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Abstract: Pickering emulsions are systems composed of two immiscible fluids stabilized by solid
organic or inorganic particles. Pickering emulsions are particularly useful in cosmetics, where the
surfactants are unwanted, as well as in the pharmaceutical field, where transdermal and/or dermal
drug delivery is difficult to achieve and controlled drug release is desired. Here, we studied calcium
carbonate particles as stabilizers of Pickering emulsions for topical use. An optimized formulation
was obtained using a Quality by Design approach. First, a screening experiment was performed
to identify the formulation and process critical variables that affect the quality properties of the
Pickering emulsion. The optimization of the production was then studied by establishing the design
space. The final formulation was hereinafter investigated regarding the pH, rheological properties,
and in vitro cytotoxicity assays. The results showed the formulation had a pH compatible with human
skin and a shear thinning behavior. Moreover, this formulation showed a strong network structure,
with a suitable spreadability on the skin, allowing an easy application. The in vitro assays were
performed to assess the potential cytotoxicity of the calcium carbonate-stabilized emulsion and the
particles themselves, and the results revealed that the formulation did not significantly affect the cell
viability. In conclusion, the use of calcium carbonate particles as a stabilizer ingredient contributed to
achieve an eco-friendly Pickering emulsion.

Keywords: calcium carbonate; Pickering emulsions; Quality by Design; emulsion stabilizer;
eco-friendly cosmetics

1. Introduction

Pickering emulsions are liquid dispersed systems stabilized by solid particles instead of surfactants,
which have been widely studied as an alternative to conventional emulsions [1]. Emulsions are widely
used formulations in the pharmaceutical and cosmetic fields, but they are extremely challenging
systems due to their thermodynamic instability [2]. Despite these challenges, emulsions are efficient
topical drug delivery systems (DDS), which can encapsulate both hydrophilic and lipophilic actives
inside the dispersed phase, protecting these from degradation, while controlling their delivery [3,4].

The instability of emulsions must be overcome, and their stabilization is usually achieved using
synthetic surfactants, compounds that have been raising environmental and toxicity concerns [4,5].
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Pickering emulsions are surfactant-free, thus their use is preferable to conventional emulsions. This type
of emulsion was first described by Spencer U. Pickering in 1907 [6], who noticed the phenomenon
that emulsions could be stabilized by small solid particles instead of surfactants. This stabilization
of the emulsions’ droplets is achieved due to the particles’ dual wettability: because their surface is
partially wetted by water and partially by oil, they spontaneously accumulate at the oil–water interface,
which is stabilized against coalescence by volume exclusion and steric hindrance [7–9]. In Pickering
emulsions, the continuous phase is constituted by the liquid with the best wetting properties, while the
dispersed phase is made of the liquid with the poorest wetting properties [10]. The contact angle (θ)
between the particle and the interface determines the type of emulsion, and quantifies the wettability
of the particles at the oil–water interface. When θ is lower than 90◦, O/W emulsions will be produced,
while W/O emulsions originate when θ is lower than 90◦. However, if the particles are very lipophilic
or very hydrophilic, θ will be very high or very low, respectively, and the particles will be dispersed in
either the oil or aqueous phases, producing very unstable emulsions [3].

The solid particles used as stabilizers in Pickering emulsions can be of organic origin such as
polymer latex or starch, or inorganic such as silica, titanium dioxide, and clay particles [7]. Additionally,
nanoparticles and cyclodextrins (CD) are also being studied as emulsion stabilizers [3,11–14]. Several
parameters influence the effectiveness of the solid particles as Pickering emulsion stabilizers, namely
their shape and size, concentration, wettability, and interactions between particles. In all cases, the size
of the particles used as stabilizers have to be significantly smaller than the size of the emulsion droplets,
which reduces the amount required to stabilize a given emulsion droplet interface [3,9,15].

Inorganic-based particles such as silica and titanium dioxide (TiO2) are the most widely used
as Pickering emulsion stabilizers. There are several different commercially available particles that
can be used as stabilizers, with sizes ranging from nanometers to microns, different surface areas,
and hydrophobicity, which can be adjusted by changing the particle coating, the extent of chemical
modifications, or the degree of substitution by functional groups [3].

The current trend in the pharmaceutical and cosmetics markets is to formulate, using green
and natural compounds, renewable resources mainly derived from plants or microorganisms
to meet the demand for eco-friendlier products. Organic particles such as starch and CDs are
examples of biocompatible and environmental-friendly compounds that can be used for stabilizing
Pickering emulsions [1,8], constituting a great eco-friendly development in healthcare, pharmaceutical,
and cosmetic products [16,17]. However, some inorganic particles also offer sustainable and eco-friendly
solutions as stabilizers of these emulsions. One example is calcium carbonate (CC), which is widely
used in the cosmetics industry as a buffer in formulations, opacifying, bulking, and absorbent agent
in foundations and oil-free moisturizers, abrasive in toothpastes and exfoliants, among others [18].
Calcium carbonate is an inert chemical compound mined from marble, limestone, and other mineral rock
foundations, and can be supplied in different purity grades (industrial, chemical, pharmaceutical) [18].
Calcium carbonate particles were first used as one of the model stabilizers for Pickering emulsions
by Tambe and co-workers [19]. The group of Cui et al. [20–22] later studied the influence of anion
surfactants, fatty acids, and impurities present in triglyceride oils on the stabilizing impact of CC
particles in Pickering emulsions. Recently, Huang et al. [23] investigated the effect of the morphology
of CC particles (cubic, spherical, rod-like) on the stabilization of O/W Pickering emulsions.

The objective of the research work described herein was to develop and optimize a Pickering
emulsion with high skin compatibility using biocompatible CC particles as a stabilizer to meet the
consumer demands for green and natural products, whilst profiting from CC properties. A Quality by
Design (QbD) approach was used for the optimization process. The developed Pickering emulsion
was characterized at the physicochemical level, namely droplet size distribution, and its in vitro safety
was inferred from cytotoxicity studies using the human keratinocyte HaCaT cell line.
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2. Materials and Methods

2.1. Materials

Calcium carbonate (Carbo 125), derived from crushing aggregates of limestone, was obtained from
Carbomin (Turquel, Portugal). The caprylic/capric acid triglyceride (Tegosoft® CT) (CT), used as the
oil phase, was a kind gift from Evonik Industries AG (Essen, Germany). Purified water was obtained
by reverse osmosis and electrodeionization using a Millipore, Elix 3 (Burlington, MA, USA) and
was filtered (pore 0.22 µm) prior to use. The 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA)
was obtained from Life Technologies (Carlsbad, CA, USA). The spontaneously immortalized human
keratinocyte cell line HaCaT used in the antioxidant and cytotoxicity assays was purchased from CLS
(Eppelheim, Germany).

2.2. Methods

2.2.1. Characterization of Calcium Carbonate (CC) Particles

Particle Morphology

Morphology analysis of CaCO3 was conducted using a scanning electron microscope, Phenom
ProX, produced by Thermo Fischer Scientific—FEI (Eindhoven, The Netherlands). Micrographs were
acquired using a backscattered electron detector (BSED) with a beam acceleration voltage of 10 kV and
15 kV at 1.0 Pa. Sample treatment was not required.

Particle Size Distribution

The particle size distribution was determined using a Malvern Mastersizer 2000 (Malvern
Instruments, Malvern, UK), coupled with a Hydro S accessory, with a default refractive index of 1.52,
as described previously. The span was also calculated as described [24].

Wettability Measurements

The measurement of the contact angle of water and CT was performed by means of the Sessile Drop
technique, using an Optical Tensiometer Theta Flex (Biolin Scientific, Gothenburg, Sweden). The solid
surfaces were prepared pressing suitable amounts of CaCO3 powder between two microscope glass
slides. The volume of water or CT used for the wettability measurements was ca. 3 µL. The contact
angle was measured by the sessile drop method using the Young–Laplace equation with OneAttension
version 4.0.4 software from Biolin Scientific (Gothenburg, Sweden). All measurements were performed
in triplicate (n = 3). The images were collected by a high-speed camera at 332 fps.

2.2.2. Quality by Design Optimization Studies

Identification of Quality Target Product Profile (QTPP) and Critical Quality Attributes (CQAs)

To assist the formulation and process design, a QbD approach was used, and the first and most
important step was the pre-definition of the desired final QTPP (Table 1), which describes the product
quality and forms the basis for defining the CQAs and critical process parameters (CPPs). The required
QTPP is dependent on scientific, regulatory and practical considerations, as well as on previous results.
The droplet size distribution of emulsions, namely, d(10), d(50), d(90), and span, is one of their most
important features, influencing other characteristics such as viscosity and physical stability.
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Table 1. Quality target product profile of calcium carbonate (CC)-stabilized emulsions.

Quality Target Product Profile Element Target Reference

Route of Administration Cutaneous [25]

Dosage Form

Oil-in-water Pickering emulsion [1]

Droplet size distribution:
d(10): 6–10 µm
d(50): 12–18 µm
d(90): 20–26 µm [1]

Span: 1.1–1.2

Stability Homogeneous without phase
separation [1]

In Vitro Studies Safety: Cytotoxicity assay [26]

Risk Analysis of CQAs

For risk assessment, a list of all the possible factors that can influence product quality was
considered. The identification of critical variables and the levels used in DoE were based on available
literature and previous work. Based on this information, Ishikawa diagrams were built to identify
the potential risks related to emulsion stability as well as the process parameters, and the CQAs
that had the greatest chance of leading to product failure. The droplet size was defined and further
outlined to identify potential risks. In this analysis, two variables were identified for optimization in
subsequent studies.

Design of Experiments (DoE)

A two-factor central composite design (CCD) was used to optimize the formulation.
The independent variables for the process optimization were not analyzed in this work because
they had been previously studied [1]. For formula optimization, two independent variables were
evaluated: the oil phase percentage and the percentage of CC particles.

To investigate the variables affecting the responses, a central composite design composed of
five levels (coded as −α, −1, 0, 1, and +α) was used, as described in our previous work (Table S1,
Supplementary Materials) [24]. The software MODDE®Pro 11 (Umetrics, Umeå, Sweden) was used
for data analysis, and results were considered statistically significant for p < 0.05.

2.2.3. CC-Stabilized Emulsion: Preparation and Characterization

The emulsions were prepared by a cold process, as previously described [24]. Briefly, the
CC particles were dispersed in the CT oil phase, and then mixed with the aqueous phase using
an UltraTurrax®homogenizer (IKA-Werke GmbH & Co. KG, Staufen im Breisgau, Germany) at
12,000 rpm for 5 min at 25 ◦C. The emulsions’ droplet size distribution of the 11 experimental runs at
25 ◦C was calculated from images obtained by optical microscopy using the software ImageJ®, 1.52v
(NIH, Bethesda, MD, USA). The sizes were expressed in terms of relative distribution as diameter
values (of approximately 150 droplets for each emulsion) corresponding to percentiles of 10, 50, and 90,
and span [27].

2.2.4. Physicochemical Characterization of the Final Formulation

The pH was determined using a pH-meter (WTW inoLab®pH 730, Xylem Inc., Rye Brook, NY,
USA) at room temperature.

Structural experiments were performed with a controlled stress Kinexus Lab+ Rheometer (Malvern
Instruments, Malvern, UK). The flow curve method was performed using a destructive measurement
and increasing the shear rate from 0.1 s−1 to 100 s−1, with a ramp time of 5 min and 15 samples
per decade.
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In the oscillatory method, an amplitude sweep test was performed first, with an applied shear
strain of 0.01 to 100%, a frequency of 5 Hz, and seven samples per decade, followed by a frequency
sweep test with a shear strain of 0.1%, frequency between 0.1 and 10 Hz, and 10 samples per decade.
The measurements were performed at 25 ◦C, using cup and bob geometry.

2.2.5. In Vitro Cytotoxicity Assays

The cytotoxicity of the final emulsion was evaluated in the spontaneously immortalized
human keratinocyte cell line HaCaT (CLS, Eppelheim, Germany), as previously reported [8].
Briefly, cells were incubated for 24 h with CC-stabilized emulsion (100 µg/mL) or CC particles
(6.25 µg/mL) and cell viability was calculated using the general cell viability endpoint MTT
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) reduction assay [8].

3. Results and Discussion

3.1. Characterization of Calcium Carbonate Particles

3.1.1. Particle Morphology and Particle Size Distribution

In the cosmetic industry, it is very important to work with particles bigger than 100 nm to avoid
regulatory issues such as the need to prevent nano-ethical problems [28]. The size distribution of
CC particles is defined as a Normal–Gaussian and monomodal, stable, and uniform distribution [29].
The size of the CC particles used in this work ranged from 1.76 ± 0.03 (d10) to 10.11 ± 0.70 µm (d90),
with a main peak at 3.95 ± 0.09 µm. These results provide evidence that most CC particles were
smaller than the targeted emulsion droplet size (Figure 1), suggesting their use as effective stabilizers
of emulsions. These micromolar size particles are still sufficiently small to allow the reduction of the
amount required to stabilize the emulsion droplet interface, while also giving a smaller droplet size to
the emulsion.
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3.1.2. Wettability Measurements

The Bancroft Rule states that the emulsion type is related to the preferential solubility of the
emulsifying agent in one of the phases. The phase in which the stabilizer is more soluble is the
continuous phase, and those that preferentially solubilize in water stabilize O/W emulsions, and vice
versa [30].

For many researchers, the particle wettability is the key parameter for the stabilization [31].
On the other hand, Maestro et al. [32] emphasized that the wetting determination of particles is a
complex process, which is associated with the chemical nature of both the particles and the fluid phases,
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and with the shape and size of the particle. Although most studies have determined the contact angle
of spherical particles, non-spherical particles such as CC are providing an interesting alternative to
replace spherical ones.

In a surfactant-free system stabilized by solid particles, these will be more wetted by one of the
liquid phases than by the other, the latter being considered the dispersed phase. The importance of the
wettability of the particles at the oil–water interface is quantified by the contact angle (θ) between the
particle and the interface, which determines the type of emulsion obtained, as stated in the introduction.
In this work we aimed to obtain an O/W emulsion because it is more pleasant from a cosmetic point of
view. The results obtained for the CC-stabilized emulsion (mean ± SD, n = 3) were θ = 31.2 ± 0.5◦ in
water (Figure 2a), and θ = 99.5 ± 1.3◦ in CT (Figure 2b). Since the contact angle measured through the
aqueous phase was lower than 90◦, the CC particles will more effectively stabilize O/W emulsions.
This result suggests that the external phase of the formulation is composed by water with dispersed
oil droplets.
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3.2. Optimization Studies

3.2.1. Risk Analysis of CQAs

The factors affecting the CQAs of the CC-stabilized emulsions were found to be formulation- and
process-related. The critical factors were identified and their effects on the emulsion droplet size were
studied (Figure 3). The results obtained by risk analysis, reported in the literature and obtained in
previous work, and the data acquired in the laboratory during the experiment suggested that the major
CQAs were the percentage of CC particles and the volume (percentage) of internal (oil) phase, thus
these were the studied variables. The process variables, which also have an impact on product quality,
were optimized previously, in the conditions described elsewhere [1].
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Five percent of solid particles was selected as the CCD “0” level and 2.5% and 7.5% as the “−α”
and “α” levels, respectively, based on previous work [1].

3.2.2. Establishment of Design Space

Response Surface Analysis

Polynomial models were obtained by the analysis of the data obtained by the experimental
design using MODDE®software. Analysis of Variance (ANOVA) was also performed, and the
p-value was calculated for each variable, with the effects considered statistically significant for p < 0.05.
The information resulting from the models was expanded graphically using isoresponsive curves. The
observed and predicted values showed good correlation, as indicated by R2, which ranged from 0.92
to 0.99 for all variables in the optimization study.

In Table 2, the coefficient column reflects the relative strength of each factor; the higher the absolute
value, the greater the effect on the response.

Table 2. Results of regression analysis for measured responses.

Critical Quality Attributes
d(10) d(50) d(90) Span

Coeff ±SE Coeff ±SE Coeff ±SE Coeff ±SE

K −1.953 0.003 −1.923 0.005 −1.862 0.005 1.076 0.070

CC −0.009 0.005 −0.018 0.007 −0.046 0.006 −0.174 0.090

Oil 0.013 0.005 0.022 0.007 0.044 0.006 - -

Oil*Oil - - - - - - - -

CC*CC - - - - - - 0.06 0.01

CC*Oil - - - - −0.014 0.008 - -

Oil—% Oil Phase; CC—% Calcium carbonate particles. Coeff—Coefficient scaled and centered; SE—Standard error;
k—Constant; - (no significant)—p > 0.05.

The data obtained show that an increase in CC concentration contributes more strongly to a
narrow droplet size distribution than a decrease in the oil phase.

Figure 4a–d shows the response surface plots concerning formula optimization. The variables that
significantly affected (p < 0.05) the droplet size distribution were the concentration of CC particles and
percentage of oil phase. A negative correlation was observed for the percentage of CC particles in the
dependent variables d(10), d(50), and d(90), meaning that an increase in the concentration of particles
in the emulsion led to a decrease in droplet size. It has been described that increasing concentrations
of solid particles will decrease the droplet size, producing stable emulsions throughout the entire
volume of the mixture, without coalescence or phase separation. However, if the droplet and the solid
particles are similar in size, flow oscillations are induced and the droplets tend to fragment, increasing
polydispersity [34]. Concerning the influence of oil phase percentage on the droplet size distribution,
a positive correlation was observed. In this case, an increase in this phase percentage led to the increase
in droplet size by aggregation of smaller droplets into larger ones. Both CC particle concentration and
percentage of oil phase show a positive correlation, thus an increase in any of these two parameters
might lead to a wider droplet size distribution.
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Design Space

In this study, the SS and DS were established by response surface methodology [33]. The process
key parameters that had been shown to affect the quality of the emulsions were used to construct the
DS (Figure 5).
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area corresponds to a range of combinations for which the droplet size remains within the pre-defined
tolerable limits shown in Figure 4. The shown plots indicate the range of CPP values within which the
final response will not be affected (i.e., if the shown variables are kept within this range, the size of the
emulsion droplets can be predicted and controlled). The SS and DS values determined for formula
optimization are shown in the green regions (Figure 5). The optimal conditions defined by the SS and
DS plots were 14% of oil phase and 4.7% of CC (Figure 5b).

3.3. Physicochemical Characterization of the Final Formulation

The pH of the final formulation was 7.92 at room temperature, being suitable and compatible with
human skin. The flow curve (Figure 6a) shows a viscosity decrease with the increment of the shear
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rate (ramp up). This dependence of the viscosity on the shear rate means that the formulation can
be considered as a non-Newtonian fluid [35]. Moreover, the CC-stabilized emulsion also presented a
shear thinning behavior, since the apparent viscosity significantly decreased with increasing shear rate
(ramp up). When the shear rate decreased again (ramp down), the viscosity increased, but to values
lower than those measured initially. For this formulation, the apparent viscosity in the ramp up at
0.1 s−1 was 10.89 Pa.s, while in the ramp down, after applying a shear rate of 100 s−1, it was 0.36 Pa.s at
0.1 s−1. Therefore, after the application of a 100 s−1 shear rate, the viscosity of the formulation did not
recover during the time of the experiment, revealing thixotropy.
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The oscillatory frequency results for the final formulation, showed that the storage
modulus—elastic component, G′was higher than the loss modulus—viscous component, G” (Figure 6b).
Therefore, this formulation has a strong network structure (“solid-like”), with a suitable spreadability
on the skin. Furthermore, because viscosity values decrease with increasing shear rate, the formulation
can also easily be rubbed into the skin, allowing an easy application. Since the viscosity increases after
ceasing the shear rate, the product will also easily stay on the application area. The value of the loss
tangent, Tan δ (G”/G′), for this formulation is 0.04 at a frequency of 0.1 Hz, which is in accordance with
the results obtained, since G′ > G”. Loss tangent, Tan δ, values must be smaller than 1.

3.4. In Vitro Cytotoxicity Assays

The hypothetical cytotoxicity of the CC-stabilized emulsion was evaluated in vitro by determining
the viability of HaCaT cells using the MTT assay. The viabilities of cells exposed to the CC-stabilized
emulsion and CC particles were 102 ± 18% and 69 ± 12%, respectively. This means that the CC particles
were more cytotoxic than the CC-stabilized emulsion. This difference may be related to the surface
roughness of the CC particles, which can minimize the repulsive forces between CC particles and the
plasma membrane, inducing membrane damage or cellular uptake [36]. This effect was decreased in
the stabilized emulsion, where the CC particles were inside the emulsion structure.

To predict the safety and the irritant potential of the CC-stabilized emulsion and the CC particles,
the Organisation for Economic Co-operation and Development (OECD) guideline was considered.
This guideline defines a substance as an irritant and unsafe if the mean relative tissue viability is lower
than 50% of the mean viability of the negative controls for a 15–60 min exposure time [24]. Therefore,
considering the results obtained, it is possible to state that both the CC-stabilized emulsion and the CC
particles by themselves can be considered as safe and a non-irritant based on in vitro studies. These
results can only be confirmed by in vivo studies.

4. Conclusions

In the present work, a QbD methodology was used to optimize a formulation of a CC-stabilized
Pickering emulsion for topical application. A novel and innovative final Pickering emulsion using
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biocompatible inorganic CC particles as a stabilizer was obtained and showed high skin compatibility,
meeting the consumer demands for eco-friendly and natural products.

The results showed that the CC-stabilized emulsion had a pH compatible with human skin.
Furthermore, the formulation presented a strong network structure with shear thinning behavior and
an elastic component higher than the viscous component, allowing an easy application.

Finally, the in vitro cytotoxicity results obtained with a human keratinocyte cell line exposed
to the CC-stabilized emulsion suggest that the formulation can possibly be considered as safe and
a non-irritant.

Taken together, the results suggest that the formulation is a suitable vehicle for topical delivery
systems. Moreover, the findings obtained herein contribute to the increasing trusted use of renewable
and eco-friendly resources such as CC, modified starch, chitosan, and cyclodextrins as stabilizers of
Pickering emulsions [26,37]. These features, alongside the versatility of these emulsions, are very
promising for the pharmaceutical and cosmetic industries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9284/7/3/62/s1,
Table S1: Design of Experiments (CC-stabilized emulsion optimization).
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