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Abstract: Laminarin, a β-(1,3)-glucan from the seaweed Laminaria digitata, is a polysaccharide
which provides anti-inflammatory and anti-oxidative properties. Its influence on both human dermal
fibroblasts adult (HDFa) and normal human epidermal keratinocytes (NHEK) has not been established
yet. Herein, laminarin effects were examined on skin cells’ mitochondrial and antioxidant activities.
Cytokines, hyaluronic acid, and procollagen type I secretions and interaction mechanisms were
explored after a maximum of 72 h treatment with laminarin. Our results demonstrated a decrease
in mitochondrial activities with 72 h treatment with laminarin from 500 µg.mL−1 for NHEK cells
and from 100 µg.mL−1 for HDFa cells without cytotoxicity. No variation of hyaluronic acid or type I
procollagen was observed for all laminarin concentrations, while an antioxidant effect was found
against reactive oxygen species (ROS) from 1 µg.mL−1 for HDFa cells in both H2O2 and UVA radiation
conditions, and from 10 µg.mL−1 and 1 µg.mL−1 for NHEK cells in both H2O2 and UVA radiation
conditions, respectively. Laminarin treatment modulated both cells surface glycosylation and cytokine
secretions of skin cells. Overall, our data suggest a positive effect of β-(1,3)-glucan on skin cells
on oxidative stress and inflammation induced by environmental factors. Of note, these effects are
through the modulation of glycan and receptors interactions at the skin cells surface.
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1. Introduction

For years, research has focused on β-glucans, polysaccharides that are widely present in the
cell walls of bacteria, algae, fungi, yeasts, or cereals [1–3], for their physico-chemical properties such
as thickening, stabilizing, emulsification, and gelation [4]. Interestingly, β-glucans structure such
as linear β-(1→3)- or β-(1→6)-chain core, molecular weight, length, or the number and degree of
branching side-chain influence their solubility and conformation in aqueous media (single helix,
triple helix, random coil conformation) [5]. These structural characteristics confer β-glucans biological
properties, such as anti-cancer [6,7], anti-oxidative [8], and anti-inflammatory effects [9]. In immune
cells, these mechanisms were achieved through interaction with β-glucans specifics receptors, such as
CR3 and/or Dectin-1 [10,11]. Although the Dectin-1 receptor is expressed on immune cells, it is also
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expressed on cutaneous cells surface, such as fibroblasts and keratinocytes [12,13]. Hence, β-glucans are
used in cosmetics [1] for their antioxidant and moisturizing properties [14,15], but also as a texturizing
agent in cosmetic creams [16].

Among marine β-glucans, herein we focus on laminarin, a storage polysaccharide found in
specific algae. Laminarin has a low molecular weight of 5 kDa and consists of an assembly of
β-(1,3)-glucose units with branched β-(1,6)-glucose side chain [17–19]. It has been isolated from several
brown seaweed species, such as Eisenia bicyclis, Saccharina longicruris, Laminaria digitata, Laminaria
hyperborean, and Laminaria japonica [20,21]. Several studies demonstrated that laminarin provides a
wide array of biological activities such as anti-tumor [22], anti-apoptotic [23], anti-inflammatory [24,25],
and anti-oxidative activities [18]. These properties can be increased by several sulfated modifications on
its polymeric osidic structure [26]. Laminarin presents an inherently low viscosity and high solubility
in organic and aqueous solvents that facilitate processing and make laminarin very attractive for
cosmetics. Herein, we investigated the influence of laminarin on skin cell viability, oxidative stress,
and on extracellular matrices secretion. We have performed, for the first time, a GLYcoPROFILE® and
NeoPROFILE on both human dermal fibroblasts (HDFa) and normal human epidermal keratinocytes
(NHEK), in the presence of laminarin, to highlight all possible laminarin interactions with glycans
moieties and carbohydrate receptors on skin cells surface. In addition, we evaluated the cytokine
profile of skin cells exposed to different concentrations of laminarin to assess interaction with diverse
receptors on the skin cell surface.

2. Materials and Methods

2.1. Cell Culture

Primary Human dermal fibroblasts adult (HDFa; C-013-5C, Invitrogen, Carlsbad, CA, USA)
and spontaneously immortalized human keratinocyte cell line (HaCaT; 300493, Cell Lines Service,
Eppelheim, Germany) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; D6546,
Sigma-Aldrich) supplemented with 10% Fetal Bovine Serum (F9665, Sigma-Aldrich), 2% L-Glutamine
(17-605E, Lonza, Basel, Switzerland) and 1% Pen/Strep Amphotericin B (17-745E, Lonza, Basel,
Switzerland) at 37 ◦C in a controlled humidified 5% CO2 atmosphere. Normal human epidermal
keratinocytes (NHEK; 00192627, Lonza, USA) were cultured in a KGM-Gold bullet kit medium,
including supplements (Kit KGM-Gold; 00192151, Lonza) at 37 ◦C in a controlled humidified 5%
CO2 atmosphere. Cells were seeded in 75 cm2 tissue flasks at 3.75 × 105 cells, 7.5 × 105 cells,
and 2.62 × 105 cells for HDFa, HaCaT, and NHEK cells, respectively. Cells were passaged when their
confluence was at 80%. Media were changed three times a week.

2.2. Cell Treatment

All experiment groups were treated with laminarin (L9634-1G, Sigma-Aldrich, St. Louis, MO, USA).
The concentration ranges used were 1, 10, 100, 500, and 1000 µg.mL−1. All experiments were compared
to untreated cells (0 µg.mL−1).

2.3. Cell Viability Assay

HDFa, HaCaT, and NHEK cells were seeded at 8 × 103, 10 × 103, and 14 × 103 cells per well,
respectively, in 96-well micro-plates and maintained for 24 h (h) at 37 ◦C, 5% CO2. The culture
supernatant was replaced with a fresh medium (200 µL) with or without laminarin (Figure 1) at
different concentrations (1, 10, 100, 500, 1000 µg.mL−1) and cells were cultivated for 24 h, 48 h and
72 h. Cell viability was assessed by MTT (3-(4,5-181dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium
bromide) assay (M2128-1G, Sigma, St. Louis, MO, USA). This method was first described in 1983
by Dr. Mosmann [27]. Briefly, after 24 h, 48 h, or 72 h of culture, 10% (w/v) of MTT at 5 mg.mL−1

were added into media, and cells were further incubated for 4 h. Then, the culture medium was
removed, and 100 µL of lysis buffer (0.5% Sodium dodecyl sulfate (SDS; L3771, Sigma, Tokyo Japan),
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Hydrochloric acid (HCl; 1.09911.0001, Merk, Kenilworth, NJ, USA) 5 M, Isopropanol (I9516, Sigma,
Steinheim, Germany) in sufficient quantity) was added into each well. The formazan precipitates in the
supernatant were measured by absorbance at 540 nm and 620 nm using a multi-plate reader (Multiskan
GO Microplate Spectrophotometer, Thermo Scientific, Sunnyvale, CA, USA). The percentages of cell
viability were calculated with the range of cells.
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2.4. Cell Cytotoxicity Assay

Cell cytotoxicity was assessed by LDH cytotoxicity assay kit (88953, Thermo Scientific, Sunnyvale,
CA, USA). Briefly, after 24 h, 48 h, or 72 h of culture with laminarin (1, 10, 100, 500, 1000 µg.mL−1),
10 µL of lysis buffer provided by the kit was added into wells corresponding to the 100% cell lysis
control, and 10 µL of sterile ultrapure water was added to all other wells. After 45 min at 37 ◦C,
5% CO2, 50 µL of supernatant was transferred to another 96-well microplate with 50 µL of reaction mix
provided by the kit. Next, 50 µL of stop solution was added into each well after 30 min incubation at
room temperature to stop the reaction. The absorbance of the formazan precipitate, if LDH was present
in the supernatant, was measured at 490 nm and 680 nm using a microplate reader (Multiskan GO
Microplate Spectrophotometer, Thermo Scientific, Sunnyvale, CA, USA). The percentage of cytotoxicity
(% of cytotoxicity) was calculated using the following formula: % of cytotoxicity = ((A treated cells
LDH activity − A spontaneous LDH activity)/(A maximum LDH activity − A spontaneous LDH
activity)) × 100 (A = absorbance).

2.5. Hyaluronic Acid (HA) Dosage

HDFa, HaCaT, and NHEK cells were seeded at 7.5 × 104 cells per well in a 24-well culture plate
and maintained for 24 h at 37 ◦C, 5% CO2 in a humid atmosphere. Then, cells were cultured in fresh
serum-free DMEM media (0.5 mL) with or without laminarin (1, 10 and 100 µg.mL−1) for 72 h. Cell free
supernatants were collected, and the level of secreted hyaluronic acid (HA) was determined by an ELISA
assay kit (K-1200; Echelon Bioscience Inc, USA) according to the manufacturer’s recommendations.
Briefly, a standard range was prepared from the HA provided by the kit (0, 50, 100, 100, 200, 200, 400,
800, 800, 1600 ng.mL−1). Then, 100 µL of standard and samples was added to the wells of an incubation
plate and 100 µL of diluent was added to the wells corresponding to the zero (blank). Finally, 150 µL of
diluent was added to all wells. To detect HA, 50 µL of a solution called “working HA detector” was
added to all wells except in the control well (blank). After a 1-h incubation at 37 ◦C, 100 µL of controls
and samples were transferred into a detection plate and incubated at 4 ◦C for 30 min. The wells were
washed 4 times with a wash buffer, and 100 µL of the working enzyme was added into each well.
After a 30 min incubation, each well was washed, and 100 µL of substrate solution was added to
all wells. Finally, 50 µL of stop solution was added after 45 min of incubation. The absorbance of



Cosmetics 2020, 7, 66 4 of 21

the formed product was measured at 405 nm using a microplate reader (Multiskan GO Microplate
Spectrophotometer, Thermo Scientific, Sunnyvale, CA, USA).

2.6. Type I Procollagen Dosage

HDFa cells were seeded at 7.5 × 104 cells per well in a 24-well culture plate and maintained for
24 h at 37 ◦C, 5% CO2 in a humid atmosphere. Cells were then cultured in fresh serum-free DMEM
media (0.5 mL) with or without laminarin (1, 10 and 100 µg.mL−1) for 72 h. Cell free-supernatants
were collected, and type I procollagen was quantified in the conditioned media using EIA kit (TaKara
Bio Inc., Otsu, Japan) according to the ‘manufacturer’s instruction. Briefly, a standard range was
produced from the PIP (0, 10, 20, 20, 40, 80, 160, 320 and 640 ng.mL−1). Then, 100 µL of anti-PIP-POD
antibodies and 20 µL of samples or standards were put into the wells of the microplate provided by the
kit. After 3 h of incubation at 37 ◦C, the wells were washed 4 times with a rinsing solution, and 100 µL
of the substrate solution was added to all wells. The absorbance of the formed product is measured at
450 nm using a microplate reader (Multiskan GO Microplate Spectrophotometer, Thermo Scientific,
Sunnyvale, CA, USA).

2.7. Intracellular Reactive Oxygen Species (ROS) Assay

ROS intracellular level was evaluated using a 2′,7′-Dichrorofluorescin diacetate (DCFH2-DA,
Sigma-Aldrich, St. Louis, MO, USA) probe. Intracellular ROS oxidizes the DCFH2-DA to a fluorescent
compound 2′, 7′7′—dichlorofluorescein (DFC). Briefly, HDFa cells were seeded at 1.5 × 104 cells per
well. HaCaT and NHEK cells were seeded at 2.0 × 104 cells per well in 96-well micro-plate. All cells
were maintained for 24 h at 37 ◦C, 5% CO2 in a humid atmosphere. The culture medium was then
replaced with a fresh one containing 0.012 mg.mL−1 of DCFH2-DA probe for 45 min. Cells were
washed with PBS and fresh culture medium supplemented with different laminarin concentrations
(1, 10 and 100 µg.mL−1) were added and cells were placed in oxidative stress condition (H2O2, 0.5 mM)
or not for 4 h. Concerning UVA radiation (365 nm, 0.42 J.s−1.cm2, Bioblok Scientific, Fischer), the cells
were first exposed for 15 min in PBS and a fresh culture medium counting DCFH2-DA probe was
added during 45 min. Then, cells were washed with PBS and incubated for 4 h before fluorescence
reading. The DCFH2-DA fluorescence intensity was measured with a microplate reader at λex = 485 nm
and λem = 520 nm (Fluostar OPTIMA, BMG LABTECH, France).

2.8. Effect of Laminarin with Cells—Glycans Interaction Study

HDFa and NHEK GLYcoPROFILEs were performed with the LEctPROFILE® plates obtained
from GLYcoDiag (Orléans, France) [28–32]. Interaction with thirteen lectins were also explored. Table 1
summarizes the lectins used in this study with their specificities toward carbohydrate structures.

Table 1. Lectins Specificities.

Short Name Common Name Glycan Structures Specificities

ConA Concanavalin Agglutinin Manα6(Manα3)Man
PSA Pisum Sativum Agglutinin Manα6(Manα3)Man
GNA Galanthus Nivalis Agglutinin Manα6(Manα3)Man
ACA Amaranthus Caudatus Agglutinin Galβ3GalNAc
WFA Wisteria Floribunda Agglutinin GalNAcα6Gal > GalNAcα3GalNAc > GalNAc
PNA Peanut Agglutinin Galβ3GalNAc
AIA Autocarpus Intergrifolia Agglutinin Galβ3GalNAc
DSA Datura Stramonium Agglutinin GlcNAcβ4GlcNAc
WGA Wheat Germ Agglutinin GlcNAcGlcNAcβ4
MAA Maackia Amurensis Agglutinin Neu5Ac3Gal4GalNAc
SNA Sambucus Nigra Agglutinin Neu5Ac6Gal/GalNAc

PHA-L Phaseolus Vulgaris Agglutinin Complex glycans
PHA-E Phaseolus Vulgaris Agglutinin Complex glycans
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The assessment of interactions of lectins with glycans on cell surfaces were achieved when
cells grew up to 80–90% confluence in 75 cm3 culture flask after incubation for 72 h with laminarin
(100 µg.mL−1). Then, cells were washed with PBS and harvested with a Trypsin/EDTA solution [28,32].
After washing and centrifugation, the cells were suspended in PBS and labeled with carboxyfluorescein
diacetate succinimidylester (CFDA-SE, Sigma-Aldrich, St. Louis, MO, USA) in PBS. Next, 100 µL of
labeled cells (about 2 × 105 cells) were added in each well of the LEctPROFILE® plates and incubated
2 h at 37 ◦C under gentle agitation. After washing with PBS, fluorescence intensity was measured
using a microplate reader (λex = 485 nm, λem = 530 nm, Fluostar OPTIMA, BMG LABTECH, France).
In parallel, a calibration curve was achieved with the labeled cells solution to determine the number of
cells stayed in interactions with lectins.

2.9. Effect of Laminarin with Cells—Carbohydrate Receptor Study

Laminarin interactions with carbohydrate recognition receptors expressed at the surface of
both HDFa and NHEK cells were measured and achieved with fluoresceinylated neoglycoproteins
(i.e., Chitobiose-BSA, α-Galactose-BSA, β-Glucose-BSA, α-Mannose-6-Phosphate-BSA, α-Rhamnose-BSA,
α-Fucose-BSA for HDFa but without α-Fucose-BSA for NHEK) according to GLYcoDiag technology
(NeoPROFILE). To analyze the interactions of these fluorescent neoglycoproteins with cell surfaces over
72 h stimulation with laminarin (10 µg.mL−1 and 100 µg.mL−1), cells were first grown to confluence
(80–90%) in 96-well plates. Once the confluence reaches, cells were washed several times with PBS and
then incubated with fluorescent neoglycoproteins in the presence or absence of laminarin (10 µg.mL−1

and 100 µg.mL−1). After 4 h of incubation at 4 ◦C, wells were gently rinsed with PBS, and new PBS was
added for the fluorescence readout (λex = 485 nm, λem = 530 nm, Fluostar OPTIMA, BMG LABTECH,
France). The level of neoglycoproteins stayed in interaction with cells was compared with cells cultured
without laminarin stimulation.

2.10. Cytokine Secretions Study

Cells were seeded at 1.0 × 104 cells per well for HDFa cells and 1.9 × 104 cells per well for both
HaCaT and NHEK cells in a 24-well culture plate and maintained at 37 ◦C, 5% CO2 in a humid
atmosphere. When cells reached approximately 80% confluence, the culture medium was replaced
with a fresh one (500 µL) with or without different laminarin concentrations (1, 10 and 100 µg.mL−1) in
inflammatory condition, induced by lipopolysaccharides (LPS, 10 µg.mL−1). The cells were stimulated
for 24 h for HDFa cells, and 48 h for both HaCaT and NHEK cells. Both IL-6 and IL-8 cytokines levels
were determined by an ELISA assay kit (Peprotech, Rocky Hill, CT, USA) according to the manufacturer
recommended protocol.

2.11. Statistic Analysis

Results were compared to control (condition without laminarin) using GraphPad Prism software
(Prism6, GraphPad Software Inc., San Diego, CA, USA) using a non-parametric Kruskal–Wallis test
(Dunn’s multiple comparisons test). Data are expressed as mean± SD of three independent experiments,
except for GLYcoPROFILE and NeoPROFILE, data are expressed as mean ± SD of two independent
experiments. A p-value < 0.05 was considered statistically significant.

3. Results

3.1. High Concentration of Laminarin Reduces Cellular Metabolic Activity without Cytolytic Activity

In preliminary experiments, the effect of laminarin was evaluated at several concentrations (1, 10,
100, 500, and 1000 µg.mL−1) in HDFa, NHEK, and HaCaT cells at 24 h, 48 h, and 72 h. For this purpose,
mitochondrial activity was analyzed using an MTT assay, and an LDH dosage measured cell cytotoxicity.
Laminarin significantly reduced mitochondrial activity for HDFa cells at 1000 µg.mL−1 after 24 h,
from 500 µg.mL−1 after 48 h and from 100 µg.mL−1 after 72 h of stimulation (Figure 2a). For the NHEK
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cells (Figure 2b), cellular metabolic activity decreased later than fibroblasts at 500 µg.mL−1 after an
incubation time of 48 h. Similar results were obtained for HaCaT cells (Figure A1). However, laminarin
did not induce cellular damage as reflected by LDH measurement. (Figures 3 and A2).
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Based on MTT assays results reflecting cellular metabolic activity, we next focused our experiments
with conditions using only 0, 1, 10, and 100 µg.mL−1 laminarin concentrations.

3.2. Influence of Laminarin on Matrix Deposition

The skin extracellular matrix is in constant renewal, and its homeostasis was monitored by both
collagen and hyaluronic acid deposition and degradation. We investigated laminarin’s influence on
both type-I procollagen and hyaluronic acid deposition by HDFa cells and hyaluronic acid deposition
by NHEK and HaCaT cells. Results showed no variation in both hyaluronic acid and type-I procollagen
deposition between the different laminarin concentrations on HDFa, NHEK cells (Figure 4) and HaCaT
cells (Figure A3).
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3.3. Laminarin Reduced Oxidative Stress on Skin Cells

The effects of laminarin on ROS production in H2O2 and UVA-stimulated skin cells have been
tested during 4 h. Results showed no pro-oxidative effect of laminarin on the two cell types studied
compared with non-treated cells (Figure 5). Interestingly, laminarin appears to significantly reduce
basal ROS levels at 1 and 10 µg.mL−1 in HDFa cells and from 1 µg.mL−1 in NHEK cells (Figure 5).
We found the same results for HaCaT cells (Figure A4). H2O2 and UVA radiations induced an increase
in intracellular ROS production in HDFa, NHEK, and HaCaT cells compared with non-stimulated cells
(Figures 5 and A4). The increase in intracellular ROS levels under H2O2 treatment was significantly
reduced by laminarin from 1 µg.mL−1 in HDFa cells (Figure 5a) and from 10 µg.mL−1 in NHEK cells



Cosmetics 2020, 7, 66 8 of 21

(Figure 5b). However, laminarin had no significant effect on HaCaT cells (Figure A4). Regarding UVA
radiations, laminarin significantly decreased intracellular ROS levels from 1 µg.mL−1 for both HDFa
and NHEK cells (Figure 5, right panel), as well as in HaCaT cells (Figure A4).
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Figure 5. Effect of laminarin on oxidative stress. (a) HDFa and (b) NHEK cells were treated with 1,
10 and 100 µg.mL−1 of laminarin for 4 h. ROS production was induced by 0.5 mM of H2O2 or by 365 nm,
0.42 J.s−1.cm2 of UVA radiation. Free radical scavenging activity was evaluated using a DCFH-DA
probe. Data are expressed as mean ± SD of three independent experiments. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001 compared with 0 µg.mL−1 (control group).

3.4. Effect of Laminarin on Cells—Glycan Interaction Study

Carbohydrate-binding proteins, called lectins, have extensively been used in the past decade
as tools to study glycobiology processes [32,33]. GLYcoPROFILEs, a lectin array, of both fibroblasts
and keratinocytes were achieved with the help of GLYcoDiag technology (LEctPROFILE® plates).
Using this technology, we studied the effect of laminarin (100 µg. mL−1, 72 h of incubation) on the
expression of lectins and their accessibility.

The GLYcoPROFILE of HDFa cells was slightly modified in the presence of laminarin
(Figure 6a). A significant increase in the interaction with the lectin WGA (Wheat Germ Agglutinin),
which recognizes GlcNAc and NeuAc motifs, was observed. These results suggest that laminarin
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induced an overexpression or promoted accessibility of glycans owned GlcNAc and NeuAc moieties
(WGA interaction, p < 0.05) at the cell surface. For the other lectins, some trends were observed, such as
a slight increase in the MAA (Maackia Amurensis Agglutinin), PHA-L, and PHA-Electins (Phaseolus
Vulgaris Agglutinin), and a weak decrease in interaction with GNA (Galanthus Nivalis Agglutinin)
(Figure 6a). However, no conclusion can be drawn on these changes.
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Figure 6. Effect of laminarin on lectin binding skin cell surface (GLYcoPROFILE). (a) HDFa and (b)
NHEK cells were stimulated in the absence (black bar) or with 100 µg.mL−1 (dark grey bar) of laminarin
(stimulation 72 h before the analysis). Data are expressed as mean± SD of two independent experiments.
For the abbreviations of lectins, see Table 1. * p ≤ 0.05.

The GLYcoPROFILE carried out with NHEKs cells (Figure 6b) showed more variations in terms
of fluorescence intensity on the panel of lectin studied compared to the HDFa GLYcoPROFILE.
Unlike HDFa cells, NHEK GLYcoPROFILE displayed only a statistically decreased in the interaction
with WGA (WGA interaction, p < 0.05). Regarding the other lectins, results show a slight decrease
in interaction with lectins that recognized respectively mannose (i.e., Con-A), galactose and GalNAc
(i.e., ACA), sialic acid residues (i.e., MAA, SNA), complex glycans (i.e., PHA-L) and a low increase in
interactions with WFA, AIA, DSA and PHA-E that recognized GalNAc, galactose, GlcNAc, and complex
glycans, respectively. Given the information obtained on NHEK cells with the GLYcoPROFILE,
the different interactions took in considerations with monosaccharides specificities of lectins need to
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be shade regarding the specific glycans specificities recognized by each lectin used (i.e., WGAs only
recognize terminal GlcNAc moieties, while DSA has more affinity for sequences of GlcNAc and/or
lactosamine units chains; WFA better recognize GalNAcα1-6Gal motif, whereas ACA recognizes
Galβ1-3GalNAc motif).

3.5. Effect of Laminarin with Cells—Carbohydrates Receptors Study

Laminarin effects on the expression and/or accessibility of cells glycans receptors were analyzed by
NeoPROFILE (GLYcoDiag technology). The NeoPROFILE allows neoglycoproteins specific interactions
with a cell surface to be quantified. The experiment was performed after a 72 h cell stimulation with
laminarin at 0 µg.mL−1, 10 µg.mL−1, and 100 µg.mL−1. In both HDFa and NHEK NeoPROFILE,
no significant differences were observed (Figure 7a,b). However, the results obtained for HDFa reflect
an adhesion loss of all neoglycoprotein in a dose-dependent manner compared with the untreated cells
(Figure 7a).
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Figure 7. Neoglycoprotein interaction (NeoPROFILE) with (a) HDFa (neoglycoproteins:
β-Chitobiose-BSA, α-Galactose-BSA, β-Glucose-BSA, α-Mannose-6-Phosphate-BSA, α-Rhamnose-BSA,
α-Fucose-BSA) and with (b) NHEK (neoglycoproteins: β-Chitobiose-BSA, α-Galactose-BSA,
β-Glucose-BSA,α-Mannose-6-Phosphate-BSA, α-Rhamnose-BSA) after stimulation with laminarin
for a stimulation time of 72 h before the analysis; black laminarin at 0 µg.mL−1, grey laminarin
at 10 µg.mL−1, dark grey laminarin at 100 µg.mL−1. Data are expressed as mean ± SD of two
independent experiments.
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3.6. Laminarin Reduced IL-6 Secretion in Inflammatory Skin Cells

ELISA assay was performed to evaluate IL-6 and IL-8 cytokine secretion by cells. LPS (10µg.mL−1) was
employed to induce inflammatory stress. As expected, we observed that LPS treatment induced an increase
in IL-6 and IL-8 secretion by both HDFa and NHEK cells compared to untreated cells (Figures 8 and 9).
In inflammatory conditions, laminarin significantly reduces IL-6 secretion at 10 µg.mL−1 in HDFa (27%
off) and NHEK (54% off) cells (Figure 8a,b). Comparable results were obtained for HaCaT (Figure A5).
Concerning IL-8 cytokine, no significant result was obtained. However, laminarin treatment tends to
reduce IL-8 secretion only in HDFa cells in a dose-dependent manner (Figure 9a). Regarding NHEK
and HaCaT cells, laminarin did not modified IL-8 secretion (Figures 9b and A6).
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Figure 8. Quantitative analysis of IL-6 cytokine with an ELISA kit. (a) HDFa and (b) NHEK cells were
stimulated with 1, 10 and 100 µg.mL−1 laminarin for 24 h (HDFa cells) and 48 h (NHEK cells) in the
absence or in presence of LPS at 10 µg.mL−1. An ELISA assay was performed to quantify the level of
IL-6 cytokine secreted in cell culture medium supernatant. Data are expressed as mean ± SD of two
independent experiments. * p ≤ 0.05, compared with 0 µg.mL−1 (control group).
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Figure 9. Quantitative analysis of IL-8 cytokine with an ELISA kit. (a) HDFa and (b) NHEK cells were
stimulated with 1, 10 and 100 µg.mL−1 laminarin for 24 h (HDFa cells) and 48 h (NHEK cells) in the
absence or in the presence of LPS at 10 µg.mL−1. An ELISA assay was performed to quantify the level
of IL-8 cytokine secreted in cell culture medium supernatant. Data are expressed as mean ± SD of two
independent experiments.
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4. Discussion

β-glucans have been used in cosmetics [1] for their antioxidant and moisturizing properties [14,15],
but also as a texturizing agent in cosmetic creams [16]. Interestingly, inflammation and oxidative
stress are often involved in extrinsic skin aging [34–36], leading to matrix extracellular disorganization
and alteration of tissue function [34]. When too high a quantity of ROS is produced and antioxidant
enzymes cannot reduce this excess, ROS can react with different cell components, such as membranes,
proteins, lipids, and nucleic acids, and can induce cell damage [36,37]. Natural compounds are used
in cosmetics in order to maintain skin cells’ integrity and protect cells from oxidative stress and
inflammation. Herein, we investigated the effect of laminarin, a β-glucan from the brown seaweed
Laminaria digitata, on both human keratinocytes and fibroblast cells.

First, we used HDFa, NHEK primary cells in these study, and HaCaT cell line, which is an
immortalized human keratinocytes line [38]. HaCaT cells express various epidermal differentiation
markers making them a cell line widely used as an alternative for NHEKs [39,40]. We have chosen to
use this model along with NHEK for various reasons, as (1) donor variability of human keratinocytes,
short culture lifetime, variations between passages can make interpretation of experimental data
complicated; (2) Colombo et al. demonstrated that HaCaT cells are a reliable in vitro cell culture model
to study inflammatory/repair responses [41].

Regarding laminarin effects on cells, our results showed that laminarin induced a significant
decrease in cell metabolic activity (mitochondrial activity) in a time- and concentration-dependent
manner from 100 µg.mL−1 for HDFa and 500 µg.mL−1 for NHEK cells. Interestingly, no-cytotoxic
effect of laminarin on both HDFa and NHEK cells was observed. These results show that cell viability
is not affected by laminarin. The tetrazolium salt MTT is reduced to purple formazan crystal by
mitochondrial dehydrogenases in metabolically active cells [27,42], mostly succinate dehydrogenase
(Electron Transport Chain Complex II) [43–46]. However, this modification in metabolic activity
observed in laminarin conditions is still compatible with cell viability [42,47]. Based on these results,
we can hypothesize that laminarin affects cell proliferation. This hypothesis is supported by the
literature. Firstly, Park et al. show that laminarin stops the cell cycle in the sub-G2 and G2-M phase [48].
Secondly, Martinez-Diez et al. showed that alteration in the biogenesis of mammalian mitochondria
leads to an alteration of cellular proliferation cycle (S-G2-M phase) [42]. Therefore, it is important to
explore cell cycles by flow cytometry in order, to verify whether the decrease in HDFa and NHEK
cell metabolic activity was associated with decreases in cell proliferation, as reported by the study
cited above.

Regarding the extracellular matrix compounds, the results indicate no variation in the secretion of
both HA and type-I procollagen for both HDFa and NHEK cells in the presence of laminarin compared
to the control. Both HA and type-I collagen are fundamental components of the skin extracellular
matrix (ECM) [49,50], where HA represents more than 50% of the HA reservoir of the body [51].
HA is also synthesized by keratinocytes in the epidermis [50]. HA and type-I collagen are responsible
for skin hydration, elasticity, and resistance [52,53]. However, a previous study demonstrated that
laminarin from the brown seaweed Saccharina longicruris, increased type-I collagen deposition in a
dose-dependent manner by fibroblasts after 35 days of treatment [54]. The difference between our
findings and those of Ayoub et al.’s study can be explained by the shorter stimulation time used (72 h)
in our study, and by the structural difference of the two laminarin. Laminarin from Laminaria digitata
is a linear β-(1,3)-glucan with branched glucose linked to the main chain by β-(1,6)-glucose bonds and
has a molecular weight of about 5000 Dalton (Da) [55], while that from Saccharina longicruris displays
the same structure but has a smaller molecular weight (2900–32000 Da) and some glucose linked to
the main chain by β-(1,2)-linkages [56]. Our results show that laminarin from Laminaria digitata has
no deleterious effect on the secretion of both hyaluronic acid and type I collagen, but no effect on the
integrity of the extracellular matrix preservation was observed.

Oxidative stress was evaluated with both H2O2 and UVA radiation stimulation with or without
the different laminarin concentrations. It is essential to present data from the literature on the
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effect of laminarin on oxidative stress first. It has been previously reported that laminarin exerts
anti-oxidative activity [18,57,58]. As example, oligosaccharides derived from Laminaria japonica
show high hydroxyl radical scavenging activity at the concentration of 100 µg.mL−1 [59]. Moreover,
previous studies demonstrated that laminarin decreases oxidative stress and lipid peroxidation in
rats [58], and significantly decreases ROS levels in aged pig oocytes [18]. Interestingly, in 2011,
Cheng et al. reported that treatment with polysaccharides extract from laminarin purchased from a
local market in Shenyang city considerably increased the antioxidant levels of superoxide dismutase,
glutathione peroxidase and catalase in aseptic models [58]. In line with the results found in the
literature, our findings show that under oxidative stress conditions, laminarin from Laminaria digitata
decrease ROS level significantly. More specifically, we observed a significant decrease in ROS level
from µg.mL−1 in HDFa cells in H2O2 conditions and, to a lesser extent, in UVA radiation condition.
In NHEK cells, the results show a very slight decrease in ROS level in both conditions. In skin aging,
ROS secretion can lead to different cellular damages, such as lipid [60], protein [61], and DNA [62]
modifications. Considering our results and previous observations, laminarin appears to be a promising
component with potential anti-aging effects. To be able to ensure that laminarin would have a real
cosmetic interest, it would be necessary to better characterize the laminarin from Laminaria digitata in
terms of solubility, dependence on pH and oxygen partial pressure, and ability to act as a reducing
agent towards electron donors of physiological importance, but also in terms of half-life time in blood,
bioavailability, or biodistribution. Previous studies provide some elements to answer these questions.
Laminarin appear soluble in water or organic solvent, a feature that depends mainly on the level of
branching of these molecules [63,64]. For example, low branched laminarin is soluble only in hot
water and highly branched laminarin in both cold and hot water. In 1982, Hoffman et al. reported
that laminarin possesses blood anticoagulant activity upon a structural modification—sulphation [65].
However, further studies will need to answer these questions. In particular, ex vivo studies on skin
explants would be necessary to study its penetration capacity and its bioavailability.

Our data demonstrated that incubation with laminarin at 100 µg.mL−1 slightly increases the
interaction with the lectin WGA, a lectin that recognizes GlcNAc and NeuAc residues in HDFa.
In the case of NHEK, mirror results were obtained; only the interaction with WGA lectin decreased
significantly. These results suggest that the stimulation of cells by laminarin induces modifications
and/or modulations on glycans accessibilities at the skin cell surface. According to the literature, it is
well-known that glycans play an essential part in the modulation of cell communication [66]. Hence,
we can hypothesize that laminarin treatment would modify cell–cell communications and the effect of
laminarin on the cell glycosylation machinery could be addressed via the study of the glycan structure
to show better expression and/or accessibility (i.e., glycans with terminal GlcNAc moieties).

Regarding neoglycoprotein interactions, no significant result was obtained. On HDFa cells,
we observed a general trend of slight decrease in all neoglycoproteins interactions, but these observations
did not reach statistical significance. For HDFa and based on previous studies, we assume that (i)
laminarin could induced modifications on receptors accessibilities at the skin cell surface, and/or (ii)
laminarin molecules stay (trough non-specific interaction) linked (through Dectin-1 or other β-glucan
binding protein) at the cell surface thus covering the glycan binding motifs [12].

Herein, we observed that laminarin influences oxidative response and glycan profiles on skin
cells. It is well known that oxidative stress promotes pro-inflammatory cytokines secretion [67].
Moreover, glycans in immune cells are involved in molecular processes that regulate cell activation
and fine-tune the inflammatory response [68]. Cytokine secretion (IL-6 and IL-8) was evaluated by
ELISA assay in inflammatory conditions (10 µg.mL−1 of LPS). We observed a significant decrease in
IL-6 secretion at 10 µg.mL−1 of laminarin in both HDFa and NHEK cells. In HaCaT cells, this decrease
that reaches significance was observed at 1 µg.mL−1 of laminarin. For IL-8 secretion, no significant
result was obtained. However, we can note a decreasing trend from 10 µg.mL−1 of laminarin. Previous
studies established that laminarin acted as an immunomodulatory mediator [19] and carried out
an anti-inflammatory activity with decreased levels of both IL-6 and IL-8 cytokines secretions in an
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animal model [25]. Our results are in accordance with those of the literature, even if the decrease in the
secretion of these cytokines is slight.

Regarding IL-6, its role is complex. Indeed, IL-6 has both pro- and anti-inflammatory roles
depending on the environmental conditions [67,69] and is involved in various biological mechanisms
as immune response, metabolism, or tumorigenesis notably in epithelial cancer [70–72]. Interestingly,
the role of IL-6 in cancer has been quite controversial. Dual roles for IL-6 in both tumor-promoting
and -suppressive activities have been reported [73,74]. It has been shown that IL-6 can activate three
regeneration-promoting transcription factors as YAP, Notch, and STAT3, which are also involved in
stem cell activation [75]. In skin context, IL-6 plays a role in wound repair [76]. A recent review
published in 2020 points out that IL-6 signaling deregulation can lead to either fibrosis or a healing
failure [77]. Taken as a whole, these data show that IL-6 regulation is complex and can lead to various
biological responses, either beneficial or harmful. As previously mentioned, our results show that
laminarin modulates IL-6 secretion at 10 µg.mL−1. However, further investigations are warranted
to understand the importance of this finding and, in particular, on the effect of laminarin in skin
healing/fibrosis.

In the present study, we showed that high concentrations of laminarin lead to a decrease in
metabolic activity in dermal fibroblasts and keratinocytes. We also observe a beneficial effect of
low doses of laminarin against oxidative stress, and the potential anti-inflammatory role in dermal
fibroblasts and keratinocytes. This major effect of laminarin in metabolic activity is of utmost importance
and elevates its potential utility for dermal application. However, further tests are required to determine
the optimum concentration of active compound availability in the dermis or epidermis.

5. Conclusions

To conclude, high concentrations of laminarin should not be considered for cosmetic use. However,
a low concentration (10 µg.mL−1) of laminarin provides antioxidant protection, but also modulates
IL-6 secretions by cutaneous cells under inflammatory conditions. These two properties make the
laminarin from Laminaria digitata attractive in the context of skin aging.
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healing/fibrosis. 

In the present study, we showed that high concentrations of laminarin lead to a decrease in 
metabolic activity in dermal fibroblasts and keratinocytes. We also observe a beneficial effect of low 
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Figure A1. Evaluation of cell metabolic activity by the MTT assay. HaCaT were stimulate with 1, 10, 
100, 500 and 1000 µg.mL−1 laminarin for (a) 24 h, (b) and (c) 72 h, and cell viability was performed 
using a tetrasodium salt (MTT). Data are expressed as mean ± SD of three independent experiments. 
* p ≤ 0.05, **** p ≤ 0.0001 compared with 0 µg.mL−1 (control group). 
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Figure A3. Quantitative analysis of hyaluronic acid (HA) by ELISA assay. HaCaT cells were treated 
with 1, 10 and 100 µg.mL−1 laminarin for 72 h. An ELISA assay was performed to quantified HA on 
cell culture medium supernatant. Data are expressed as mean ± SD of three independent experiments. 
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cytotoxicity was performed using a tetrasodium salt (INT). Data are expressed as mean ± SD of
three independent experiments.
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laminarin for 4 h. ROS production was induced by 0.5 mM of H2O2 or by 365 nm, 0.42 J.s−1.cm² of UVA 
radiation. Free radical scavenging activity was evaluated using a DCFH-DA probe. Data are 
expressed as mean ± SD of three independent experiments. ** p ≤ 0.01, *** p ≤ 0.001 compared with 0 
µg.mL−1 (control group). 
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1, 10 and 100 µg.mL−1 laminarin for 48 h in absence or in presence of LPS at 10 µg.mL−1. An ELISA 
assay was performed to quantify the level of IL-6 cytokine secretion on the cell culture medium 
supernatant. Data are expressed as mean ± SD of two independent experiments. * p ≤ 0.05 compared 
with 0 µg.mL−1 (control group). 
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UVA radiation. Free radical scavenging activity was evaluated using a DCFH-DA probe. Data are
expressed as mean ± SD of three independent experiments. ** p ≤ 0.01, *** p ≤ 0.001 compared with
0 µg.mL−1 (control group).
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Data are expressed as mean ± SD of two independent experiments. * p ≤ 0.05 compared with 0 µg.mL−1
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Figure A6. Quantitative analysis of IL-8 cytokine with an ELISA kit. HaCaT cells were stimulate with 
1, 10 and 100 µg.mL−1 laminarin for 48 h in absence or in presence of LPS at 10 µg.mL−1. An ELISA 
assay was performed to quantify the level of IL-8 cytokine secretion on the cell culture medium 
supernatant. Data are expressed as mean ± SD of two independent experiments. 
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