors. Skin Res. Technol. 2018, 24, 165–174. [Google Scholar] [CrossRef]
- Hundeiker, M.; Sebastian, G.; Bassukas, D.; Ernst, K. Kryotherapie in Der Dermatologie. J. Dtsch. Dermatol. Ges. 2003, 1, 322–327. [Google Scholar]
- Ashique, K.; Kaliyadan, F.; Jayasree, P. Cryotherapy: Tips and Tricks. J. Cutan Aesthet. Surg. 2021, 14, 244–247. [Google Scholar] [CrossRef]
- Farberg, A.S.; Donohue, S.; Farberg, A.M.; Teplitz, R.W.; Rigel, D.S. SKIN in-Depth Reviews Cutaneous Implications of Whole Body Cryotherapy. SKIN J. Cutan. Med. 2017, 1, 15–17. [Google Scholar]
- Pasquali, P.; Segurado-Miravalles, G.; González, S. Sequential Treatment of Actinic Keratosis with Cryotherapy and Ingenol Mebutate: Reflectance Confocal Microscopy Monitoring of Efficacy and Local Skin Reaction. Int. J. Dermatol. 2018, 57, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Gibbs, S.; Bennett, C.; Holland, R.; Abbott, R. Topical Treatments for Cutaneous Warts. Cochrane Database Syst. Rev. 2012, 2012, CD001781. [Google Scholar] [CrossRef]
- Sanders, K.M.; Hashimoto, T.; Sakai, K.; Akiyama, T. Modulation of Itch by Localized Skin Warming and Cooling. Acta Derm Venereol 2018, 98, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Turan, Ç.; Şahin, T.; Ekşioğlu, H.M. How Effective Is Cryotherapy Applied to the Nail Fold in Ingrown Toenails? Acta Dermatovenerol. Alp. Pannonica Adriat. 2020, 29, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Baranow, A.M.T. Cieplnofizyczne Procesy Przeprowadzania Krioterapii. Acta Bio-Optica et Inform. Med. 2005, 11, 47–50. [Google Scholar]
- Fontana, J.M.; Bozgeyik, S.; Gobbi, M.; Piterà, P.; Giusti, E.M.; Dugué, B.; Lombardi, G.; Capodaglio, P. Whole-Body Cryostimulation in Obesity. A Scoping Review. J. Therm. Biol. 2022, 106, 103250. [Google Scholar] [CrossRef] [PubMed]
- Hammond, L.E.; Cuttell, S.; Nunley, P.; Meyler, J. Anthropometric Characteristics and Sex Influence Magnitude of Skin Cooling Following Exposure to Whole Body Cryotherapy. Biomed. Res. Int. 2014, 2014, 628724. [Google Scholar] [CrossRef]
- Cuttell, S.; Hammond, L.; Langdon, D.; Costello, J. Individualising the Exposure of −110 °C Whole Body Cryotherapy: The Effects of Sex and Body Composition. J. Therm. Biol. 2017, 65, 41–47. [Google Scholar] [CrossRef]
- Polidori, G.; Cuttell, S.; Hammond, L.; Langdon, D.; Legrand, F.; Taiar, R.; Boyer, F.C.; Costello, J.T. Should Whole Body Cryotherapy Sessions Be Differentiated between Women and Men? A Preliminary Study on the Role of the Body Thermal Resistance. Med. Hypotheses 2018, 120, 60–64. [Google Scholar] [CrossRef]
- Wyrostek, J.; Piotrowska, A.; Czerwińska-Ledwig, O.; Zuziak, R.; Szyguła, Z.; Cisoń, T.; Żychowska, M.; Pilch, W. Complex Effects of Whole Body Cryostimulation on Hematological Markers in Patients with Obesity. PLoS ONE 2021, 16, e0249812. [Google Scholar] [CrossRef]
- Kilmer, S.L.; Burns, A.J.; Zelickson, B.D. Safety and Efficacy of Cryolipolysis for Non-Invasive Reduction of Submental Fat. Lasers Surg. Med. 2016, 48, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Krueger, N.; Mai, S.V.; Luebberding, S.; Sadick, N.S. Cryolipolysis for Noninvasive Body Contouring: Clinical Efficacy and Patient Satisfaction. Clin. Cosmet. Investig. Dermatol. 2014, 7, 201–205. [Google Scholar] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzidek, A.; Piotrowska, A. The Use of Cryotherapy in Cosmetology and the Influence of Cryogenic Temperatures on Selected Skin Parameters—A Review of the Literature. Cosmetics 2022, 9, 100. https://doi.org/10.3390/cosmetics9050100
Dzidek A, Piotrowska A. The Use of Cryotherapy in Cosmetology and the Influence of Cryogenic Temperatures on Selected Skin Parameters—A Review of the Literature. Cosmetics. 2022; 9(5):100. https://doi.org/10.3390/cosmetics9050100
Chicago/Turabian StyleDzidek, Adrianna, and Anna Piotrowska. 2022. "The Use of Cryotherapy in Cosmetology and the Influence of Cryogenic Temperatures on Selected Skin Parameters—A Review of the Literature" Cosmetics 9, no. 5: 100. https://doi.org/10.3390/cosmetics9050100