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Abstract: Recently, as the anti-aging role of melanin in the skin and the inhibition of melanin
production has been identified, the development of materials capable of maintaining skin homeostasis
has been attracting attention. In this study, we further investigated the anti-melanogenic effect of
Codonopsis pilosula extract (CPE) and, under oxidative stress, the cytoprotective effect in Melan-a
melanocytes exposed to H2O2. First, CPE treatment significantly reduced melanin production by
inhibiting melanogenesis-associated proteins, including microphthalmia-associated transcription
factor (MITF), tyrosinase, and tyrosinase-related protein 2 (TRP 2), as a result of the phosphorylation
of MAPK/JNK in Melan-a cells. Next, to investigate the protective effects of the CPE on oxidative-
stress-induced skin injury and its molecular mechanism, we determined the effect of CPE after
inducing oxidative stress by exposing melanocytes to H2O2. CPE protected cells from H2O2-induced
cytotoxicity by reducing the expression of the gene encoding the Bax pro-apoptotic protein, whereas it
induced the genes encoding the B-cell lymphoma 3 (Bcl2) family and MITF, which is a transcriptional
regulator that promotes melanocyte differentiation. Furthermore, our results show that CPE enhanced
the production of autophagy-related proteins such as Beclin-1 and light chain 3 (LC3) II; this was
substantially reversed by 3-methyladenin (MA, an autophagy inhibitor) pretreatment. Collectively,
our findings demonstrate that CPE treatment exhibits not only an anti-melanogenic effect in normal
melanocytes, but also a cytoprotective effect in melanocytes subjected to oxidative stress by inducing
autophagy and MITF expression. Therefore, we believe that CPE is a potent candidate for cell
maintenance in melanocytes.
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1. Introduction

Human skin is the largest organ of the human body and protects the body from
environmental toxins, allergens, and oxidative stress. Melanin, which is mainly produced
by melanocytes, is known to play an important role in preventing skin diseases and is
present in various tissues of the human body [1,2]. However, the excessive production and
accumulation of reactive oxygen species (ROS) due to stress, ultraviolet (UV) radiation,
and aging result in many skin disorders, such as hyperpigmentation, melasma, and even-
tually the degradation of melanocytes. Several studies on the treatment of melanogenesis
have focused on regulating the expression of microphthalmia-associated transcription
factor (MITF) and tyrosinase activity [3–5]. Additionally, recent studies have shown that
skin melanogenesis is mediated via several melanogenic signaling pathways, including
mitogen-activated protein kinase (MAPK) signaling, protein kinase A (PKA), and the cyclic
adenosine monophosphate (cAMP)-mediated pathway [6].

The cellular autophagy system is well known as a cellular self-digestion process
that degrades damaged proteins or isolates dysfunctional organelles in a cell and then
decomposes them in lysosomes to maintain cell homeostasis [7,8]. Recent studies have
identified autophagy as being involved in the normal function of melanocytes and in
regulating the expression of the melanin-forming transcription factor MITF. Therefore,
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autophagy-inducing agents have the potential to limit the damage caused by UV rays
and lipid oxidation and to maintain homeostasis in melanocytes and keratinocytes [9–11].
However, there is little information on the application of natural autophagy-inducing
preparations that protect melanocytes against oxidative stress.

Codonopsis pilosula is the root of Codonopsis pilosula (Fr.) Nannf., belonging to the
Campanula family. It is grown or cultivated in the mountains of Gangwon-do, Korea, and is
also distributed in the northern and western regions of China, such as the Ganxi and Shanxi
regions [12]. In folk medicine, it has been used as a substitute for ginseng for hundreds
of years, since it has the same pharmacological activities, such as replenishing energy,
strengthening the immune system, lowering gastrointestinal diseases, and regulating blood
pressure, but at a lower price. Phytochemical research shows that C. pilosula contains
large amounts of sucrose, polysaccharides, triterpenes, saponins, phytosterols, phenolic
glycosides, alkaloids, and polyacetylenes [13]. Among them, lobetyolin, a major acetylene
of C. pilosula, is known to activate NF-κB and has an immune-stimulating effect [14].
In addition, according to recent studies on the effect of C. pilosula extract, an ethanol
extract of C. pilosula significantly inhibits allergic reactions caused by ovalbumin, while
a water extract decreases the plasma glucose level, and a butanol extract shows free-
radical-scavenging activity and an inhibitory effect on lipid peroxidation in rat brain
homogenate [15–17].

Previously, the antioxidant activity of C. pilosula was found to vary due to differences in
polyphenol content depending on the extraction solvent used [18]. Thus, we investigated
the melanogenic inhibitory effect of C. pilosula extract (CPE) under normal conditions
through mechanistic signaling pathways, as well as the cytoprotective effect against H2O2-
induced oxidative stress in Melan-a melanocytes.

2. Materials and Methods
2.1. Reagents

RPMI 1640 and fetal bovine serum (FBS) were purchased from Welgene (Daegu,
Korea). Penicillin–streptomycin was purchased from GibcoBRL (Eggenstein, Germany).
Phorbol 12-myristate 13-acetate (TPA) was purchased from TOCRIS (Bristol, UK). Hydro-
gen peroxide (H2O2), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),
4′,6-diamidino-2-phenylindole (DAPI), and 3-MA were purchased from Sigma-Aldrich
(St Louis, MO, USA). All the other chemicals and reagents were of analytical grade.

2.2. Preparation of the Codonopsis Pilosula Extract

The C. pilosula root (CP) was simply chopped, and 100 g of CP was immersed in 1 L of
50% ethanol (w/v); then, it was extracted three times using ultrasonic waves at 30 ◦C. After
each extract was centrifuged to collect the supernatant, the supernatant was concentrated
and freeze-dried to prepare the C. pilosula extract (CPE).

2.3. Cell Culture and Stock Preparation of CPE

The melanocyte Melan-a cells were grown and maintained in RPMI 1640 supple-
mented with 10% FBS, penicillin (100 U/mL), streptomycin (100 U/mL), and 200 nM
phorbol 12-myristate 13-acetate (TPA) and maintained at 37 ◦C in a 5% CO2 incubator.
After culturing 3 × 105 cells per well in a six-well plate, the Melan-a cells were placed in
an incubator for 48 h until the color of the medium changed to black. The stock solutions
(100 mg/mL) of CPE were dissolved in sterile water and stored at −20 ◦C.

2.4. Measurement of Cell Viability

The cell viability of CPE in Melan-a cells was determined using an MTT colorimetric
assay and flow cytometry. The cells were maintained until they reached 80% confluence
in 96-well plates and then treated with CPE and/or 0.5 mM H2O2 for 24 h. Cell medium
with 10 µL of MTT solution (5 mg/mL) was added, and the cells were incubated for an
additional 4 h. After the incubation of the cells, the insoluble formazan crystals were
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dissolved in 100 µL of dimethyl sulfoxide. The absorbance at 540 nm was measured
by spectrophotometry using a microplate reader. Dead cells were determined with a
PI/Annexin V cell death detection kit (EMD Milipore Corporation, Billercia, MA, USA)
according to the manufacturer’s protocol. Briefly, the cells were washed and incubated for
15 min at RT in the dark containing FITC-Annexin V and PI. Afterwards, dead cells were
analyzed by the MuseTM cell analyser.

2.5. In Vitro Melanin Estimation

Approximately 2× 105 cells/well were grown in a six-well plate. After treatment with
CPE and/or 0.5 mM H2O2 as previously described [19], PBS-washed cells were harvested,
lysed in 1× PBS containing 1% Triton X-100, and centrifuged at 4 ◦C at 13,000 rpm for
15 min. The cellular melanin content was solubilized using 1 N NaOH. An ELISA plate
reader was used to quantify the melanin by measuring the absorbance at 405 nm. Data
were obtained from three experiments, and the melanin content was calculated and is
denoted as the fold change compared with the control cells.

2.6. Protein Isolation and Western Blot Assay

Protein samples were extracted as explained in our previous work [20]. Then, the pro-
tein concentration of the cell lysate was measured using a BCA protein assay kit (Thermo
Scientific, Waltham, MA, USA). Equivalent amounts of denatured cell lysate (30 µg of cell
lysate per sample) were separated by 10% sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. The membrane was
incubated with the primary antibody diluted in 5% skim milk powder in PBS containing
0.05% Tween 20 (PBST) overnight at 4 ◦C.

Following primary antibody incubation, the membranes were washed and incubated
in the HRP-conjugated secondary antibody diluted in 5% skim milk in PBST for 1 h at room
temperature. Protein expression was analyzed using an enhanced chemiluminescence
(ECL) detection system (AI680, GE Healthcare, Uppsala, Sweden).

2.7. Estimation of Intracellular ROS by DCFH-DA Staining

The cellular ROS levels in the H2O2-treated Melan-a cells were estimated by the
DCFH-DA fluorescence microscopy method [21]. The levels of intracellular DCF fluores-
cence are proportional to the intracellular ROS produced. First, 2 × 105 cells/well were
treated with individual concentrations of CPE and/or H2O2 for 24 h, then DCFH2-DA
was added 2 h before the end of the reaction. Data were collected from three or more
independent experiments.

2.8. Statistical Processing

All the experimental results are presented as the means ± standard deviations (SDs)
of three biological replicates. The statistical significance among the multiple mean values
was assessed by one-way analysis of variance (ANOVA), followed by Duncan’s multiple-
comparison test, using SPSS 18.0 (SPSS Inc., Chicago, IL, USA), as indicated in the legends.
A p-value < 0.05 was considered to indicate a statistically significant difference.

3. Results
3.1. Downregulation of Melanogenesis in Melanocytes by CPE

Melanocytes synthesize melanin in response to external stimuli, such as UV irradiation.
Major factors such as α-melanocyte-stimulating hormone (α-MSH), stem cell factor (SCF),
and endothelin-1 (ET-1) are secreted from melanocytes and increase the expression of MITF,
thereby promoting melanogenesis [22,23]. First, we examined whether CPE treatment
inhibited melanin production and melanogenesis-related proteins.

CPE treatment at 100, 200, and 300 µg/mL significantly reduced melanin production
compared with the negative control. In particular, treatment with 300 µg/mL of CPE
resulted in a reduction similar to that induced by arbutin treatment (Figure 1A,B). In ad-
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dition, we investigated the melanogenesis proteins tyrosinase, TRP-1, TRP-2, and MITF
by Western blotting. Treatment with CPE at concentrations of 300 µg/mL significantly
decreased the levels of the MITF, TRP-2, and tyrosinase proteins (Figure 1C). As it was
confirmed that CPE inhibits the expression of MITF-related proteins, inhibiting melanin
formation, we further examined whether CPE affected the MAPK signaling pathway. CPE
increased MAPK phosphorylation in a dose-dependent manner, specifically inducing JNK
phosphorylation (Figure 1D). These results suggest that the melanogenesis inhibition by
CPE results from the downregulation of MITF and tyrosinase expression by the induction
of JNK/MAPK phosphorylation.

Cosmetics 2021, 8, 67 4 of 10 
 

 

whether CPE treatment inhibited melanin production and melanogenesis-related 
proteins. 

CPE treatment at 100, 200, and 300 μg/mL significantly reduced melanin production 
compared with the negative control. In particular, treatment with 300 μg/mL of CPE 
resulted in a reduction similar to that induced by arbutin treatment (Figure 1A, B). In 
addition, we investigated the melanogenesis proteins tyrosinase, TRP-1, TRP-2, and MITF 
by Western blotting. Treatment with CPE at concentrations of 300 μg/mL significantly 
decreased the levels of the MITF, TRP-2, and tyrosinase proteins (Figure 1C). As it was 
confirmed that CPE inhibits the expression of MITF-related proteins, inhibiting melanin 
formation, we further examined whether CPE affected the MAPK signaling pathway. CPE 
increased MAPK phosphorylation in a dose-dependent manner, specifically inducing 
JNK phosphorylation (Figure 1D). These results suggest that the melanogenesis inhibition 
by CPE results from the downregulation of MITF and tyrosinase expression by the 
induction of JNK/MAPK phosphorylation. 

 
Figure 1. Codonopsis pilosula extract (CPE) decreased melanogenesis by inhibiting the MITF/MAPK 
pathway in melanocytes. (A) Melan-a cells were treated with CPE (100, 200, and 300 μg/mL) and 
arbutin (100 μM) for 72 h. Then, the melanin content was measured using an ELISA reader. (B) The 
melanin level in Melan-a cells was visualized after dissolving cell pellets in 1 N NaOH. (C) The 
expression of MITF, TRP-1, TRP-2, and tyrosinase, as well as that of (D) MAPK and JNK and their 
phosphorylation, were determined by Western blotting. HSC70 was used as the internal standard. 

Figure 1. Codonopsis pilosula extract (CPE) decreased melanogenesis by inhibiting the MITF/MAPK
pathway in melanocytes. (A) Melan-a cells were treated with CPE (100, 200, and 300 µg/mL) and arbutin
(100 µM) for 72 h. Then, the melanin content was measured using an ELISA reader. (B) The melanin
level in Melan-a cells was visualized after dissolving cell pellets in 1 N NaOH. (C) The expression of
MITF, TRP-1, TRP-2, and tyrosinase, as well as that of (D) MAPK and JNK and their phosphorylation,
were determined by Western blotting. HSC70 was used as the internal standard. All data are shown as
the means ± SDs of at least three independent experiments (* p < 0.05, ** p < 0.01 vs. NT).

3.2. Effect of CPE on H2O2-Induced Cell Death in Melanocytes

Skin cells, such as keratinocytes and melanocytes, react sensitively to ROS, such as
hydrogen peroxide (H2O2) and superoxide anion, to maintain a normal status. However,
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an imbalance in the oxidant–antioxidant status due to excessive cellular ROS can lead
to the accumulation of damaged proteins or organelles, eventually leading to apoptotic
cell death [24,25]. Recently, it has been reported that melanin promotes skin aging by
stimulating melanin formation depending on the external environment of the skin, as
well as skin health being maintained by intracellular melanin content being retained [26].
Thus, we investigated the effect of CPE extract on cells subjected to oxidative stress via
H2O2 treatment. The H2O2-treated cells showed a decrease in cell viability of 32.8%
compared with the untreated cells. However, CPE treatment reduced the inhibition of cell
viability in a concentration-dependent manner under H2O2 treatment. In particular, CPE
at 300 µg/mL restored cell viability to 91.9% (Figure 2A). In addition, the apoptotic death
of the CPE- and/or H2O2-treated cells was detected by double staining with Annexin V-
FITC/PI, followed by flow cytometric analysis. Following H2O2 treatment, the percentage
of apoptotic cells increased to 34.5%, compared with 14.8% in the untreated cells. However,
CPE treatment markedly inhibited H2O2-induced apoptotic death, with the percentage of
Annexin V-stained cells being 22.2% (Figure 2B). As this shows the same pattern as the
ROS content, these results show that CPE maintains cell viability by inhibiting cell death
via protecting against H2O2-induced ROS (Figure 2C).
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Figure 2. CPE protects melanocytes against H2O2-induced oxidative stress. (A) Melan-a cells were first treated with CPE
and then with 0.5 mM H2O2 for 24 h. The cell viability was determined with an MTT assay. (B) The apoptotic ratio was
measured by flow cytometry though Annexin V/PI double staining. (C) The fluorescence intensity of the DCF-stained
cells for each condition was quantified. All data are shown as the means ± SDs of at least three independent experiments
(* p < 0.05, ** p < 0.01 vs. NT, # p < 0.05 vs. H2O2 treated cells).

3.3. Effect of CPE on H2O2-Induced Cell Death in Melanocytes

As previously confirmed, CPE maintains cell viability by inhibiting the increase in
apoptosis following H2O2 treatment. Thus, we next investigated the effect of CPE on the
expression of the proteins involved in cell death and of the MITF protein, which regulates
melanin production in the presence of H2O2. As shown in Figure 3, in the cells treated with
H2O2, MITF expression was slightly reduced, on the other hand, in the cells treated with
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CPE, MITF expression was almost the same as in the untreated cells. In addition, H2O2
increased the expression of the apoptosis-inducing Bax protein [27,28], but decreased Bax
expression in a concentration-dependent manner in CPE-treated cells. By contrast, H2O2
decreased the expression of the Bcl2 protein, which promotes cell survival [28,29], but the
expression of Bcl2 was increased by CPE treatment in a concentration-dependent manner.
When we calculated the expression of these two proteins to determine the Bax/Bcl2 ratio,
the same tendency was observed. Therefore, under H2O2-induced oxidative stress, the
expression of MITF was reduced by the induction of cell death, whereas CPE exhibited a po-
tent protective effect, preventing H2O2-induced cell death and maintaining the expression
of MITF.
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Figure 3. CPE protects melanocytes against oxidative-stress-induced cell damage. (A) Melan-a cells
were first treated with CPE and then with H2O2 for 24 h. The protein expression of MITF and Bcl2/Bax
was measured by Western blot analysis, and HSC70 was used as an internal standard. (B) MITF and
the Bax/Bcl2 ratio were calculated according to the areas of the expression bands. (C) The cell image
was taken under a fluorescence microscope. All data are shown as the means ± SDs of at least three
independent experiments (** p < 0.01 vs. NT, ## p < 0.01 vs. H2O2 treated cells).

3.4. Effect of CPE on Autophagy Activation in Oxidative-Stress-Induced Melanocytes

Recent studies have revealed that autophagy and its regulator play a crucial role in
the antioxidative response against ROS-induced oxidative stress in human cells [26,30].
Feng et al. [31] showed that Apocynum venetum leaf extract protects injured neurons against
H2O2-induced apoptosis by reducing the ROS-induced activation of autophagy. Since
the association between the modulation of autophagy and anti-melanogenesis has been
established, the role of autophagy in CPE’s protective effect against H2O2-induced ox-
idative stress was investigated in Melan-a cells. The levels of LC3, an autophagosome
protein, were used as an indicator of autophagy. The Western blot data indicated that CPE
significantly upregulated the expression of the pro-autophagic LC3-II and Beclin proteins,
whose expression was decreased by H2O2 treatment. This suggests that CPE has a cytopro-
tective effect through autophagy activation under intracellular oxidative stress (Figure 4A).
Next, the intra-relationship between the cytoprotective effect and autophagy of CPE in
H2O2-treated Melan-a cells was further analyzed using a potent autophagic inhibitor, 3-MA.
Compared with previous data, cells pretreated with 3-MA and CPE and stimulated with
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H2O2 showed decreased LC3-II expression levels (Figure 4B). Overall, these data imply that
inhibiting autophagy negatively affects the cytoprotective efficacy of CPE in H2O2-treated
cells, indicating that autophagy is essential for CPE’s cytoprotective effects.
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24 h. Cells were harvested and subjected to Western blot analysis with LC3 and Beclin antibodies.
(B) The Melan-a cells were treated with H2O2 or CPE in the presence and absence of 3-MA. All data
are shown as the means ± SDs of at least three independent experiments (* p < 0.05 vs. NT, # p < 0.05
vs. H2O2 treated cells).

4. Discussion

We previously established the optimal extraction method resulting in the highest
antioxidant activity as well as polyphenol content [18]. In this study, we applied the
high-yield ultrasonic extraction method and found that the extract exhibits a cytoprotective
effect by activating autophagy under oxidative stress conditions, as well as by inhibiting
melanogenesis in Melan-a cells.

First, we further investigated the anti-melanogenic effect of CPE. CPE downregulated
melanogenesis by decreasing the expression of genes related to melanogenesis, such as
MITF, tyrosinase, and TRP-2. Several studies have demonstrated that the biosynthetic
mechanisms of melanogenesis related to enzyme expression are mediated by various
signaling pathways, including mitogen-activated protein kinase (MAPK), protein kinase
A (PKA), and PI3K/Akt [32]. Among them, activation of the MAPK signaling pathway
repressed MITF at the protein stability level, as well as the transcriptional level, in human
primary melanocytes [33,34]. The phosphorylation of MAPK and the signaling cascades
of the extracellular responsive kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 also
regulate melanin production. Among them, the JNK activator suppresses melanogenesis
through the phospho-inhibition of CREB-regulated transcription coactivator 3 (CRTC3)-
dependent MITF expression [35,36]. Our results show that the phosphorylation of MAPK,
especially JNK, effectively increases following CPE treatment compared with control cells.
These findings suggest that CPE-induced depigmentation in Melan-a melanocytes may
occur by MITF/JNK-regulated signaling pathways.

Melanocytes produce the melanin pigment and transfer it to keratinocytes, where
the pigments help to protect the skin from oxidative environmental stressors such as air
pollutants, chemical products, and UV damage [37–39]. MITF is one of the major tran-
scriptional regulators responsible for key genes that promote melanocyte development
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and differentiation, as well as regulating melanogenesis. Moreover, MITF regulates the
expression of certain genes that maintain cell homeostasis, including those encoding the
proteins involved in proliferation (e.g., CDK2) and apoptosis (e.g., Bcl2) [40–42]. Stein-
grimsson et al. [43] identified MITF mutant mice as affected by hearing loss and pigmentary
disturbances as a result of the loss of melanocytes, as well as faulty osteoclasts and mast
cells. This suggests that MITF plays important roles in the development of these cell types.

CPE is a derivative of herbal medicines used to treat gastrointestinal and allergic
diseases due to its anti-aging and anti-allergic effects [15,44]. However, whether CPE can
protect melanocytes from oxidative stress remains unknown. To estimate the effect of
CPE on melanocyte survival in response to oxidative stress, we first observed cell death in
the melanocytes exposed to H2O2. Following treatment with 0.5 mM H2O2 for 24 h, cell
viability was decreased compared with that of the untreated cells. However, the viability
of the CPE-treated cells was restored by reducing the ROS content; then the Bax/Bcl2 ratio
and MITF expression were increased, unlike in the H2O2-treated cells.

Autophagy is the major intracellular degradation system by which the damage of
lysosomes results in their degradation. Mizushima et al. [45] demonstrated that, under con-
ditions of starvation, inflammation, or oxidative stress, the autophagic process can regulate
the degradation of damaged proteins and organelles in cells, so that cellular renovation
and homeostasis can be achieved. Microtubule-associated protein 1 light chain 3 (LC3) and
Beclin-1 play major roles in mammalian autophagy. LC3 exists in two forms, namely, a
cytosolic form (LC3 I) and a lipid phosphatidylethanolamine-conjugated form (LC3 II) that
is inserted into both the inner and outer membranes of the growing autophagosome [46,47].
Zhang et al. [48] used the conversion of LC3 I to LC3 II as a biochemical marker to analyze
the status of autophagy in melanocytes. Further research indicated that LC3 is a marker
of final autophagosome formation, whereas Beclin-1 is involved in the initial step of au-
tophagosome formation, activating autophagy [49]. The constitutive autophagic activity
plays a key role in preventing oxidative damage in melanocytes, but there have been
few studies on the molecular mechanisms regulating autophagy in melanocytes under
oxidative stress.

Consequently, we investigated the implication of CPE-mediated autophagy for cell
survival in melanocytes subjected to oxidative stress. Our results show that, after CPE
treatment, autophagy was activated through the increased expression of Beclin-1 and
induced conversion of LC3 I to LC3 II. This suggests that CPE exerts a cytoprotective effect
through autophagy activation in melanocytes subjected to oxidative stress.

In conclusion, the present study demonstrated that CPE treatment not only has an
anti-melanogenic effect through the MITF/JNK pathway in normal melanocytes, but also,
under H2O2-induced oxidative stress, maintained cell survival and exerted cytoprotection
through MITF, resulting in the sustained activation of autophagy in Melan-a cells.
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