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Abstract: In recent years, a large number of sunscreens have emerged to protect our skin. Most of
them are made up of simple or compound aromatic structures, which can pose a threat to marine
ecosystems. In order to understand their effects on the marine environment, different ecotoxicological
bioassays were carried out using planktonic organisms from three phyla and two different trophic
levels: larvae of the sea urchin Paracentrotus lividus, the copepod Acartia tonsa, and the microalga
Tisochrysis lutea. The aim of these tests was to expose these organisms to leachates from eight
sunscreen formulations. All of them showed a great variability in toxicity on the different plankton
organisms. The highest toxicity level was found for cream number 4 when tested on sea urchin,
exhibiting an EC50 = 122.4 mg/L. The toxicity of the UV filter 2-phenyl-5-benzimidazolesulfonic
acid, exclusively present in that cream, was evaluated in sea urchin, where an EC10 = 699.6 mg/L
was obtained under light exposure. According to our results, all tested creams become nontoxic
to plankton upon 30,000-fold dilution in seawater; thus, only local effects are expected. This study
highlights the need to understand the toxic effects generated by solar protection products, as well as
their ingredients, on marine organisms.
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1. Introduction

Sunscreens are defined as substances designed to protect our skin from the sun’s
harmful rays. They reflect, absorb, and scatter ultraviolet A and B radiation [1]. Sunscreen
formulations are composed of a wide variety of ingredients [2]. Their active components
are organic and inorganic ultraviolet (UV) filters [3,4], each with different structures and
solubilities. Most used UV filters such as octocrylene (OC), avobenzone, homosalate,
and oxybenzone are organic molecules with conjugated aromatic structures whose func-
tion is mainly to absorb UV rays [3,5]. Organic UV filters are also added to plastics
and other materials to provide them with resistance to light exposure [6]. In addition,
sunscreens contain other components such as chemical preservatives, fragrances, and an-
tioxidants substances [7,8]. These compounds have been detected in different seas at levels
of ng/L [5,9–11]. UV filters reach the marine environment directly from the skin of bathers,
which is the main source. In addition, there is an indirect route involving the effluents from
wastewater treatment plants and atmospheric deposition [5,8].

The toxicity of sunscreens depends on their composition. Numerous effects on marine
organisms have been observed; in fact, some UV filters pose a significant risk to marine
invertebrates [6,12,13]. UV filters such as OC, titanium dioxide (TiO2), and ethylhexyl
methoxycinnamate (EHMC) cause bleaching of some coral species by inducing the lytic cy-
cle of viruses present in symbiont zooxanthellae [14–16], thus reducing their photosynthetic
efficiency [17]. In addition, other effects have been seen in corals such as the induction
of acute stress after exposure or abnormal fatty-acid metabolism [15,18]. Moreover, they
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can generate reactive oxygen species (ROS) and DNA damage in phytoplankton [19], mus-
sels [17,20,21], copepods [22], and some fish [23]. In addition, they are known to cause
endocrine disruption in thyroid regulation and neurotoxicity [7,24–27]. Furthermore, some
UV filters and some chemical preservatives present in creams have estrogenic activity
with positive regulation of the vitellogenin gene [27–29]. Other effects that have been
studied are alterations in Paracentrotus lividus larval development [7,9,30,31], chromosomal
aberrations [31], alterations in phytoplankton growth rate [9,20,30,32], and changes in
communities favoring more resistant species [33].

In addition to these effects, some UV filters such as EHMC, OC, and TiO2 nanoparticles
have been found to bioaccumulate after days of exposure in corals [15,18], in mussels [34–36],
in phanerogams, and in fish [23,37].

It is important to highlight that all the components that make up sunscreens are
present in the aquatic environment together; hence, they can interact with each other, which
can modify their overall toxicity on biota [12,26]. In addition, other pollutants such as
hydrocarbons or pesticides are present in the water and may be acting synergistically
with these products [28]. Environmental factors may also influence the toxicity of these
substances. The authors of [38] found that increased salinity, even with little variation,
promoted a greater effect on marine organisms, as did temperature [39]. In addition,
radiation in the water column generates new toxic byproducts and ROS via photooxidation
of UV filters [5,8].

One of the organic UV filters used in sunscreens and cosmetics is 2-phenylbenzimidazole-
5-sulfonic acid (PBSA). Although its fate in the environment is not well studied, it has been
found to be present in wastewater at ng/L [40–42]. One of the effects on organisms is DNA
damage due to the formation of ROS [43]. In addition, it has been found to change some
biochemical parameters and enzymatic activities in the plasma of Oncorhynchus mykiss,
such as increased cytochrome P450 activity [44] and increased lipid peroxidation in Danio
rerio [45]. Its toxicity is thought to be due to compounds generated during its degradation
by UV radiation [46].

The present study focused on evaluating and quantifying the toxicity on marine
plankton of eight commercial sunscreens. To this end, we studied the effect on three marine
plankton organisms: the microalga Tisochrysis lutea, larvae of the sea urchin Paracentrotus
lividus, and the copepod Acartia tonsa. In addition, we tested PBSA individually because it
was the only substance exclusively present in the most toxic sunscreen tested (cream 4).
In this case, we also explored the effect that light exposure may have on the toxicity of
this compound.

2. Materials and Methods
2.1. Samples

The eight sunscreens and their formulations (Table A1) were provided by the manu-
facturer, and PBSA (CAS number 27503-81-7) was obtained with 96% purity from Sigma-
Aldrich (Darmstadt, Germany).

2.2. Exposure Media

All sunscreens and PBSA were tested for solubility in ultrapure water and in the
nontoxic organic solvent DMSO (dimethyl sulfoxide). None of them were soluble; hence,
creams were dosed according to standard methods for insoluble substances [47]. Briefly,
a 10 g/L mixture was incubated with artificial seawater (ASW) of defined composition
according to [48], in darkness, at 20 ◦C for 24 h on a rotary shaker at 1 rpm. After 24 h,
the leachates were filtered through a glass fiber filter (GF/F Whatman™) and diluted in
ASW. Dilutions tested were ×1/2, ×1/3, ×1/10, ×1/30, and ×1/100 for microalgae and
×1 (undiluted), ×1/3, ×1/10, and ×1/30 for zooplankton. In sea urchin, when toxicity
was detected at ×1/30, higher dilutions were carried out (×1/100, ×1/300, and ×1/1000).
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2.3. Test Organisms and Bioassays

The algal growth inhibition test was carried out according to the standard method
from [49] adapted to T. lutea by [50]. The initial strain of T. lutea was obtained from the
ECIMAT-Universidade de Vigo collection. Tests started with a 10,000 cells/mL inoculum in
exponential growth phase. Cell numbers were recorded by using a Multisizer™ 3 Coulter
Counter®, Beckman-Coulter. Eight replicates for the control and four for the test solutions
were prepared. Test tubes were incubated in an isothermal room at 20 ◦C and light
conditions for 72 h. After 3 days, growth was measured as

GR
(

d−1
)
=

[ln( f inal cell number)]− [ ln(initial cell number)]
d

.

Growth inhibition (I) was calculated as

I =
GRc − GRi

GRc
,

where GRc and GRi are the growth rate in the control and growth rate in each test tube,
respectively.

Responses were corrected by control and expressed as R = GRi/GRc.
Adult sea urchins (P. lividus) in ripe conditions were supplied by ECIMAT, and the sea

urchin embryo test (SET) was carried out following standard methods [51]. Briefly, mature
oocytes were fertilized in a 50 mL graduated cylinder with ASW, and fertilized eggs were
transferred into glass vials (four replicates per treatment and eight controls) with airtight
Teflon including 4 mL of exposure medium (final density of 40 per mL). Then, fertilized
eggs were incubated at 20 ◦C in dark conditions for 2 days. After 48 h, the vials were fixed
with three drops of 36% formaldehyde, observed in a Leica DMI 4000B inverted microscope,
and the length (maximum linear dimension) of 35 individuals per vial was recorded using
Leica LAS image analysis software (Leica microsystems, Wetzlar, Germany). The mean
length increase for each treatment was expressed as the net response (R) in relation to the
control response according to the following expression:

R =
Lt − Le

Lc − Le
,

where Lt is the mean length of a treatment, Le is the mean length of eggs, and Lc is the mean
size of control.

In the case of the toxicity test with the PBSA filter, four additional replicates of each
dilution and eight control vials were incubated in a room with a 16:8 h light/darkness
photoperiod at 20 ◦C. According to [51], the pH of the PBSA leachate was adjusted with a
drop of NaOH to meet the requirement of pH >7.

The acute lethal toxicity test with copepods followed standard methods [52] adapted
by [53] to use nauplius larvae of Acartia tonsa. Mature copepods were obtained from a
laboratory stock maintained by ECIMAT from 48 to 72 h before the start of the test. From the
initial stock, adults were collected by a 300 µm mesh and incubated in laboratory conditions
to produce nauplius <24 h following [53]. A total of 10 nauplii were transferred to 20 mL
glass vials using a binocular stereoscope. Four vials for each dilution and eight vials for
control were used. Copepod nauplius survival was recorded after 48 h and expressed as
the percentage net response according to the expression R = (St · 100)/Sc, where St is the
mean survival of a treatment, and Sc is the mean survival of the control.

2.4. Statistical Analysis

Statistical analyses were performed using IBM SPSS statistics (v.24) (provided from
Universidade de Vigo, Vigo, Spain). Normal distribution of data and homoscedasticity was
checked using the Shapiro–Wilk and Levene’s tests, respectively. Dilutions significantly
different from the control (p < 0.05) were identified using Dunnett’s post hoc test or
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Dunnett’s T3, when the variances were not homogeneous, in order to find the lowest
observed adverse effect concentration (LOEC) and the highest concentration with no
observed adverse effects (NOEC). The dilutions that produced a 50% and 10% decrease in
the endpoint (EC50 and EC10) and their 95% confidence intervals (CIs) were also calculated
by fitting the data to a Probit dose–response model. Toxic units (TU) were calculated as
TU = 1/EC50 [54].

3. Results
3.1. Growth Inhibition in Tisochrysis lutea

The toxicity of all sunscreens tested on T. lutea is shown in Table 1. As we can see,
cream 3 was the most toxic for this species, (9.60 TU), whereas creams CR7 and CR8 were
the least toxic to this microalga. Looking at the EC50 values, toxicity was ranked as CR3 >
CR4 > CR5 > CR1 > CR6 > CR2 > CR8 > CR7.

Table 1. Toxicity parameters NOEC, LOEC, EC10, EC50, and TU from the T. lutea growth test for the
eight sunscreens tested. See Table A2 for more information.

Item NOEC LOEC EC10 (mg/L) EC50 (mg/L) TU

CR1 ×1/30 ×1/10 812.35 2016 4.96
CR2 ×1/100 ×1/30 159.46 2445 4.09
CR3 ×1/30 ×1/10 318.88 1042.75 9.60
CR4 ×1/30 ×1/10 360.88 1811.60 5.52
CR5 ×1/30 ×1/10 246.73 1960.78 5.10
CR6 ×1/100 ×1/30 96.98 2403.85 4.16
CR7 ×1/100 ×1/30 24.08 20,430.04 <2
CR8 ×1/10 * ×1/3 * 215.33 5411.26 <2

* Obtained by Dunnett’s T3.

The growth rate per day compared with control (R) is shown in Figure 1. For CR1 and
CR3, the growth rate was negative in the undiluted leachate.
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Figure 1. Growth rate per day compared to control treatment (R) for Tisochrysis lutea: (a) for sunscreens
1 to 4; (b) for sunscreens 5 to 8. * p < 0.05, ** p < 0.01, *** p < 0.001; n.s., no significant difference
with control.

3.2. Sea Urchin Embryo Test (SET)

Results for the different dilutions of the sunscreen creams are shown in Table 2.
According to the toxicity units and the EC50, cream CR4 stood out as the most toxic; its
10 g/L leachate needed to be diluted 300 times to lose toxicity. It was followed by creams
CR8, CR6, and CR1, whereas creams CR7, CR5, CR3, and CR2 were classified as the
least toxic.

Table 2. Toxicity parameters NOEC, LOEC, EC10, EC50, and TU from the P. lividus test for all
sunscreens. See more details in Table A3.

Item NOEC LOEC EC10 (mg/L) EC50 (mg/L) TU

CR1 ×1/30 * ×1/10 * 38.62 496.52 20.14
CR2 ×1/30 * ×1/10 * 100 986.19 10.14
CR3 ×1/100 ×1/30 82.90 616.14 16.23
CR4 ×1/300 ×1/100 10.23 122.44 81.67
CR5 ×1/30 ×1/10 148.90 1030.93 9.70
CR6 ×1/100 ×1/30 49.10 457.46 21.86
CR7 ×1/100 ×1/30 643.92 3225.81 3.10
CR8 ×1/100 * ×1/30* 9.11 191.57 52.20

* Obtained by Dunnett´s T3

The larval size increase compared with control data (R) is shown in Figure 2.
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3.3. Survival Test in Copepods

The effects of all sunscreens on copepods are reflected in Table 3. As we saw previously
in sea urchin, cream CR4 was once again the most toxic with an EC50 of 354.4 mg/L. Creams
CR5, CR6, and CR7 were the least toxic to copepods.
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Table 3. Toxicity parameters NOEC, LOEC, EC10, EC50, and TU from the A. tonsa survival test for all
sunscreens. See more details in Table A4. n.c., not calculable.

Item NOEC LOEC EC10 (mg/L) EC50 (mg/L) TU

CR1 ×1/30 ×1/10 389.11 895.26 11.17
CR2 ×1/30 ×1/10 333.33 1060.45 9.43
CR3 ×1/10* ×1/3 * 609.76 1273.88 7.85
CR4 n.c. n.c. 191.94 354.36 28.22
CR5 ×1/10 ×1/3 682.60 2150.57 4.65
CR6 ×1/3 ×1 879.51 2267.57 4.41
CR7 ×1/10 ×1/3 700.79 2181.11 4.60
CR8 ×1/10 * ×1/3 * 366.17 1180.64 8.46

* Obtained by Dunnett’s T3.

The survival percentage compared to control data (R) is shown in Figure 3. Cream
CR4 caused 100% mortality even after 10-fold dilution of the leachate. Cream CR6 was the
least toxic, showing survival rates close to 100% after just threefold dilution of the leachate.
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3.4. PBSA Sea Urchin Embryo Test (SET)

The SET was conducted with PBSA, the specific UV filter present only in the most
toxic sunscreen for zooplankton, and the results are shown in Table 4. As we can see, light
conditions affected the results, since the PBSA leachate had to be diluted just threefold to
lose toxicity when tested in darkness, whereas it was necessary to dilute it 30-fold when
incubations were conducted under light. However, in both cases, toxicity was moderate
and could not explain the toxicity of this cream to the early life stages of sea urchins
and copepods.

Table 4. Toxicity parameters NOEC, LOEC, EC10, EC50, and TU from the P. lividus length embryo test
for PBSA filter. See more details in Table A5.

Incubation
Conditions NOEC LOEC EC10 (mg/L) EC50 (mg/L) TU

darkness ×1/3 ×1 1861.50 4312.2 2.32
Light/darkness (16:8) ×1/30 ×1/10 699.59 2751.79 3.63

The larval size increase compared with control (R) is shown in Figure 4.
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4. Discussion

According to our results, all creams were within the nontoxic category in all species
tested according to the classification of chemical substances and mixtures for their label-
ing [55], since all EC50 values were above 100 mg/L. Creams CR4 and CR8 for Paracentrotus
lividus were closest to the limit with EC50 = 122.4 mg/L and 191.6 mg/L, respectively. In
the case of copepods, cream CR4 was again the closest to this limit with EC50 = 354.4 mg/L.

Some of the UV filters present in creams such as EHMC and OC have been previ-
ously studied in marine planktonic species [9,20,30]. For all sunscreens, higher amounts
are needed to produce a 50% growth inhibition when they are part of a cream than in-
dependently [32]. The same has been observed in sea urchin [9,30] and in other marine
organisms [12]. This may be due to the presence of humectants, hydrophobic excipients,
and emulsifiers that have a high affinity for these filters and, therefore, can reduce their
bioavailability. Thus, it is important to know the composition because the concentration of
one single UV filter can differ between creams, as can be seen in Table A6 for undiluted
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leaching (10 g/L). In fact, from these values, it is possible to estimate at what concentration
these filters present toxicity or not with the NOEC or LOEC values.

The sensitivity of plankton organisms to UV filters largely varies among different
taxa [6,30]. In the case of TiO2, a relevant toxicity has been detected at a concentration of
1 mg/L in Tisochrysis lutea and in other species of microalgae [20]. However, for T. lutea, no
toxicity was noted for this filter in creams CR1 and CR5 at 16 and 18 mg/L, respectively,
although toxicity was noted in cream CR6 over 0.72 mg/L. For OC, toxicity has been
detected at concentrations lower than 1 mg/L even at concentrations of 0.1 mg/L in marine
plankton organisms [30]. Nonetheless, no toxicity was observed in creams CR2, CR4, and
CR5 at 10, 33, and 27 mg/L, respectively. More toxicity of the EHMC filter has been detected
in invertebrates than in microalgae [9].

The differences in the ranking of toxicity of the creams tested on the three plankton
species point to the differential toxicity of some of the sunscreens’ components. In general,
the toxicity on microalgae was lower with respect to the two species of zooplankton. This
test is usually less sensitive, as has been seen with some UV filters [9,30]. The authors
of [38] found that organic filters were less toxic than inorganic ones for Corophium orientale
(crustacean), whereas the opposite was observed in Phaeodactylum tricornutum (phytoplank-
ton). According to our results, this trend was not seen, since creams CR5 and CR6, which
contain TiO2, were the least toxic toward the crustacean used. In addition, in Tisochrysis
lutea, there were similar effects of creams with and without this type of filter.

Cream CR4 showed a remarkable toxicity on the two species of zooplankton tested,
and this was the only formulation that included PBSA. Therefore, this UV filter was
individually tested using the SET. Results (see Table 4) did not support the hypothesis
that PBSA was the main cause of the toxicity of this formulation. However, the chemical
speciation of this substance is highly influenced by pH. At high pH values, the nonionized
form of the compound predominates, which is more toxic because it can readily pass
through the lipid bilayer of the cell membrane [56]. For this reason, a bioassay in which the
toxicity of PBSA is tested at different pH values is recommended before being able to rule
out the contribution of this substance to the toxicity of cream CR4.

Lastly, in this UV filter studied separately, a significantly higher toxicity was observed
when sea urchin larvae were incubated with light. This may be due to the generation of
ROS [43] and the formation of transformation products resulting from the degradation of
PBSA in the presence of UV radiation. The main degradation pathway has been found
to generate four stable phototransformation products, which are indicated to be more
dangerous to organisms than the parental compound [46]. Regarding the effects on biota,
this UV filter is not well studied; the most severe concentration at which toxicity has been
found is at 5 mg/L on zebrafish [45]. According to our results, a concentration of 1 g/L is
necessary to cause observable effects on sea urchin larvae.

5. Conclusions

None of the tested sunscreens can be considered totally innocuous for the tested
plankton species, since deleterious effects of undiluted 10 g/L leachates were observed in
all cases on both phytoplankton and zooplankton. However, taking into account the high
dilution factors of coastal environments, these effects are expected to be very limited on
a geographical scale since a 300-fold dilution of the leachate produced at a 1:100 cream–
seawater ratio (i.e., a 30,000-fold overall dilution) resulted in the absence of toxicity, even
for the most toxic cream on the most sensitive test species (cream CR4 on sea urchin).

The toxicity of sunscreens on microalgae and copepods was lower than on sea urchin
larvae, since a 2–28-fold higher concentration of sunscreen was needed to cause a level
of effect of 50%. This highlights the need to use a battery of test species and not a single
model when assessing the ecological risk of chemicals on the marine environment.

The toxicity of the UV filter PBSA on P. lividus larvae increased in the presence of light,
likely due to formation of photo-oxidized metabolites upon exposure to UV radiation.
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The results of this study suggest the importance of a better understanding of the
toxicity of the components of sunscreens both alone and as part of mixtures, which is how
they are most often found in the environment.
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Appendix A

Table A1. Complementary information for the eight sunscreens and their abbreviations.

Item Characteristics

CR1 Colored fluid solution

CR2 Body oil

CR3 Fluid solution without color

CR4 Gel cream

CR5 High-protection fluid solution

CR6 High-protection fluid solution

CR7 Body spray

CR8 Water fluid

Table A2. All toxicity parameters (NOEC, LOEC, EC10, EC50, and TU) for Tisochrysis lutea. The 95%
confidence intervals are given in brackets. n.c., not calculable.

Item Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

CR1

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/30 ×1/10 1/12.31 1/4.96 812.35 2016.13 4.96
(3.92–6.44)

CR2

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/100 ×1/30 1/62.71 1/4.09 159.46 2445 4.09
(2.66–5.74)
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Table A2. Cont.

Item Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

CR3

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/30 ×1/10 1/31.36 1/9.59 318.88 1042.75 9.60
(7.25–13)

CR4

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/30 ×1/10 1/27.71 1/5.52 360.88 1811.60 5.52
(4.34–6.98)

CR5

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/30 ×1/10 1/40.53 1/5.10 246.73 1960.78 5.10
(3.16–7.65)

CR6

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/100 ×1/30 1/103.11 1/4.16 96.98 2403.85 4.16
(1.84–7.13)

CR7

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/100 ×1/30 1/415.33 1/0.49 24.08 20,430.04 <2
(0.01–1.67)

CR8

×1/100,
×1/30,
×1/10,
×1/3,
×1/2

×1/10 ×1/3 1/4.64 1/1.85 215.33 5411.26 <2
(1.10–2.29)

Table A3. All toxicity parameters (NOEC, LOEC, EC10, EC50, and TU) for Paracentrotus lividus. The
95% confidence intervals are given in brackets.

Item Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

CR1
×1/30,
×1/10,

×1/3, ×1
×1/30 ×1/10 1/258.92 1/20.14 38.62 496.52 20.14

(11.87–51.23)

CR2
×1/30,
×1/10,

×1/3, ×1
×1/30 ×1/10 1/100 1/10.14 100 986.19 10.14

(6.20–20)

CR3

×1/1000,
×1/300,
×1/100,
×1/30,
×1/10,

×1/3, ×1

×1/100 ×1/30 1/120.65 1/16.23 82.90 616.14 16.23
(11.46–23)

CR4

×1/1000,
×1/300,
×1/100,
×1/30,
×1/10,

×1/3, ×1

×1/300 ×1/100 1/977.20 1/81.67 10.23 122.44 81.67
(52.21–134.56)
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Table A3. Cont.

Item Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

CR5
×1/30,
×1/10,

×1/3, ×1
×1/30 ×1/10 1/67.17 1/9.7 148.90 1030.93 9.70

(6.3–16.80)

CR6

×1/1000,
×1/300,
×1/100,
×1/30,
×1/10,

×1/3, ×1

×1/100 ×1/30 1/203.86 1/21.86 49.10 457.46 21.86
(13.85–35.10)

CR7

×1/1000,
×1/300,
×1/100,
×1/30,
×1/10,

×1/3, ×1

×1/100 ×1/30 1/15.53 1/3.10 643.92 3225.81 3.10
(2.67–3.56)

CR8

×1/1000,
×1/300,
×1/100,
×1/30,
×1/10,

×1/3, ×1

×1/100 ×1/30 1/1097.46 1/52.20 9.11 191.57 52.20
(34.20–86.70)

Table A4. All toxicity parameters (NOEC, LOEC, EC10, EC50, and TU) for Acartia tonsa. The 95%
confidence intervals are given in brackets. n.c., not calculable.

Item Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

CR1
×1/30,
×1/10,

×1/3, ×1
×1/30 ×1/10 1/25.7 1/11.17 389.11 895.26 11.17

(1.5–42.78)

CR2
×1/30,
×1/10,

×1/3, ×1
×1/30 ×1/10 1/30 1/9.43 333.33 1060.45 9.43

(2.11–48.02)

CR3
×1/30,
×1/10,

×1/3, ×1
×1/10 ×1/3 1/16.40 1/7.85 609.76 1273.88 7.85

(1.10–21.23)

CR4
×1/30,
×1/10,

×1/3, ×1
n.c n.c 1/52.10 1/28.22 191.94 354.36 28.22

(n.c)

CR5
×1/30,
×1/10,

×1/3, ×1
×1/10 ×1/3 1/14.65 1/4.65 682.60 2150.57 4.65

(1.21–16.42)

CR6
×1/30,
×1/10,

×1/3, ×1
×1/3 ×1 1/11.37 1/4.41 879.51 2267.57 4.41

(1.31–13.14)

CR7
×1/30,
×1/10,

×1/3, ×1
×1/10 ×1/3 1/14.27 1/4.60 700.79 2181.11 4.60

(1.36–13. 85)

CR8
×1/30,
×1/10,

×1/3, ×1
×1/10 ×1/3 1/27.31 1/8.47 366.17 1180.64 8.46

(2.57–34.56)
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Table A5. All toxicity parameters (NOEC, LOEC, EC10, EC50, and TU) for PBSA filter in Paracentrotus
lividus. The 95% confidence intervals are given in brackets.

Incubation
Conditions Dilutions NOEC LOEC EC10 EC50 EC10 (mg/L) EC50 (mg/L) TU

Darkness ×1/30, ×1/10,
×1/3, ×1 ×1/3 ×1/1 1/5.37 1/2.32 1861.50 4312.2 2.32

(1.99–2.70)

Light/darkness
(16:8)

×1/30, ×1/10,
×1/3, ×1 ×1/30 ×1/10 1/14.29 1/3.63 699.59 2751.79 3.63

(2.91–4.50)

Appendix B

Table A6. Presence of UV filter in undiluted leachates according to their nominal composition (mg/L).

UV Filter CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

EHMC 499 999

OC 1000 1000 800

TiO2 479 533 72

PBSA 200
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