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Abstract: The ethical and ecological concerns of today’s consumers looking for both sustainable and
efficient ingredients in finished products, put a lot of pressure on the cosmetic market actors who
are being driven to profoundly modify the strategies adopted to innovate in terms of actives while
notably being urged to switch from petroleum- to plant-based ingredients. To produce such natural
cosmetic ingredients, agri-food by-products are advocated as raw material due to their reduced
carbon footprint as they actively contribute to the worldwide improvement of waste management.
The process to transform plant waste materials into such powerful and objectified “green” cosmetic
actives in compliance with circular economy principles is a long-term integrated process. Such
a development is thoroughly exemplified in the present paper through the description of the design
of liquid anti-age ingredients based on Ribes nigrum L. extract. This was obtained by maceration
of blackcurrant pomace. and the embodiment of this extract following its phytochemical analysis
notably by HPLC-DAD-ELSD and its bioguided fractionation using in vitro bioassays.

Keywords: blackcurrant pomace; Ribes nigrum L.; Grossulariaceae; agri-food by-products;
sustainability; circular economy; cosmetic ingredient; cosmetic bioassays

1. Introduction

Food waste management is a far-reaching topic of concern for our modern society worldwide
for environmental and economic reasons, as a substantial amount of food ends up as waste at every
stage along the food value chain. Until recently, such waste usually ended up as animal feed, as
composting material, in incinerators or in landfills, where it decomposes and generates methane,
a potent greenhouse gas [1–3]. However, the generalised environmental concern has triggered
both the authorities and industrials to come up with new waste management solutions as stricter
regulation has been progressively implemented, notably in the EU (e.g., restricted use of such waste as
animal feed, etc.) [2]. The awareness of the marketable potency of such waste greatly contributed to
the interest aroused a few years ago and led to innovative waste management solutions considering
the circular economy principals. Recycling highly environmentally impacting waste from the food
processing industry into raw material to design functional value-added ingredients dedicated to
several mainstream sectors of application including nutraceutical and cosmetic sectors appears to
constitute a sustainable management solution. Among such initiatives to transform leftovers into new
products, one can cite the example of viniculture [4–6]. The global wine industry is flourishing but
produces quite a lot of waste: roughly a quarter of the grapes (seeds, stalks, and skins) does not end up
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in a bottle. According to the FAO (Food and Agriculture Organization), this industry produces about
14 million tons of pomace every year. Typically discarded in landfills, grape waste is now recognised as
detrimental to the environment, causing soil acidification, pest attraction, as well as surface and ground
water pollution due to pesticide and fertilizer leaching. Successful valorisation of grape by-products to
produce antioxidants, grape oils. and dietary fibres for dietary supplements, pharmaceuticals, etc., not
only increases the economic value of grape, but also minimizes its environmental impact [4,5,7].

Developing innovative cosmetic actives, notably anti-aging ingredients, from such agri-food
by- products constitutes another potential valorisation channel. Skin, the most voluminous organ of
the body, is inevitably submitted to ageing, a complex mechanism driven by both intrinsic (natural
chronological aging, genetic, etc.) and extrinsic factors (exposure to environmental factors, including
ultraviolet light, weather changes, and both atmospheric and digital pollutions) [8,9]. Reactive Oxygen
Species (ROS) are constantly generated by normal cellular processes, but environmental stresses, and
UV irradiation may lead to an increased generation of ROS, hence contributing to skin aging [10].
In fact, these species may act as strong oxidizing agents or free radicals, and may activate enzymes
(among others, hyaluronidase, collagenase, and elastase) that degrade specifically structural cutaneous
building blocks responsible for cutaneous moisturization, e.g., hyaluronic acids, or elasticity and
strength, namely elastin and collagen, respectively [8]. According to the World Health Organisation
(WHO), the world’s population aged over 60 years is expected to total 2 billion by 2050 [11], implying
that the anti-aging cosmetic segment still has its best days ahead. The authors hence undertook a survey
on the potential revalorisation of several agri-food by-products as anti-aging ingredients while meeting
the consumer’s demands for sustainability, naturality, transparency, and traceability [12]. A total of
30 extracts was hence obtained by maceration of agri-food by-products in several solvents. The free
radical scavenging and anti-inflammatory activities, as well as specific enzyme inhibitory activities
of these extracts were assessed in vitro to identify those which efficiently might be used to slow
down the skin aging process. The promising antioxidant, anti-hyaluronidase and anti-inflammatory
bioactivities evidenced for a blackcurrant pomace hydroalcoholic extract warrant further investigation
for the revalorisation and potential use of this agri-food by-product as reliable raw material to design
efficient cosmetic actives.

Blackcurrant (R. nigrum) is a medium-sized winter-hardy woody shrub growing up to 1.5 m
belonging to the Grossulariaceae family that is grown for its small dark purple berries [13–15]. Native
to temperate areas of central and northern Europe and northern Asia, the blackcurrant is widely
cultivated commercially and domestically across temperate Europe, Russia, New Zealand, parts of Asia
and to a lesser extent North America [13,16]. The edible tasteful berries, particularly rich in vitamin C
and polyphenols, grow up to 1 cm in diameter and are industrially exploited in the juice market, but
also to produce alcoholic beverages, jams, jellies, candies, syrups, and colourings [14]. The blackcurrant
annual production averages around 160,000 tons in Europe and 185,000 tons globally [17]. Blackcurrant
pomace, also called marc or press-cake, consists of remaining skins, pulp, seeds (estimated to represent
roughly 55% of dried blackcurrant pomace [18]), and stems of berries after the fruit has been pressed
to make blackcurrant concentrate. It can also sometimes contain some wooden residues and leaf
fragments [19]. The processing of fruit berries for juice (no matter the species) generates approximately
20–30% by-products [19], so enormous quantities of blackcurrant pomace are left over at the end
of the industrial transformation processes and constitute a manufacturing waste that the agri-food
sector must manage [3]. Potentially still a rich source of polyphenols and fibres (including lignin,
hemicellulose, cellulose, and pectin [20]), some attempts to exploit the nutritional and economic values
of blackcurrant pomace have been made to turn it into food for human consumption, and notably into
cereal products (bread, biscuits, etc.) [21]. This article presents the up-grading procedure to design
efficient anti-age ingredients based on blackcurrant pomace, while increasing the economic value of
the blackcurrant industry, and minimizing its environmental impact.
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2. Materials and Methods

All chemicals were obtained from Sigma-Aldrich (Saint-Louis, USA) unless otherwise stated.

2.1. Blackcurrant Pomace

Blackcurrant pomace was obtained from an agri-food industry producing fruit juice. The raw
material consists of a frozen press cake obtained from berry pressing of organic fruits (varieties: Black
Down and Noir de Bourgogne) originating from France.

2.2. Blackcurrant Pomace Extraction

2.2.1. Solid–Liquid Extraction

Blackcurrant pomace was slowly defrosted at room temperature just before extraction to avoid
rapid microbial spoilage that would inevitably occur under ambient conditions due to its sugar and
water (estimated to reach up to 50% of the pomace mass) contents [3,19,22].

The extractions of agri-food by-products including blackcurrant pomace intended for the general
bioactivities screening were performed by direct maceration in an ethanol/water 1/1 (v/v) mixture
(pomace/solvent ratio 1/5, w/w) at room temperature (RT) using a magnetic stirrer (500 rpm) for
2 h. The resulting extracts were then filtered over filter paper 8–12 µm before their bioactivity
in vitro assessment.

Then, to assess the best extraction parameters, ethanolic and hydroalcoholic extracts obtained
by direct maceration in various ethanol/water mixtures (EtOH/H2O 100/0, 80/20, 50/50, 20/80 v/v;
pomace/solvent ratio 1/5, w/w) at room temperature using a magnetic stirrer (500 rpm) for 2 h were
compared in terms of bioactivities.

In order to develop liquid cosmetic ingredients, extractions were performed by direct maceration
of blackcurrant pomace in either glycerine (GreenCoast, Carros, France), propylene glycol (AMI
ingredients, Tauxigny, France) or sunflower seed oil (Actibio, Changé, France). About 1 g of plant
material was extracted with approximately 10 g of solvent (extraction ratio 1/10, w/w) at room
temperature using a magnetic stirrer (500 rpm) for 7 h, before filtration over filter paper 8–12 µm.

2.2.2. Ultrasonic-Assisted Maceration

The ultrasonic assistance of maceration was evaluated as follows: approx. 5 g of blackcurrant
pomace was placed in a 100 mL beaker and maceration solvent (25 mL EtOH/H2O 50/50, 50 mL
propylene glycol, 50 mL glycerine, and 50 mL sunflower seed oil) was added. The assembly was placed
in an ultrasonic bath (3 L, REUS, Contes, France) and the maceration experiments were carried out at
room temperature under the following conditions: ultrasound frequency, 25 kHz; time, 20 and 60 min.

2.3. Fractionation of R. Nigrum Pomace Extract

To identify the families of active molecules, an EtOH/H2O 50/50 extract of R. nigrum pomace
was then fractionated over C18-silica gel (reverse phase). The fractionation of the bulk extract led to
the recovery of 7 distinct fractions: F1 (100 mL water), F2 (100 mL methanol/water 20/80), F3 (100 mL
methanol/water 40/60), F4 (100 mL methanol/water 60/40), F5 (100 mL methanol/water 80/20), F6
(100 mL methanol) and F7 (100 mL acetone). The resulting fractions were further evaluated for their
bioactivities, and their respective compositions were addressed by HPLC (High Performance Liquid
Chromatography).

2.4. Bioassays

The bioassays were performed as presented previously [12,23] in untreated 96-well plates
(Thermo Nunc, Villebon-sur-Yvette, France), apart for the lipoxygenase assay which was performed
in UV-transparent ones (Costar-Merck, Darmstadt, Germany). Plates were sealed during incubation,
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using adhesive films (Greiner Bio-One, Courtaboeuf, France). Samples (extracts, fractions, standards,
and controls) were prepared at a concentration of 3.433 mg/mL in dimethyl sulfoxide (DMSO) in
1.5 mL Eppendorf tubes, appropriate for the use of the automated pipetting system epMotion® 5075
(Eppendorf, Montesson, France). The activities of each sample were assessed in triplicate. A microplate
reader (Spectramax Plus 384, Molecular Devices, Wokingham, UK) was used to measure absorbance
values. Data were acquired with the SoftMaxPro (Molecular devices, Wokingham, UK) software and
the Prism software (GraphPad Software, La Jolla, USA) was used to calculate inhibition percentages.

The results are presented as inhibition percentages (I%) calculated as follows:

I% = [(ODcontrol − ODsample)/ODcontrol] × 100 (for DPPH, lipoxygenase, elastase and
tyrosinase assays)

(1)

or as follows:

I% = [ODsample/(ODblank − ODcontrol)] × 100 (for hyaluronidase and collagenase assays) (2)

with OD standing for optical density, ODsample = OD2 − OD1 (OD1 and OD2 being defined for each
assay in the following paragraphs), ODcontrol corresponding to the DMSO absorbance and ODblank to
the buffer solution absorbance.

Similarly, all OD values (apart from the hyaluronidase ones) were corrected with the blank
measurement corresponding to the optical density of the sample before addition of the substrate.

A positive control consisting in an active commercial cosmetic ingredient specifically selected
depending on the assay was tested alongside our samples in strictly the same experimental conditions
to perform direct comparison (Table 1). DMSO tested alone constitutes the negative control (ODcontrol)
in each plate: it appears to have no activity on its own.

Table 1. Positive controls used in each bioassay performed.

Assay Positive Control

DPPH Assay Rosmarinus officinalis L. commercial extract (INCI: ROSMARINUS
OFFICINALIS EXTRACT; 3.433 mg/mL in DMSO)

Tyrosinase Assay Phenylethyl resorcinol (4-(1-phenylethyl)benzene-1,3-diol; INCI:
PHENYLETHYL RESORCINOL; 3.433 mg/mL in DMSO)

Lipoxygenase Assay Arnica montana L. commercial extract (INCI: ARNICA MONTANA
EXTRACT; 3.433 mg/mL in DMSO)

Elastase Assay Rubus idaeus L. commercial extract (INCI: RUBUS IDAEUS EXTRACT;
3.433 mg/mL in DMSO)

Hyaluronidase Assay Rubus idaeus L. commercial extract (INCI: RUBUS IDAEUS EXTRACT;
3.433 mg/mL in DMSO)

Collagenase Assay Betulinic acid (3.433 mg/mL in DMSO)

2.4.1. DPPH Radical Scavenging Assay

The antioxidant activity of extracts was evaluated based on the scavenging activity of the stable
DPPH (1,1-diphenyl-2-picrylhydrazyl) radical [24]: 150 µL of a solution of ethanol/acetate buffer
0.1 M (50/50) was distributed in each well, together with 7.5 µL of the samples evaluated. A first OD
reading was performed at 517 nm (OD1). Then, 100 µL of a DPPH solution (386.25 µM in ethanol)
was distributed in each well. The sealed plate was incubated in the dark at RT for 30 min, before
performing the OD2 reading to assess the percentage of inhibition following Equation (1).

2.4.2. Tyrosinase Assays

Tyrosinase is a copper-containing enzyme that plays a key role in melanogenesis; it is mainly
involved in the hydroxylation of L-tyrosine into L-DOPA and its further oxidation to dopaquinone [25]:
150 µL of a solution of mushroom tyrosinase (171.66 U/mL in phosphate buffer) was distributed in
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each well, together with 7.5 µL of the samples evaluated. The filmed plate was incubated at RT for
20 min, before performing the OD1 reading at 480 nm. Then, 100 µL of a solution of substrate (either
L-tyrosine or L-DOPA, 1 mM in phosphate buffer) was distributed in each well, and the OD2 reading
was performed after 20 min-incubation to assess the percentage of inhibition following Equation (1).

2.4.3. Lipoxygenase Assay

Lipoxygenase is an iron-containing enzyme known to play a key role in inflammation [26]: 150 µL
of a solution of soybean lipoxygenase (686.66 U/mL in phosphate buffer) was distributed in each
well, together with 7.5 µL of the samples evaluated. The filmed plate was incubated in the dark for
10 min. Then, 100 µL of a solution of linoleic acid in phosphate buffer was distributed in each well.
After incubation for 2 min in the dark, the OD1 reading was performed at 235 nm; the OD2 reading
was performed to assess the percentage of inhibition after a further 50 min-incubation following
Equation (1).

2.4.4. Elastase Assay

Elastase is an endopeptidase that preferentially digests elastin, the highly elastic protein responsible
for the cutaneous firmness, together with collagen [27]. The assays were performed as follows: 150µL of
a solution of porcine pancreatic elastase (0.171 U/mL in Tris buffer) was distributed in each well, together
with 7.5µL of the samples. The filmed plate was incubated at RT for 20 min. OD1 reading was performed
at 410 nm, before addition of 100 µL of a solution of N-succinyl-Ala-Ala-Ala-p-nitroanilide (2.06 mM
in Tris buffer). The OD2 reading was performed after 40 min-incubation to assess the percentage of
enzymatic inhibition following Equation (1).

2.4.5. Hyaluronidase Assay

Hyaluronidases are enzymes that degrade hyaluronic acids which are widely distributed in
the body, hence playing a major role in skin aging [28]. The assays were performed as follows:
150 µL of a solution of hyaluronidase (13.3 U/mL in hyaluronidase buffer) was distributed in each
well, together with 7.5 µL of the samples evaluated. The filmed plate was incubated at 37 ◦C for
20 min, and the OD1 reading was performed at 405 nm. Then, 100 µL of a solution of hyaluronic acid
(150 µg/mL in pH 5.35 buffer) was distributed in each well. After 30 min incubation at 37 ◦C, 50 µL of
cetyltrimethylammonium bromide (CTAB; 40 mM in a 2% NaOH solution) was added and the OD2

reading was performed to assess the percentage of enzymatic inhibition following Equation (2).

2.4.6. Collagenase Assay

Collagenases constitute a family of enzymes that cleave collagen and that are more generally
involved in the degradation of the extracellular matrix components, thus leading to sagging skin [29].
Collagenase assays were performed by distributing 150 µL of a solution of collagenase (53 U/mL in
tricine buffer) in each well, together with 7.5 µL of the samples. The filmed plate was incubated at
RT for 15 min, before the OD1 reading was performed at 345 nm. Then, 100 µL of a solution of 2-
furanacryloyl-l-leucylglycyl-l-prolyl-l-alanine (FALGPA; 5.15 mM in tricine buffer) was distributed
in each well; the OD2 reading was performed after a 30 min-incubation to assess the percentage of
inhibition following Equation (2).

2.5. High Performance Liquid Chromatography

Crude extracts and fractions diluted at 10 mg/mL in methanol (MeOH; chromatography grade)
and filtered over 0.45 µm PTFE (polytetrafluoroethylene) syringe filter, were analysed using an HPLC
Agilent 1200 system (Courtaboeuf, France) equipped with a DAD (Diode Array Detector) and an ELSD
(Evaporative Light Scattering Detector) operating under the following conditions: injection volume:
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20 µL, and flow rate: 1.0 mL/min. Separations were performed on a C18 column (Phenomenex, Le
Pecq, Ile-de-France, France; Luna® 5 µm, 150 mm × 4.6 mm i.d.).

The mobile phase used to analyse the extracts consisted of a multistep gradient of chromatography
grade water (A) and acetonitrile (B), both acidified with 0.1% acid formic, and 2-propanol (C): 0–4 min,
2% B; 4–15 min, 2–98% B; 15–20 min, 98% B; 20–25 min, 0–98% C; 25–30 min, 98% C; 30–32 min,
0–98% A.

The DAD was set at 280 nm, and ELSD conditions were set as follows: nebulizer gas pressure
3.7 bar, evaporative tube temperature 40 ◦C and gain 4.

2.6. High Performance Thin-Layer Chromatography

High performance thin-layer chromatography (HPTLC) was performed on 10 cm × 20 cm HPTLC
silica gel 60 F254 pre-coated plates (Merck, Darmstadt, Germany). Standards and samples were
applied as 8 mm bands, 12 mm from the left edge and 10.3 or 9.2 mm apart (whether 18 or 20
samples are deposited on the plate) by means of an automated ATS4 sampler (Camag, Muttenz,
Switzerland). Two microliters of each standard and samples were applied on the plate. The solvent
systems and revelation reagents were chosen according to phytochemicals analysed. The separation on
the plate was performed in an automatic ADC2 developing chamber (Camag, Muttenz, Switzerland;
developing distance: 7 cm) with the tank previously saturated with the developing solvent system.
After developing and drying (5 min), plates were dipped in the detection reagent using the Camag
immersion device, dried in a stream of warm air and immersed in a specific revelation reagent. Bands
were visualised under visible light using the TLC Visualizer (Camag, Muttenz, Switzerland). The data
analysis was performed with a WinCATS Planar Chromatography Manager software (Camag, Muttenz,
Switzerland).

2.6.1. Amino Acids

The development system used to identify amino acids consisted in an acetonitrile ACN/H2O
75/25 (v/v) system. The plate was treated with ninhydrin (prepared as recommended by CAMAG by
dissolution of 0.6 g of ninhydrin in 190 mL of isopropanol, and further addition of 10 mL of glacial acetic
acid) [30] to detect amino acid bands using visible light after plate heating at 120 ◦C for 8–10 min [31].

2.6.2. Sugars

The development system used to identify sugars consisted of an ACN/H2O 75/25 (v/v) system.
The plate was treated with orcinol prepared in ethanolic sulphuric acid (250 mg of orcinol were
solubilised in 100 mL of EtOH/H2SO4 95/5 v/v) to detect sugar bands using visible light after plate
heating at 120 ◦C for 5–15 min [32].

3. Results and Discussion

3.1. Hydroalcoholic Blackcurrant Pomace Extract

As already stated, a series of agri-food by-products were initially selected based on their intrinsic
nature, e.g., waste, and their accessibility (easy recovery after the industrial processing, considerable
volumes recovered that allow promising revalorization to be pictured, etc.) to evaluate their possible
revalorisation as raw materials for the cosmetic ingredient segment. These agri-food by-products
were extracted by conventional maceration directly in a hydroalcoholic mixture of solvent (EtOH/H2O
50/50) convenient to extract polar compounds such as polyphenols known to remain largely in fruits
pomace after juice extraction [5,19,33]. Such a hydroalcoholic solvent also revealed itself appropriate
for the extraction of the compounds of cosmetic interest from agricultural by- products [23]. Some
thirty extracts were recovered, and their whitening, antioxidant, anti- inflammatory and anti-aging
properties were evaluated using in vitro assays, and their bioactivities were directly compared to those
of commercially available actives. As already stated, the bioactivities of the hydroalcoholic extract
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obtained from a 2 h maceration of blackcurrant pomace in EtOH/H2O 50/50 (pomace/solvent ratio 1/5
w/w) with an extraction yield of 3.3 ± 0.2% (extraction performed in triplicates) were evaluated in vitro.
It displayed promising, but not surprising antioxidant and anti-hyaluronidase bioactivities (Figure 1),
given the rich polyphenolic composition and notably the high anthocyanins and their aglycones content
of blackcurrant berries [34–37] and pomace [38]. It also displayed to a lesser extend some interesting
whitening properties, anti- inflammatory, and anti-collagenase activities, but no anti-elastase activity.
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Figure 1. Bioactivities of R. nigrum pomace extract obtained by direct maceration in EtOH/H2O 50/50
for 2 h at RT, compared to the bioactivities of the positive controls used for the respective activities
tested (positive controls).

A larger extract was obtained by maceration of R. nigrum pomace in EtOH/H2O 50/50 extract
(pomace/solvent ratio 1/5 w/w) at RT. The HPLC profile (ELSD chromatogram, Figure 2) revealed this
extract’s high content in highly polar molecules (group A) displaying retention times inferior to 5 min.
The HPLC profile revealed also the presence of less polar molecules (group B) eluting between 5 and
15 min, of which the UV spectra indicate their polyphenolic nature. Group C eluting after 15 min
corresponds to a series of terpenes, terpenoids and fatty acids.

High-Performance Thin Layer Chromatography (HPTLC; Figure 3) analyses provided
phytochemical information to obtain a quick glimpse of the constituents of group A. Some amino
acids have been evidenced using ACN/H2O 75/25 as mobile phase and ninhydrin as reagent [39], but
no further characterisation of these amino acids was undertaken given the very low intensities of
the corresponding bands. The same mobile phase was used to assess the presence of sugars using
orcinol in ethanolic sulphuric acid as derivatisation reagent [32].
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Figure 3. HPTLC plate observed under visible light to visualize amino acids (A) and sugars (B) present
in the blackcurrant pomace extract (BCPE) using respectively ninhydrin and orcinol as derivatisation
reagents. Tracks: Phe: phenylalanine; Val: valine; Ser: serine; Arg: arginine; Xyl.: xylose; Sac.:
saccharose and Glu.: glucose.
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To characterize the active compounds responsible for the bioactivities evidenced, this EtOH/H2O
50/50 extract of R. nigrum pomace was then fractionated over C18-silica gel (Table 2). The fractionation
of 647 mg of blackcurrant led to the recovery of seven distinct fractions: F1 (water), F2 (MeOH/H2O
20/80), F3 (MeOH/H2O 40/60), F4 (MeOH/H2O 60/40), F5 (MeOH/H2O 80/20), F6 (methanol) and F7
(acetone). The resulting fractions were analysed by HPLC (Figure 4) and further evaluated in vitro
for their bioactivities the same way as the ones of the crude extract. Results of these bioassays are
presented in Table 2.

Table 2. Bioactivities of R. nigrum pomace extract and of the corresponding fractions F1–F7.

R. Nigrum
Pomace
Extract

F1 F2 F3 F4 F5 F6 F7

Mass (mg) 647.0 416.0 62.9 96.4 21.4 10.2 18.3 1.1

Yield (%) 100.0 64.3 9.7 14.9 3.3 1.6 2.8 0.2

Bioactivities

Anti-hyaluronidase ++++ - ++++ ++++ ++++ ++++ ++++ -
Anti-collagenase +++ + ++++ +++ ++ + - -

Anti-inflammatory - - +++ +++ ++++ ++ - -
Antioxidant +++ - ++++ ++++ ++++ +++ - -
Anti-elastase - - - - - - - -

Whitening
(L-tyrosine) ++ - ++ ++ +++ ++ - -

Whitening (L-DOPA) + - + + + ++ + -

(−): inhibition < 30%; (+): 30% < inhibition < 50%; (++): 50% < inhibition < 70%; (+++): 70% < inhibition < 90%;
(++++): inhibition > 90%.
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As already stated, neither the crude extract nor any of the fractions display anti-elastase activity.
Fraction F1, obtained with the best yield, and constituted mainly of compounds of group A, e.g., sugars,
amino acids, peptides (Figure 4), displays none of the activities evaluated. Similarly, mainly made up of
lipophilic compounds from group C, fractions F6 and F7 display no remarkable bioactivity except some
good anti-hyaluronidase activity for F6, probably due to the occurrence of several lipophilic (group
C) compounds such as terpenes, terpenoids or fatty acids. Polyphenolic molecules of intermediary
polarities (group B) were collected in fractions F2–F5, which all display excellent anti-hyaluronidase,
anti-inflammatory and antioxidant bioactivities, as well as promising anti-collagenase and whitening
potentials. The anti-inflammatory and antioxidant activities of polyphenolic molecules contained in
blackcurrant berries, as well as in pomace are already known [14,36,37]. The whitening activity of
blackcurrant juice was also already stated in the literature [40], and one can imagine that a certain
amount of the compounds responsible for this whitening activity remains in the pomace after the berries’
processing. However, the anti-hyaluronidase and anti- collagenase activities of this pomace extract
were to our knowledge evidenced for the first time for this pomace extract and together with its
anti-inflammatory, antioxidant, and whitening activities, bestowed this extract complete anti-aging
activity to valorise in a cosmetic active.

Maceration improvement attempts were then undertaken to obtain a blackcurrant pomace extract
concentrating the active molecules in order to develop the most active anti-age ingredient. The efficacy
of various solvent mixtures was evaluated, as well as the assistance of ultrasound during maceration
(Table 3). The resulting extracts were analysed by HPLC (Figure 5) and their bioactivities were
evaluated in vitro as previously.

No significant improvement in terms of extraction yields could be evidenced by modulation of
the H2O/EtOH ratio (Table 3). Regarding the bioactivities of the extracts obtained by conventional
maceration, the hydroalcoholic extract 50/50 displays the best results, however, this difference cannot
be explained by the major discrepancy in the phytochemical profile (Figure 5).

Table 3. Bioactivities of various R. nigrum pomace extracts obtained by conventional and ultrasound-
assisted macerations.

Conventional Maceration Ultrasound-Assisted
Extraction

Solvent EtOH H2O/EtOH
20/80

H2O/EtOH
50/50

H2O/EtOH
80/20

H2O/EtOH
50/50

H2O/EtOH
50/50

H2O/EtOH
50/50

Maceration
parameters RT, 2 h RT, 2 h RT, 2 h RT, 2 h RT, 6 h RT, 20 min RT, 60 min

Extraction yield (%) 3.6 ±
0.3% 2.2 ± 0.1% 3.2 ± 0.2% 3.2 ± 0.2% 2.8 ± 0.6% 3.6% 3.9%

Bioactivities

Anti-hyaluronidase + - ++++ + +++ ++++ ++++
Anti-collagenase - - +++ - +++ ++++ ++++

Anti-inflammatory - - - - - ++ +
Antioxidant ++ ++ +++ +++ +++ ++++ ++++
Anti-elastase - - - - - - -

Whitening
(L-tyrosine) + - ++ ++ + ++ ++

Whitening (L-DOPA) + - + + + + ++

(−): inhibition < 30%; (+): 30% < inhibition < 50%; (++): 50% < inhibition < 70%; (+++): 70% < inhibition < 90%;
(++++): inhibition > 90%.
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fatty acids).

Increasing the maceration duration using this 50/50 ratio to 6 h does not seem to present any
advantage: no significant bioactivity improvement could be revealed and does not justify and
counterbalance the increased energy consumption necessary to extend the maceration duration.

We hence tested the effect of ultrasonic assistance on such a maceration. UAE (Ultrasound-
Assisted Extraction) is based on the mechanical breakdown of a plant matrix as a result of the cavitation
phenomenon due to the application of ultrasound. Once the acoustic pressure is high enough, cavities
generated by compression and relaxation cycles collapse sparking mechanical forces which lead to
the disruption of biomembranes: the content of the plant cell is then released in the solvent [41,42].
The application of ultrasound leads to slightly higher extraction yields (Table 3). As their HPLC
chromatograms are similar to the one obtained by maceration, they are not presented in the current
article. One can also notice that the bioactivities reported for an extract obtained in only 20 min are
equivalent, if not higher, than those of the corresponding conventional extract using H2O/EtOH 50/50.
However, increasing the UAE duration to 60 min did not lead to higher bioactivities. This simple and
efficient technique, already used for a lot of applications, including the extraction of phytochemicals
using water, ethanol, and their mixtures, may constitute a time-saving alternative to conventional
techniques to obtain such extracts dedicated to the development of high added values ingredients for
nutraceuticals, cosmetics, pharmaceuticals, etc. [43].

However, one should keep in mind that such low extraction yields (< 5%) are not economically
viable and would not constitute a rational route of agri-food waste management that could be
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implemented at larger scale to efficiently reduce amounts of leftovers generated by this sector. That is
why, attempts to develop a liquid cosmetic active were then undertaken and the economic viability
of the resulting ingredients was discussed in terms of effective agri-food waste reduction. To do so,
the selection of appropriate liquid supports was guided by the physico-chemical properties of the active
compounds identified in the hydroalcoholic extract.

3.2. Liquid Cosmetic Ingredient

Active plant extracts can usually not directly be integrated into cosmetic formulations mainly due
to solubility issues, but also as they may display undesirable colour, offensive odour, inappropriate
viscosity, etc. [44,45]. Further processing, including the deposition of the extract on the appropriate
cosmetic support to ease incorporation into a cosmetic formulation, may be necessary. The extraction
of plant material by hydroalcoholic solvents as presented previously, usually requires time-consuming
steps of solvent evaporation and further resolubilisation of the dry extract before its deposition on
a cosmetic support, either liquid or solid.

Alternatively, liquid cosmetic ingredients, often preferred by formulators, may be obtained by
direct extraction of the plant material in solvents appropriate for their ultimate integration in a finished
cosmetic product. In such a case, one can consider the analysis of the chemical composition of
the hydroalcoholic extract and its bioguided fraction performed previously as a pre-requisite to identify
the appropriate cosmetic support that would offer maximised access to the active molecules in order to
obtain the most concentrated, e.g., the most active ingredient.

To extract blackcurrant pomace, propylene glycol and glycerine were selected for their polarities
quite similar to the ones of hydroalcoholic mixtures, their water-solubility, and their reduced water
activity, bacteriostaticity, and fungistaticity that imply self-preserving properties [46]. Propylene glycol
and glycerine are among the most widely used cosmetic supports: they serve as humectant in many
personal care formulations including facial cleansers, moisturizers, etc. [23,46].

Sunflower (Helianthus annuus L.) seed oil is a non-volatile and non-fragrant plant oil presenting
a decent colour that is used in cosmetics as an emollient. It is also appreciated for its smoothing
effect towards signs of cutaneous stress or irritation. Easily absorbed by skin, it is a non-comedogenic
and highly moisturising oil that is largely use in a variety of personal care products [47]. Sunflower
seed oil, even more lipophilic than the hydroalcoholic mixtures previously used, was incorporated
in this study to try to access the more lipophilic compounds, notably compounds of group C (which
are notably quite abundant in fraction F6 displaying interesting anti-hyaluronidase activity, (Table 2,
Figure 4), remaining in blackcurrant pomace and to decipher if, once concentrated in a solvent, they
might display some cosmetic interest.

To prepare such extracts, maceration parameters defined earlier for the development of liquid
ingredients were used [23]: blackcurrant pomace macerated in either PG, glycerine or sunflower seed
oil (pomace/solvent ratio 1/10 w/w) under stirring for 7 h at RT. The resulting extracts were then filtered
over filter paper, and their activities, as well as the ones of solvents alone (no activity reported; data
not shown) were assessed using in vitro bioassays (Table 4).

Unsurprisingly, given the chemistry of pomace extract presented previously, the sunflower seed
extract does not display any interesting bioactivity. The propylene glycol and glycerine display some
antioxidant and anti-collagenase activities, and almost no anti-hyaluronidase activity. Although
not as interesting as the hydroalcoholic extract, the possibility to improve those later extractions
was undertaken, increasing notably the maceration duration. As evidenced in Table 4, increasing
the extraction duration up to 24 h appears to have almost no effect when using glycerine as extraction
solvent. On the other hand, the resulting propylene glycol 24 h-extract displays more interesting
anti- hyaluronidase, antioxidant and anti-collagenase activities compared to the propylene glycol
7 h-one. Given those results, propylene glycol was considered as the most appropriate solvent for
the development of such blackcurrant pomace liquid ingredient.
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Table 4. Bioactivities of various R. nigrum pomace extracts obtained by conventional and ultrasound-
assisted maceration in propylene glycol, glycerine, and sunflower seed oil.

Solvent Sunflower
Seed Oil

Propylene
Glycol Glycerine Propylene

Glycol Glycerine Propylene
Glycol Glycerine

Maceration
parameters RT, 7 h RT, 7 h RT, 7 h RT, 12 h RT, 12 h RT, 24 h RT, 24 h

Bioactivities

Anti-hyaluronidase - + - + - +++ -
Anti-collagenase - +++ +++ ++ ++ ++++ +++

Anti-inflammatory - - - - - - -
Antioxidant - ++ ++ ++ ++ +++ ++
Anti-elastase + - - - - - -
Whitening (L-

tyrosine) - - - - - - -

Whitening (L-
DOPA) - - - - - - -

(−): inhibition < 30%; (+): 30% < inhibition < 50%; (++): 50% < inhibition < 70%; (+++): 70% < inhibition < 90%;
(++++): inhibition > 90%.

The assistance of ultrasound was than tested for 20 and 60 min to enhance the dynamics of
the maceration process of blackcurrant pomace in propylene glycol; the bioactivities of the resulting
extracts were evaluated as previously and directly compared to those of conventionally obtained
extracts (Figure 6). The assistance of ultrasound during the maceration process does not appear to be
interesting in this case to enhance the extraction of active molecules. One can consider it as a time-
saving technology to obtain in 1 h, an extract displaying similar activities to the one obtained in 7 h
by conventional maceration. However, the economic viability of such a technology at an industrial
scale for such a gain remains questionable, notably taking into consideration the real bioactivity
improvements observed by the simple increase of maceration duration to 24 h.
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4. Conclusions

Driven by consumer concerns for product efficacy and naturality, one can observe an influx
on the cosmetic ingredients market, of fruit- and vegetable-based ingredients over the last decade.
The revalorisation of agri-food by-products as raw material to develop new cosmetic ingredients hence
constitutes an alternative to these regular plant-derived ingredients and an opportunity for brands
to stay trendy while ensuring sustainability. In this article, we presented an integrated strategy to
develop a such natural anti-aging cosmetic active using blackcurrant pomace, an agri-food by- product
as starting raw material. Undoubtedly, such by-products constitute economically attractive sources of
raw material for the development of high added-value ingredients that align with the consumers’ green
ethic. Upcycling such an agri-food by-product solves the raw material sourcing issue, that constitutes
the pivotal point in the development of a new natural cosmetic ingredient. As the sourcing already
exists, there is no additional delay to the commercialisation of the final ingredient due to the cultivation
of the raw material. It also extends the initial raw material’s value via the generation of new revenue
lines, while reducing the related waste treatment costs and offers an appreciable degree of traceability
on the materials’ origin. Furthermore, using agricultural by-products can engage cosmetics suppliers
and customers through their shared responsibility toward environmental preservation and gain new
market shares. However, some questions remain: despite that, are such products made up from waste
marketable? Is upcycling really viable in such a marketing-orientated sector as the cosmetic one? Are
the average consumers, and not only the environmentally concerned ones, ready to use products made
from refuse? Furthermore, such ingredient development processes are not as inexpensive as initially
thought. In fact, waste collection requires workforce, waste treatment has a cost, as some noxious
compounds that may be present in the by-product after initial processing have to be removed, and
finally some specific extraction techniques required for waste transformation may be quite expensive.
Fortunately, more and more consumers prioritise sustainability and we can only expect this tendency
to expand as recycling is not an option anymore in the current context of industrial growth all over
the globe.
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