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Abstract: Essential oils (EOs) have been recognized as materials of interest for dermatological ap-
plications, although some doubts remain regarding their safety and efficacy. We studied the action
mechanisms of EOs from lavender and sage in human skin. Extracted EOs were incorporated (at
5% and 10%) in almond oil as a vehicle. Eleven healthy volunteers were selected and the prepared
oils were tested on both forearms. All procedures respected the principles of good clinical practice.
Effects were followed through high resolution sonography (HRS), epidermal water dynamics, and
biomechanics. All variables were measured before and 30 min after application. Nonparametric
statistical comparisons were applied (p < 0.05). HRS revealed a more echogenic epidermis, with a
significant echogenicity decrease in the dermis (higher water retention) for all formulations. Sig-
nificant TEWL decrease and an increase in superficial and deep epidermal hydration were also
observed. These results indicate that EOs penetrate only into the most superficial layers of the skin,
which is important for their safety profile. Furthermore, this “filmogenic” mechanism improving the
epidermal water balance seems to connect directly with the observed biomechanical enhancement.
These results confirm the clinical relevance of these compounds, in particular to restore the epidermal
water content and prevent xerosis and other related disorders in sensitive (atopic, elderly) patients.

Keywords: essential oils; mechanism of action; sonography; evaporimetry; epidermal water dynam-
ics; skin biomechanics

1. Introduction

Essential oils are complex mixtures of volatile low molecular weight compounds
(monoterpenes and sesquiterpenes) responsible for the characteristic aroma of each plant.
Some of these complex organic combinations, extracted by aqueous distillation, have
attracted attention from the industry (from chemical, perfume and cosmetics to food)
where these oils are already used for their aromatic properties.

More recent interest from the pharmaceutical industry is due to scientific studies
reporting a wide potential of beneficial activities, including antioxidant, antimicrobial,
anti-inflammatory, and even anti-neoplastic properties [1–4]. Moreover, several essential
oils and related lipidic compounds have been incorporated into nanostructured systems
for the preparation of over-the-counter formulations for many different purposes [5].

However, some reported adverse effects (mucosal irritation, pain, diarrhea) and
chronic toxicity (in human skin cells) raised justified concerns that have limited their
development and application in human research [6,7] and recommended dilution for any
(internal as external) usage to reduce the exposure risk [8]. Several publications have
demonstrated a good safety pattern for some of these compounds, especially for topical
use, a major application area of interest [9,10]. A recent paper identified approximately
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1500 combinations of 90 essential oils with dermatological interest [11]. The increased use
of plant oils within skincare formulations may result, at least in part, from the observed
activity of their constituents to contribute to cutaneous lipid balance and therefore to
preserve or to reestablish the skin epidermal “barrier”, although doubts still exist regarding
their penetration capacity and mechanisms of action [12,13].

The present study is focused on the identification of the biological impacts of Lavandula
angustifolia Mill. (lavender) and Salvia officinalis L. (sage) essential oils. These plants from
the Lamiaceae family originated in the Mediterranean and are abundant in the Portuguese
territories. Both plants are a major source of essential oils, and have long been used in
traditional medicine as in modern phytotherapy [14]. The oil from L. angustifolia is known
for its high content of linalool and linalyl acetates and has been recommended for wound
treatment, eczema, and psoriasis [14,15]. S. officinalis and its essential oil are rich in alpha-
and beta-thujone, camphor and 1,8-cineole, and have been used to treat upper GI tract
inflammation and infection [16,17].

Our study involved the topical application of 5% and 10% essential oils extracts
from lavender and sage to healthy participants after confirming adequate safety and
skin tolerance profiles. Following application, skin was analyzed using high-resolution
sonography imaging coupled with functional measurements of epidermal water dynamics
and biomechanics in order to better understand the mechanism of action and the potential
clinical relevance of these compounds.

2. Methods
2.1. Participants

Our sample involved 11 healthy individuals, both sexes (5 men and 6 women), aged
between 18 and 45 years old (mean 31.3 ± 10.0). Criteria for participation included
the confirmation of (i) no visible cutaneous lesions and no past or present record of
dermatological disease or atopy, (ii) absence of the application of any cosmetics in the test
area 48 h prior to the study at baseline, as well as (iii) any pharmacological treatment that
might interfere with measurements, and (iv) no recent sun or solarium exposure prior to
the study.

All procedures observed the principles of good clinical practice from the Helsinki
Declaration and respective amendments [18], including an informed written consent. The
study was formerly approved by the Institutional Ethical Committee.

2.2. Essential Oils Obtention and Formulations

The essential oils were extracted from 52.5 g (g) of commercially available dry samples
of Lavandula angustifolia flower (Alfazema, Celeiro, Lisboa, Portugal) and Salvia officinalis
leaves (Salvia, Celeiro, Lisboa, Portugal). Plants were hydrodistilled for 2 h using a
Clevenger’s apparatus. After hydrodistillation, 1.1 mL of L. angustifolia essential oil was
obtained, corresponding to a yield of 2.1% (w/v), while for S. officinallis, 0.28 mL of essential
oil was obtained, corresponding to a yield of 0.56% (w/v).

Both essential oils obtained were diluted in almond oil (F.J.Campos, Lisboa, Portugal)
to final concentrations of 5% (v/v) and 10% (v/v) for use in the experimental study.

2.3. Procedure

Our experimental design was patterned from previously published studies with
comparable ingredients and purposes [12] preceded by a “primary irritancy test” to confirm
the safety of use of the diluted forms (5% v/v and 10% v/v) of both EOs.

All measurements were made in a humidity- and temperature-controlled environment
(humidity ~50%; temperature 21 ± 2 ◦C), to which participants were acclimatized for
30–60 min prior to the evaluations. Six sites (3 cm × 3 cm) were marked in the ventral
aspect of each participant’s right and left forearms. Each of the four prepared extract
solutions (5% and 10% L. angustifolia and 5% and 10% S. officinalis) and the commercially
available almond oil (negative control/dilutant) were randomly applied (Latin square),
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while one of the sites was left empty under occlusion (parafilm covered by an adhesive
patch) and used as a positive control. Formulations were applied (2 mg/cm2) with a small
spatula and left in contact with the skin for 30 min. After the elapsed time, occluded sites
were uncovered for further measurements and the remaining oil, if any, was removed with
absorbent paper.

We used various approaches to study the impact of the prepared essential oils on
human skin in vivo before and 30 min after application. A bidimensional color image was
obtained via high resolution sonography (HRS, Dermascan C, Cortex Technology, Hadsund,
Denmark), with echo recorded at a velocity of 1580 m/s using a 20 MHz probe placed on
the skin in a fixed standard position [19]. Using ImageJ® software (NIH, Bethesda, MD,
USA), the color image was converted into grayscale and further analyzed.

Functional measurements included (i) the epidermal “barrier” function, (ii) epidermal
hydration, and (iii) skin biomechanics. Epidermal “barrier” function was quantified as
Transepidermal Water Loss (TEWL) by an evaporimeter system (Tewameter TM300 CK
electronics GmbH, Cologne, Germany) and expressed in g/cm2·s−1 [20,21]. Epidermal hy-
dration was measured using the MoistureMeter SC and MoistureMeter D systems (Delphin
Technologies, Kuopio, Finland), both of which are “electrometrically” based, using different
frequencies to provide superficial (SC) and deep hydration values (D), equally expressed in
arbitrary units (AUs) [22]. Skin biomechanics were assessed with the Cutometer®MPA580
(CK electronics GmbH, Cologne, Germany) equipped with a 2 mm aperture probe, which
exerts a controlled negative pressure on the skin surface. From this apparent stress-strain
curve, different biomechanical “descriptors” can be quantified [23,24]. For our study, we
selected those descriptors identified by Agache; that is, Uf (total elongation or R0), Ua (total
recovery or R8) expressed in mm, and the ratios Ur/Ue (net elasticity or R5) and Uv/Ue
(viscoelasticity or R6) as main indicators [24]. The experimental design is summarized
in Figure 1.
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Figure 1. Graphical representation of the study design. Formulations (left) and measured variables (right) are indicated.
Formulations (four) and controls (two) were applied to sites marked on both ventral forearms in a random sequence
previously set for each volunteer (Latin square). Measurements took place in each site before and 30 min after applications
(see Section 2.3 for details).

2.4. Statistics

Data reported as mean ± standard error of the mean (SEM) were compared by one-
way analysis of variance (ANOVA), followed by Bonferroni’s test or Wilcoxon signed-rank
test using GraphPadPrism 5® software (GraphPad software, San Diego, CA, USA). A
confidence level of 95% (p < 0.05) was adopted.

3. Results

The preliminary safety screen revealed a complete absence of skin reactions and thus
an excellent tolerance to the diluted EOs as tested (data not shown). Table 1 summarizes
data from the sonographic consequences of the application of the preparations on in vivo
human skin. The present conditions used were adapted from a comparable reference
study [12]. An illustrative example is shown in Figure 2. As shown, the epidermis is
clearly more echogenic (brighter colors) after the application and 30 min exposure of all
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preparations. In the dermis, however, a significant echogenicity decrease (darker contrast)
is detected for all extracts, in particular for the 5% formulations, especially when compared
with controls (negative—the “blank” almond oil and positive—the occluded empty site).

Table 1. Percentage variation of the echogenicity in epidermal and dermal areas 30 min after the application of the studied
different formulations. Results are expressed as mean ± S.E.M. Statistical comparison, before and after the application, was
performed using one-way ANOVA followed by Bonferroni’s test. * p < 0.05, ** p < 0.01.

Treatment TEWL g/m2/h
before (T0) after (T30)

Epidermal Superficial
Hydration (AU’s)

before (T0) after (T30)

Epidermal Deep Hydration
(AU’s)

before (T0) after (T30)

EO S. officinalis 5% 6.36 ± 0.61 4.43 ± 0.34 ** 32.80 ± 2.78 41.51 ± 3.08 ** 17.38 ± 0.92 20.04 ± 0.63 **
EO S. officinalis 10% 6.91 ± 0.73 5.14 ± 0.59 * 33.55 ± 1.93 42.35 ± 2.73 ** 18.01 ± 0.95 19.81 ± 0.69 *
EO L. angustifolia 5% 6.50 ± 0.63 4.69 ± 0.51 ** 33.88 ± 2.37 44.41 ± 4.64 * 17.29 ± 0.85 19.18 ± 0.86 **
EO L. angustifolia 10% 6.68 ± 1.81 4.84 ± 1.70 ** 32.12 ± 2.33 46.25 ± 3.67 ** 17.86 ± 0.95 20.11± 0.69 **

Almond Oil 5.99 ± 0.81 4.22 ± 0.55 * 31.59 ± 3.16 40.61 ± 3.67 ** 16.44 ± 0.81 18.48 ± 0.76 *
Occlusive Patch 6.95 ± 0.80 10.62 ± 1.33 33.86 ± 2.22 42.50 ± 3.20 17.50 ± 0.62 18.69 ± 0.64
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Figure 2. Illustrative example of the impact of an essential oil formulation (S. officinalis 5%) on the sonographic structure
of one participants’ skin. Images, obtained by HRS before and 30 min after the application, shows an increase in the
echogenicity at “epi” (epidermal layer), while in the “derm” (dermis) area echogenicity clearly decreases (see text).

Table 2 summarizes data related to epidermal water dynamics. TEWL values were
significantly decreased with the application of 5% and 10% dilutions of S. officinalis and L.
angustifolia when compared with baseline. The same effect was observed for the almond
oil used as vehicle (negative control). The occluded site (positive control) shows an
opposite effect. Significant epidermal hydration changes were also detected in deeper
epidermal layers (p < 0.01 for EO 5% S. officinalis and p < 0.05 for other dilutions) with the
tested extracts. In contrast, almond oil and the occluded empty site show only superficial
hydration changes.

Figure 3 summarizes the impact of those formulations on skin biomechanics. All
essential oil extract preparations improved skin biomechanics in terms of (i) Uf (total
elongation or R0), the maximum amplitude and quantitates the passive behavior of the
skin to force (firmness), measured in mm; (ii) Ua (total recovery or R8), the maximum
relaxation after suction is released, expressed in mm; (iii) Ur/Ue (net elasticity or R5),
corresponding to total elasticity; and (iv) Uv/Ue (viscoelasticity or R6), corresponding to
the relationship between elastic and viscoelastic extension. As shown, the most consistent
and significant differences were observed with the 5% dilutions.
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Table 2. Skin echogenic changes observed in vivo, at the test sites (%) registered 30 minutes (T30)
after the application of the studied formulations, compared to T0 before intitiating the study. Data
are expressed as mean ± SEM (n = 11). Comparative statistics comprises T30 to T0 for each variable
(Wilcoxon) (* p < 0.05, ** p < 0.01).

Echogenic Changes/Area (%) Echogenic Changes/Area (%)

Epidermis Dermis

EO S. officinalis 5% 20.10 ± 1.70 −27.81 ± 4.88 **
EO S. officinalis 10% 14.62 ± 1.60 −22.63 ± 1.52 *
EO L. angustifolia 5% 19.02 ± 2.70 −28.53 ± 4.46 **
EO L. angustifolia 10% 15.95 ± 2.68 −25.62 ± 4.95 *

Almond Oil 14.34 ± 3.52 −17.88 ± 3.70
Occlusive Patch 15.84 ± 0.72 −7.25 ± 2.06

Cosmetics 2021, 8, x FOR PEER REVIEW 5 of 9 
 

 

skin to force (firmness), measured in mm; (ii) Ua (total recovery or R8), the maximum 
relaxation after suction is released, expressed in mm; (iii) Ur/Ue (net elasticity or R5), 
corresponding to total elasticity; and (iv) Uv/Ue (viscoelasticity or R6), corresponding to 
the relationship between elastic and viscoelastic extension. As shown, the most consistent 
and significant differences were observed with the 5% dilutions. 

Table 2. Skin echogenic changes observed in vivo, at the test sites (%) registered 30 minutes (T30) 
after the application of the studied formulations, compared to T0 before intitiating the study. Data 
are expressed as mean  ±  SEM (n = 11). Comparative statistics comprises T30 to T0 for each 
variable (Wilcoxon) (* p < 0.05, ** p < 0.01.) 

 Echogenic Changes/Area (%) Echogenic Changes/Area (%) 
 Epidermis Dermis 

EO S. officinalis 5% 20.10 ± 1.70 −27.81 ± 4.88 ** 
EO S. officinalis 10% 14.62 ± 1.60 −22.63 ± 1.52 * 
EO L. angustifolia 5% 19.02 ± 2.70 −28.53 ± 4.46 ** 

EO L. angustifolia 10% 15.95 ± 2.68 −25.62 ± 4.95 * 
Almond Oil 14.34 ± 3.52 −17.88 ± 3.70 

Occlusive Patch 15.84 ± 0.72 −7.25 ± 2.06 

 

 
 

  

Figure 3. Skin biomechanical descriptors expressed by the indicated variables, before (T0) and 30 min (T30) after the 
application of the studied formulations. Data are expressed as mean  ±  SEM (n = 11). Comparative statistics equates T30 
to T0 for each variable (Wilcoxon) (* p < 0.05, ** p < 0.01) 

Figure 3. Skin biomechanical descriptors expressed by the indicated variables, before (T0) and 30 min (T30) after the
application of the studied formulations. Data are expressed as mean ± SEM (n = 11). Comparative statistics equates T30 to
T0 for each variable (Wilcoxon) (* p < 0.05, ** p < 0.01).

4. Discussion

Essential oils of plant origin have garnered remarkable interest from pharmaceutical
and cosmetic industries far greater than their related (cold pressed) “fixed oils”. There are
considerable physical, chemical, and biological differences between these two classes of
natural oils, as they are obtained by different processing and refinement methods, with
very distinct yields that determine their specific composition and production costs [2].

For numerous reasons, plant essential oils have gained remarkable prominence in
the skincare industry, with a significant increase in their application in capsules, syrups,
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ointments, creams, and sprays. These forms extend from pharmaceutical to cosmetics
to treat bacterial, fungal, and viral infections, as well as inflammation, acne, and many
other skin disorders. Essential oils have been used as skin penetration enhancers for
transdermal drug delivery, as well [10,25], and have gained particular prominence to
address xerotic and inflammatory dermatoses affecting the epidermal skin barrier. The
importance of a balanced content of intercellular lipids to preserve or repair the epidermal
skin “barrier” is known, but only linoleic acid and oleic acids ratio have been recognized
as important [26,27].

On the other hand, essential oils seem to be responsible for a higher incidence of
sensitization reactions, including allergic contact dermatitis, than fixed oils [7,28]. Never-
theless, essential oils are economical and readily available, both of which are important
arguments for being preferred, and many positive impacts of these compounds on human
skin have been reported [29,30]. Comprehensive research on their in vivo human effects
and mode of action has only recently begun to accumulate, and results are sometimes
controversial. Recent reports underlined their superficial character, acting principally in
the outer epidermis, while other studies suggest that their constituents can penetrate and
even increase penetration of other substances, acting therefore as permeation enhancers of
other active drugs [1,13,31].

An extensive investigation comparing the different penetration of several oils (jojoba,
soybean, avocado, paraffin, almond) and petrolatum confirmed the distribution of these
compounds into the superficial epidermis, excluding deeper penetrations while identifying
a semi-occlusive effect based on the reduction of TEWL [12]. The in vivo application
of sophisticated imaging systems, such as confocal Raman microspectroscopy or laser
scanning microscopy, proposed that these oils typically penetrate into the upper epidermis,
although more sensitive approaches, such as in vivo fluorescence microscopy, could detect
these compounds at the dermal-epidermal transition [32–34]. Investigations with Melaleuca
alternifolia essential oil (tea tree oil) at 5%, the most active concentration used in our study,
have shown that skin layers contained (in total) less than 1% of each tea tree oil marker
after application. Only oxygenated terpenes significantly permeated across the skin, while
hydrocarbons were only absorbed at trace levels and substantial concentrations of many
markers were released into the atmosphere [35].

Our main purpose was to explore the impact of diluted S. officinalis and L. angustifolia
essential oils in the human skin. To the best of our knowledge, no similar studies regarding
the safety and efficacy of these two oils have been published. Preliminary safety screens
indicated excellent tolerance of these EOs. HRS imaging data (Table 1 and Figure 2)
revealed an increase in the epidermal echo intensity, although not significantly different
from the baseline measurements. However, major differences were noted at the dermis,
where a dramatic reduction of the echo was observed for all EO preparations, higher at
5% than 10%. In our opinion, these two effects are related, meaning that a reinforcement
of the epidermal cohesion, revealed by the increased epidermal echogenicity, reduces the
water gradient from deeper tissues to the surface, promoting water retention at dermis
and thus reducing its echogenicity. The almond oil and the occlusion evoked similar
effects, but much more discrete (Table 1). These results agree with previous observations
on this issue [12,32,34], aligning with the known cohesiveness reinforcement capacity of
these oils and their lipid character on the stratum corneum and confirmed by the changes
detected in the epidermal water dynamics (Table 2). TEWL was significantly reduced by
all formulations after application, which is perceived as a reinforcement of the epidermal
“barrier” efficacy against desiccation. This effect was previously noted [12] and confirms our
views on the mechanism of action involved. As a consequence, significant water amounts
were detected in the epidermis, especially in the deeper layers. The measurement depth
of skin water varies with the electromagnetic field created by the systems’ “capacitator”
with different frequency waves—1.25 MHz for the Moisturemeter SC and 300 MHz for
the Moisturemeter D. The calculation of the water dielectric constant is assumed to be
proportional to the water content of the measured tissue considering the thickness of the
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stratum corneum [36–38]. This mode of action—reducing the water loss and promoting its
accumulation on the viable epidermis—seems to impact deeper skin layers, as suggested by
the dermal echogenicity reduction previously mentioned (Table 1, Figure 1). Consequently,
these changes also seem to favor skin biomechanics, although a clear relationship between
skin water dynamics and biomechanics is not clear. A few studies have demonstrated
a significant improvement in the descriptors of maximum extensibility elastic function
and viscoelastic ratio related with the daily water intake [39,40]. Our data clearly show a
significant improvement of all descriptors (Figure 3) following the short-term application of
the extracts under study, more consistent with the water retention mechanism affecting the
deepest skin structures rather than with a superficial effect on stratum corneum. While the
relative participation of the epidermis in skin biomechanics is still unclear, the contribution
of the tissues underneath has been established [25,41]. The occlusive capacity of these
substances on the epidermis provides sufficient evidence of deep water retention capable of
improving the biomechanics of the skin. Furthermore, these results confirm and reinforce
the therapeutic interest of these compounds in dermatology and skincare. Keeping in
mind the recognized importance of epidermal water balance to preserve the “barrier”
function and the growing incidence of xerosis, pruritus, and skin irritation in elderly
populations, these compounds might be logical additions to pharmaceutical and cosmetic
formulations for the treatment and prevention of dry skin, atopic predisposition, or even
occupational diseases.

5. Conclusions

To the best of our knowledge, this is the first study focusing on the biological impact
and mechanism of action of S. officinalis and L. angustifolia essential oils on human skin
in vivo. These oils were applied in dilute concentrations in an effort to prevent any poten-
tial adverse reaction, as they are used in traditional medicine (e.g., massage) and modern
phytotherapy. Our study demonstrated that these dilutions penetrate only the most super-
ficial layers of the skin, confirming the safety of their use while promoting a statistically
significant improvement of various cutaneous properties, including the reinforcement of
the epidermal barrier, deep hydration, and biomechanical behavior. These effects were
more pronounced with both essential oils at 5%, and most were more pronounced than
the pure almond oil vehicle. Similar observations were previously reported [29]. Finally, it
is noteworthy that these benefits were observed in simple (oil) dilutions, an advantage in
formulation preparation and expanding the potential use of these oils in skin health.

These evidence of safety of use and beneficial effects on human skin in vivo, even in
such a reduced concentration, confirms the interest of these essential oils for the develop-
ment of dermatological formulations to improve skin health and well-being.
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