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Abstract: Plant selection, input, and field management are proven strategies that produce high 

yields of crops bearing selected desirable characteristics for the nutraceutical and cosmeceutical 

industry. This study reports on the effect of substrate and light on selected quantitative and 

qualitative bioactive properties of two cultivars of Rubus idaeus L (‘Ruvi’ and ‘Cayuga’). Our results 

demonstrated that the quantitative and qualitative fruit characteristics (yield, fruit dimensions, 

titratable acidity, and total soluble solids contents), plant growth, biosynthesis of secondary 

metabolites, and total antioxidant capacity, are significantly affected by genotype, light intensity, 

and substrate type. Fruits from ‘Ruvi’ plants cultivated under low light conditions, on soil/peat 

substrate exhibited high levels of antioxidant capacity, phenolics, flavonoids, anthocyanins, and 

high inhibitory potency towards the skin-regulating enzymes tyrosinase and elastase. Extract 

derived from these fruits was formulated into a topical skin care cream. This cream exhibited 

excellent compatibility and stability characteristics. Our research concluded that quantity and 

quality of Rubus idaeus L. fruits could be efficiently managed through conventional agronomic 

practices. Our project determined the optimal agronomic management practices to produce 

desirable characteristics and maximize bioactive content that determine the nutraceutical and 

cosmeceutical quality of the red raspberry. 

Keywords: anthocyanins; cosmeceuticals; antioxidant capacity; elastase; phenolics; flavonoids; 

raspberries; tyrosinase 
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1. Introduction 

In 2016, the nutraceutical and cosmeceutical industries were estimated to produce $159 billion 

in global revenue [1]. This is a major segment of the >$1 trillion market for the health and wellness 

industry according to the Global Wellness Institute. This value is expected to rise annually concurrent 

with consumer wealth, age, and demand for naturally derived “green” products. Rubus idaeus L., 

commonly known as red raspberry, is an important commercial product in fresh or processed form 

due to its nutritional, medicinal, and cosmetics uses [2–4]. The term “nutraceutical” indicates a 

fortified food or a dietary supplement that is held to provide health or medical benefits in addition 

to its basic nutritional value. Nutraceuticals are also called functional food. The term 

“cosmeceutical,” is used by the cosmetic industry to refer to cosmetic products that exhibit medicinal 

or drug-like benefits. Therefore, nutraceuticals and cosmeceuticals serve as a bridge between 

personal needs and pharmaceuticals products [5,6]. Cosmeceuticals and nutraceuticals are two of the 

fastest growing segments of the health and wellness industry [6]. 

Red raspberries contain high concentrations of important nutrients, bioactive compounds and 

phytochemicals. Antioxidants, flavonoids, phenolic compounds, anthocyanins, ascorbic acids, 

tannins are important constituents of the fruits with health promoting benefits [7–11]. In vitro studies 

demonstrated that selected compounds from berries, for example, anthocyanins and flavonoids have 

anti-cancer, heart protective, and anti-inflammatory properties [7,12–15]. Moreover, other studies 

found that red raspberries also contain antimicrobial, anti-diabetic, anti-diarrheal, and antiviral 

compounds [16,17]. 

Several factors such as cultivar, environmental conditions, harvest time, post-harvest storage, 

and processing techniques affect the chemical composition of red raspberries, subsequently the 

content and concentration of their bioactive compounds [18–22]. 

This work investigated the effect of substrate and light conditions on selected quantitative and 

bioactive properties of two Rubus idaeus L. cultivars, ‘Ruvi’ and ‘Cayuga’. Our results demonstrate 

that these factors affect the nutraceutical and cosmeceutical potential of red raspberry fruit extracts. 

To the best of our knowledge, this is the first attempt to integrate agronomic, metabolic, and 

bioactivity data in a comparative study of two cultivars of Rubus idaeus L. 

2. Material and Methods 

2.1. Plant Materials 

Rubus idaeus L. plants (cultivars ‘Ruvi’ and ‘Cayuga’) (Table 1) were grown in a greenhouse until 

one year old and were then transferred to the field. Field conditions maintained R × R (row to row) 

and P × P (plant to plant) distance 1.5 × 0.5 m, respectively. Prior to the transfer, the experimental 

field was organized into two parcels, one parcel with soil (clay loam) as substrate (pH = 6.4) and the 

other one with a mixture of soil and soil/peat substrate (pH = 5.8). After four weeks of plant 

adaptation to field conditions, each parcel was divided in two lots. One lot was covered with shading 

net that reduced sunlight penetration to 25% (low light conditions, LL). The other lot was left 

uncovered and plants were exposed to full sunlight (high light conditions, HL). Each experimental 

category included five plants, which were maintained under the above-mentioned substrate and light 

conditions for two consecutive years until the fruits were harvested. The water and nutrient supply 

was regulated through a drip irrigation system. At harvest, the fruit yield per cultivar was 

determined by weighting the fruits pooled from all plants included in an experimental category. Fruit 

area was calculated using Image J software (National Institutes of Health). 
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Table 1. Raspberry cultivars (‘Ruvi’ and ‘Cayuga’) and experimental conditions (light, substrate) used 

in the present work. 

Species Cultivar Light Substrate Abbreviation 

Raspberry ‘Ruvi’ High light (HL) Soil (S) R/HL + S 
   Soil/peat (P) R/HL + P 
  Low light (LL) Soil (S) R/LL + S 
   Soil/peat (P) R/LL + P 
 ‘Cayuga’ High light (HL) Soil (S) C/HL + S 
   Soil/peat (P) C/HL + P 
  Low light (LL) Soil (S) C/LL + S 

   Soil/peat (P) C/LL + P 

Abbreviations: LL: low light; HL: high light (plants fully exposed to sunlight); S: Soil; P: Soil/peat 

mixture. 

2.2. Physicochemical Properties of Fruit Samples 

200 g of fruit samples from each experimental category were mixed with a blender (Philips 

HR2161/40, Shanghai, China) and the obtained juice was used for chemical analysis. Soluble solids 

content (SSC) was measured according to Garner et al. (2008) [23] using an ABBE refractometer 

(PRISMA, Chalgrove, UK). Readings were adjusted in accordance with the International 

Temperature Correction Table (1974). 

Titratable acidity (TA) was measured according to Garner et al. (2008) [23], through the titration 

of 10 mL fruit juice with 0.1 N NaOH, until achieving the neutralization of the organic acids to pH 7 

using a Sension 1 pH-meter (HACH, Loveland, Colorado, CO, USA). The results were expressed as 

a percentage of tartaric acid equivalents. 

Maturity index (MI) was calculated as the SSC/TA ratio. Both of the parameters were analyzed 

in triplicate. 

2.3. Determination of Soluble Sugars and Ascorbic Acid 

Fresh fruit samples were selected and frozen in liquid nitrogen for 15 min. The fruits were then 

placed in plastic bags and were stored at −80 °C until analysis. Frozen fruit samples were thawed at 

4 °C and then mixed with a standard blender. To measure soluble sugars, fruit juice was evaporated 

in the Eppendorf 5301 Concentrator Centrifugal Evaporator (Hamburg, Germany). 25 mL of 80% 

ethanol (v/v) was added to 0.1 g dry powder and mixed by vortex. The mixture was centrifuged at 

5000× rpm for 30 min (UNIVERSAL 32R, Hettich, Tuttlingen, Germany). The supernatant was 

collected, decolorized with activated carbon, and filtrated. Filtrate volume was adjusted with distilled 

water to 100 mL [21]. About 1 mL of filtrate was then placed into test tubes and was treated with 10 

mL of 0.15% anthron solution. The samples were heated at 95 °C in the digital thermostatic bath BAD-

4 (Raypa, Barcelona, Spain) for 10 min, and, then cooled down to room temperature. Absorbance was 

recorded at 625 nm. Total sugar concentrations of the samples were analyzed in triplicate and 

calculated using the calibration curve drawn for glucose standard solutions. 

The determination of ascorbic acid was carried out following the procedure of Sadasivam and 

Manickam (1997) [24]. The fruit extract was homogenized with 4% (v/v) oxalic acid and centrifuged 

at 13,000× rpm for 10 min. The reaction mixture consisted of 0.1 mL brominated fruit extract, 2.9 mL 

of distilled water, 1 mL of 2% DNPH reagent and 2 drops of thiourea. After incubation at 37 °C for 3 

h, the orange-red osazone crystals formed were dissolved by the addition of 7 mL of 80% sulphuric 

acid, and absorbance was read at 540 nm after 30 min. Vitamin C concentrations were analyzed in 

triplicate and calculated using a standard curve (0.1–1 mg/mL). The results were expressed in mg per 

100 mL extract. 
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2.4. Determination of Metabolites 

Total phenolics (TP), total flavonoids (TF), and anthocyanins (ACC) content were determined 

according to Papaioanou et al., 2017 [25]. 

2.5. Total Antioxidant Capacity Assays 

Ferric Reducing Antioxidant Power (FRAP) assays were performed, according to Benzie and 

Strain [26]. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays were adopted from 

published methods [27,28]. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays were carried out according 

to Molyneux, 2004 [29]. DPPH and ABTS radical scavenging activities are defined as IC50 values (the 

concentration of extract causing 50% inhibition of absorbance). 

2.6. Enzyme Inhibition Assays 

Elastase was assayed spectrophotometrically, according to Bieth et al. (1974) [30]. Tyrosinase 

activity was measured, as previously described by Duckworth et al. (1970) [31]. Acetylcholinesterase 

activity was measured by Ellman assay [32]. 

2.7. Assay of Protein Concentration 

Protein concentration was determined by the Bradford assay using bovine serum albumin 

(fraction V) as standard [33]. 

2.8. Topical Skin Care Cream Formulation and Preliminary Stability Analysis 

Cosmetic cream was formulated using 1% (w/w) of aqueous extract derived from ‘Ruvi’ cultivar 

grown under LL conditions on the soil/peat mixture as substrate (Table 1). The composition of the 

cream is shown in supplementary Table 1. As a control, in all of the measurements, a cream without 

‘Ruvi’ extract was used. The procedure for the preparation of oil/water emulsion was as follows: the 

oily phase (lanette N, cetyl alcohol, and sweet almond oil, supplementary Table 1) and aqueous phase 

(water, glycerol, xanthan gum and sodium gluconate, supplementary Table 1) were heated separately 

to 70 °C, then the oily phase was stirred into the water phase and the system was maintained under 

constant stirring until it cooled to 40 °C. Subsequently, Geogard (0.8% w/w) and the raspberry extract 

(1% w/w) was added and the emulsion was stirred. Preliminary stability analysis was carried out 

using temperature cycles and centrifugation. In plastic packaging, similar to packaging used for 

cosmetic products, about 20 g of the sample was exposed to at least five cycles of alternate 

temperature, i.e., 24 h at high temperatures (40 °C) and 24 h at low temperatures (4 °C). Analytical 

centrifugation was carried out (3000 rpm) for 60 min at room temperature (20 °C) [34,35]. The 

determination of pH was conducted in an aqueous dispersion of 10% (w/v), as obtained by the 

dispersion of 1 g of sample in freshly distilled water (9 mL), homogenized with a magnetic stirrer, 

and measured by a pH meter, in triplicate. 

2.9. Statistical Analysis 

One-way ANOVA analysis was performed for all of the test parameters and statistically 

significant differences were calculated. All pairwise multiple comparison (Holm-Sidak method) was 

performed. Means were compared with the t-test (p ≤ 0.05). The results were analyzed with SigmaPlot 

(Version 12). All of the analyses were performed in three replications. 

3. Results and Discussion 

3.1. The Effect of Cultivars, Light Intensity and Substrate on Selected Agronomic Parameters 

The concentration and composition of certain chemical ingredients along with the fruit size, 

weight and physicochemical properties (such as sugars, aroma, soluble solids, pH, total acids) are the 

main characteristics that determine fruit quality [17]. These characteristics are the result of either 
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genotype, environment, agronomic practices, or their interaction. The effect of light intensity and 

substrate type (soil or soil/peat mix) on Rubus idaeus L fruit yield is depicted in Figure 1a. LL 

conditions produced a significant increase in fruit yield in ‘Ruvi’, while HL conditions were more 

suitable for fruit production in ‘Cayuga’. Both of the cultivars responded better in terms of fruit 

production when plants were cultivated in soil. However, ‘Ruvi’ showed the greatest yield in LL and 

soil conditions of all of the combinations tested. These results confirm the work of previous research 

studies that the genotype/environment relationship is extremely important for fruit production. For 

example, ‘Tupy’ and ‘Xavante’ blackberry cultivars that are grown in a subtropical area produced 

significantly different yields [36]. In contrast, when both cultivars were evaluated in temperate 

regions of South America, they produced similar yields [37], suggesting that climate plays a key role 

in the productivity of cultivars [38]. In general, LL conditions can result in lower leaf photosynthesis 

and stomatal conductance, and as a consequence lead to lower fruit yield [39]. However, the light 

intensity required to saturate photosynthesis in raspberries is relatively low [40,41]. Therefore, the LL 

conditions adopted in the present study may provide the required light intensity to saturate 

photosynthesis in raspberries. 

 
(a) 

 
(b) 

Figure 1. (a): Effect of light intensity and substrate composition on fruit yield in two Rubus idaeus L 

cultivars (Ruvi and Cayuga). Fruit yield was determined by weighting the fruits pooled from eight 

plant that were included in the experimental work (b): Correlation between the cultivar, light 

intensity and substrate composition on fruit area. Fruit area was calculated using Image J software (I, 

‘Ruvi’ plants; II, ‘Cayuga’ plants; The symbol *** indicates p < 0.001, and the symbol ** indicates p < 

0.005). 

Fruit size is one of the most important characteristics that determines the economic value of 

raspberry. Fruit size has a direct effect on the marketability and acceptance by end users of the 
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produce. In general, large fruits are preferred by consumers and the processing industry [38,42]. The 

influence of light intensity and substrate type on fruit size is illustrated in Figure 1b. The results 

showed that ‘Ruvi’ plants grown in HL and soil conditions and ‘Cayuga’ plants grown in LL and soil 

conditions produced the largest fruits (p < 0.01). 

In agricultural practice, it is important to precisely establish the time and type for the installation 

and removal of shading nets. Time and type selection for shade netting is significant for control of 

fruit maturity and flower induction for the coming season. This is an important factor in achieving 

higher prices for late or early maturing fruit. Therefore, the influence of shading on yield has been 

extensively studied for several plants. For example, shading from nets covering blueberries resulted 

in both delayed fruit development and delayed harvest period for mature fruit. The delayed harvest 

period was between 5–10 days and it increased fruit weight [43]. The delay is probably due to lower 

photosynthetic rate, with the highest shading having the lowest values. Guerrero et al., 2002, also 

showed that in apples shading resulted in delayed fruit development [44]. In contrast, Pastenes et al., 

2003 [45] did not report such negative effect of shading on a Chilean forest understory shrub, Ugni 

molinae Turcz. The same pattern was also observed in sweet pepper, tomato and strawberry where 

shaded plants produced reduced number of fruits [46–48]. 

The quality of the fruit depends on their physicochemical properties and chemical ingredients 

[46], such as the soluble solids content (SSC), which is dependent on total sugar concentration and 

titratable acidity (TA). Organic acids and especially malic acid and citric acid contribute to berry fruit 

acidity. The ratio between sugars and organic acids determines the balance between soluble solids 

substances and titratable acidity, which in turn influences fruit flavor and taste. 

Raspberry is considered as a low energy fruit that is comprised primarily of natural 

carbohydrates, with the main sugar form being fructose, a feature that makes berry fruit very popular 

among consumers. The effect of light conditions in relation to the substrate on total sugar 

concentrations is shown in Figure 2a. ‘Ruvi’ plants produced fruits that contained less sugars 

compared to ‘Cayuga’ under all test conditions. The lowest values were obtained for ‘Ruvi’ plants 

grown under LL and soil conditions. No statistically significant change in sugar concentration was 

observed in Cayuga. 

Soluble solids content (SSC) demonstrated mixed results that were dependent on which of the 

cultivars was analyzed (Figure 2b). ‘Cayuga’ displayed higher SSC values under all of the tested 

conditions, when compared to ‘Ruvi’. Increased SSC is related to fruit firmness and results in fruits 

that are more convenient and desirable for processing. SSC in both cultivars showed higher 

correlation to light intensity than substrate conditions. Both of the cultivars showed decreased SSC 

values under LL conditions, regardless of the substrate. Our results agree with Lobos et al. 2009 [43], 

who reported that in blueberries the SSC decreased linearly with the degree of shading.  

Total acids contribute to fruit quality [48,49]. The balance between soluble solids and titratable 

acidity determines the ratio between sugars and organic acids and fruit flavor [48–50]. As shown in 

Figure 2c, the TA values of ‘Cayuga’ fruits were independent of the substrate or light. In contrast, the 

TA values in ‘Ruvi’ fruits were influenced by the substrate and increased when plants were cultivated 

in soil/peat. Our results showed that genotype is the dominant factor in fruit acidity. However, light 

and substrate contribute to the modulation of this response. The effects of agro-environmental 

factors, such as water supply, mineral nutrition, light, and temperature, on citric and malic acid 

accumulation in fruit cells were recently reviewed by [51]. 

The maturity index (MI) was also influenced by the genotype and culture conditions. The highest 

values were obtained for plants grown in soil, as shown in Figure 2d. Light intensity influenced MI 

values in close dependence to cultivar. ‘Ruvi’ showed higher values when plants were exposed to 

LL, while in ‘Cayuga’ high values were obtained for plants grown under HL. Altogether, the results 

suggest that ‘Cayuga’ plants produce higher quality fruits more efficient than ‘Ruvi’ plants when 

they are exposed to full sunlight. Lewers et al. (2010) [52] reported that the optimal flavor is obtained 

in fruits with a MI of approximately 10. The sum of these observations indicates that the ‘Cayuga’ 

cultivar is suitable for a variety of uses, such as the production of fresh fruits and processed products. 
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Therefore, HL conditions appear to produce fruits with flavor and taste that is suitable for 

consumption. 
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(d) 

Figure 2. The effect of cultivars, light intensity and substrate compositions on selected agronomic 

parameters. (a): Total sugar concentration. (b): Soluble solids concentrations (SSC%). (c): Titratable 

acidity (TA). The results were expressed as a percentage of tartaric acid equivalents. (d): Differences 

in the level of Maturity Index (MI). MI was calculated as SSC/TA ratio. The symbol ** indicates 

statistical significance (p < 0.005) among different groups (“a”). 

3.2. The Effect of Cultivars, Light Intensity and Substrate Compositions on Selected Secondary Metabolites 

Polyphenols, including anthocyanins and flavonoids, and Vit C play a central protective role in 

plant adaptation to the environment and contribute to fruit quality [53–55]. From biotechnological 

perspectives, polyphenols can be used as a source for developing cosmeceuticals and nutraceuticals 

products [7]. As illustrated in Figure 3, complex interactions were observed between genotype, light 

intensity, substrate type, and secondary metabolism in both raspberry cultivars. The results showed 

that the concentration of total phenolics in the ‘Ruvi’ cultivar varied the most with the highest values 

being obtained in LL conditions (Figure 3a). Total phenolics remained constant under all light and 

substrate conditions in the ‘Cayuga’ cultivar. Total anthocyanins and flavonoids followed a similar 

pattern in the ‘Ruvi’ cultivar (Figure 3b,c). In contrast, ‘Cayuga’ exhibited higher values of total 

anthocyanins and flavonoids under HL conditions. These contradictory results suggest that there are 

differences in the biological mechanisms that are responsible for the regulation of secondary 

metabolites in the respective cultivars. 

It is well known that Vit C has health and wellness attributes that make berry fruit very popular 

among consumers. Figure 3d illustrates the influence of light conditions and substrate on Vit C 

concentration. The concentration of Vit C in ‘Ruvi’ cultivar was affected by both substrate and light 

conditions. Specifically, LL conditions decreased the Vit C concentration as compared to HL. The 

soil/peat mix substrate enhanced Vit C concentration, as compared to soil substrate, irrespective of 

the light intensity. In ‘Cayuga’ cultivar, the Vit C concentration was not influenced by light or 

substrate conditions. 

The amounts of secondary metabolites are affected by various factors the cause stress, such as 

environmental factors, light, and temperature. Extensive studies have been carried out and 

demonstrated that berries adapt to light by altering the expression of an array of both early and late 

biosynthetic genes in berry skin, which leads in the increased content of polyphenols, anthocyanins, 

and flavonoids [4,18,56]. Stress conditions can also upregulate the biosynthesis of antioxidant 

compounds, and therefore to enhance the total antioxidant capacity, creating an efficient ROS-

scavenging system in raspberry fruits that are exposed to prolonged stress conditions. Presumably, 

the accumulation of secondary metabolites and antioxidants under LL conditions may be associated 

a stress-like unfavorable conditions, and, hence, biosynthesis of secondary metabolites appear to be 

related to ‘tolerance’ to unfavorable solar intensity in the species examined. 
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Figure 3. Selected secondary metabolites of Rubus idaeus L., fruits extract from two cultivars (‘Ruvi’ 

and ‘Cayuga’) growing under different light conditions and substrate composition. (a): total phenolics 

(expressed in mg of gallic acid equivalents/g lyophilized tissue); (b): total anthocyanins (expressed in 

mg of cyanidine-3-glucoside/g lyophilized tissue); (c): total flavonoids (expressed in mg quercetin 

equivalents/g lyophilized tissue); (d): Vit C concentration in mg/100 mL fruit extract. *** = p < 0.001; 

** = p < 0.005; “a” and “b” represent the categories compared. 

3.3. The Effect of Cultivars, Light Intensity and Substrate Compositions on Antioxidant Capacity 

Total Antioxidant Capacity (TAC) is a parameter used to assess the antioxidant ability of a 

specific compound or mixture of compounds [57–61]. TAC was measured by three complementary 

assays: the 2,2-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), the 2,2-diphenyl-1-

picrylhydrazyl (DPPH), and the ferric reducing antioxidant power (FRAP) assay. As shown in Figure 

4, the extracts from different cultivars and conditions exhibited large differences in TAC. These 

variations indicate that the TAC in each cultivar is regulated by different antioxidant compounds and 

mechanisms. For example, comparing the results depicted in Figure 4 one can see that ‘Ruvi’ 

displayed slightly higher antioxidant capacity than ‘Cayuga’ and both of the cultivars exhibited 

higher FRAP, DPPH, and ABTS activity when grown in soil/peat. 
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Figure 4. Total antioxidant capacity (TAC) of Rubus idaeus L. fruits extract from two cultivars (‘Ruvi’ 

and ‘Cayuga’) growing under different light conditions and substrate composition. TAC was 

measured by the FRAP (expressed in μM ascorbic acid/g lyophilized tissue) (a), DPPH (b) and ABTS 

(c) methods. 

3.4. The Effect of Cultivars, Light Intensity and Substrate Compositions on Elastase, Tyrosinase and 

Acetylcholinesterase Inhibition 

Compounds that display inhibitory activity towards skin-regulating enzymes, such as elastase 

and tyrosinase, are widely used in dermatological treatments and cosmetics as antiwrinkle and skin-

whitening agents [62–66]. In this context, we tested the inhibitory potential of fruit extracts on elastase 

and tyrosinase activities. As shown in Figure 5a,b, fruit extracts from ‘Cayuga’ exerted low inhibition 

potency towards tyrosinase whereas those obtained from ‘Ruvi’ plants cultivated under LL 

conditions displayed maximal inhibitory capacity towards tyrosinase, as well as elastase. These 

effects of ‘Ruvi’ fruit extracts were observed regardless of the substrate used for plant culture (Figure 

5B). In Figure 5c,d, are shown the dose-response curves that were used for examining the inhibition 

effect of the extract and for measuring the IC50 values (e.g., the concentration needed to inhibit half 

of the maximum enzyme activity). The assessment of concentration-dependent inhibition of 

tyrosinase and elastase activities by this extract showed that the IC50 values were 0.62 ± 0.03 mg and 

0.057 ± 0.009 mg, respectively (Figure 5c,d). 
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Figure 5. Tyrosinase (a) and elastase (b) inhibition of Rubus idaeus L. fruits extract from two cultivars 

(‘Ruvi’ and ‘Cayuga’) growing under different light conditions and substrate composition. Dose-

response effect of R/LL + P extract on tyrosinase (c) and elastase (d) activity. 

The enzyme acetylcholinesterase is involved in numerous cholinergic pathways in the central 

and peripheral nervous systems [32,67]. To detect any potential neurotoxic effect, the extracts were 

tested for their ability to inhibit this enzyme. The results showed that the extracts had no anti-

acetylcholinesterase effect. The enzyme was completely resistant to the treatment (Supplementary 

Table S2), regardless of the substrate or light conditions that were applied during the plant growth 

cycle. 

3.5. Formulation of a Topical Skin Care Cream and Preliminary Stability Evaluation 

The extract derived from ‘Ruvi’ fruits cultivated under LL conditions in soil/peat displayed high 

antioxidant capacity, high concentration of phenolics, flavonoids, anthocyanins, and significant 

inhibitory potency towards the enzymes tyrosinase and elastase. This extract was used for the 

preparation and evaluation of a topical skin care cream versus a placebo control cream (Table S1). 

Several cosmetic formulas are available in market, such as emulsions, suspensions, and gels. 

Emulsion systems, including lotions and creams, attract significant attention for skin care products. 

For such products, the o/w emulsion is much popular due to its washable and non-greasy properties. 

In addition, after applying to the skin, water evaporates and therefore the concentration of the water-

soluble bioactive compounds is increased in the adhering film. This enhances and promotes the 

absorption of such bioactive compounds to the skin [68]. Cream containing 1% (w/v) ‘Ruvi’ extract in 

the internal phase of w/o emulsion was prepared. Preliminary stability analysis was carried out to 

evaluate the stability of the cream (Figure 6). After five cycles of freeze-thaw (24 h in freezer, 4 °C, 

and 24 h in incubator, 40 °C), the appearance of the cream was evaluated. A centrifugation test was 
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also performed as a preliminary evaluation of the stability. Both ‘Ruvi’ cream and the placebo cream 

showed no alteration in relation to their original appearance (odor, color, phase separation, 

destabilization emulsion effect). These results suggest that the formulation conditions were properly 

established. The measurement of pH is an important indicator of topical preparation stability 

especially in the case of creams. The average pH of human skin ranges from 5.5 to 6, and hence the 

pH of topical preparations must be in accordance with skin pH. The analysis of pH (Figure 6) showed 

that both creams maintained almost constant pH values through the test cycles. The maintenance of 

the pH in both formulations indicates that the products were stable and that no chemical changes 

occurred during storage. 

 
 

(a) (b) 

Figure 6. Skin care cream preliminary stability analysis at 4 °C, 25 °C, 40 °C, and after five temperature 

rotations: 24 h at 4 °C, and 24 h at 40 °C). (a): pH stability of the cream base (placebo). (b): pH stability 

of the cream loaded with R/LL + P extract. 

4. Conclusions 

In the present work, a multidisciplinary study was carried out to investigate the entire cycle of 

Rubus idaeus, L. from plant to products with application to end consumers. The key experimental 

results of our study are summarized in Figure 7. The differences in physical and chemical/bioactive 

characteristics between ‘Ruvi’ and ‘Cayuga’ are related to genotype and environmental factors, such 

as soil and light conditions. This complex interaction between genotype, light intensity, and substrate 

influences secondary metabolism, and determines the nutraceutical and cosmeceutical potential of 

the raspberry. In general, ‘Ruvi’ provided better agronomical and bioactive characteristics when 

compared to ‘Cayuga’. ‘Ruvi’ plants cultivated under LL conditions in soil/peat mixture produced 

the best results measured by yield and fruit quality (Figure 7). The ideal conditions produced fruits 

with increased bioactive properties (high antioxidant capacity, phenolics, flavonoids, anthocyanins, 

and high inhibitory potency towards the enzymes tyrosinase and elastase) and yield. 

Because nutraceuticals and cosmeceuticals are major categories in the health and wellness 

industry, it is important to establish the most appropriate agronomical practices to increase yield and 

content to support the manufacture of innovative new bioactive products for the health and wellness 

industry. 
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Figure 7. Summary of the key experimental results. Red colored cells represent the conditions with the highest measured value. Abbreviations: ABTS: 2,2′-azino-

bis-3-ethylbenzthiazoline-6-sulphonic acid free radical scavenging method; ACNS: Anthocyanins; DPPH: α,α-diphenyl-β-picrylhydrazyl free radical scavenging 

method; El: Elastase; FRAP: ferric reducing ability of plasma; % I: % Inhibition; MI: maturity index (ratio of total soluble solids/titratable acidity, SSC/TA); S: Soil; P: 

Soil/peat mixture; SSC: soluble solids concentration; TA: titratable acidity; TP: Total phenolics; TF: Total flavonoids; TYR: tyrosinase. 
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Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: Composition of 

the water and oil phases used for the preparation of cosmetic cream formulation; Table S2: The effect of red 

raspberry cultivars, light intensity and substrate on acetylcholinesterase inhibition. 
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Abbreviations 

ACC Anthocyanins content 

ABTS 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid free radical scavenging method  

ACNS Anthocyanins 

DPPH α,α-diphenyl-β-picrylhydrazyl free radical scavenging method 

DW Dry weight 

El Elastase 

FRAP Ferric reducing ability of plasma 

GAE Gallic acid equivalents 

HL  High light 

% I % Inhibition 

LL  Low light 

MI Maturity index (ratio of total soluble solids/titratable acidity, SSC/TA) 

S Soil 

P Soil/peat mixture 

SSC Soluble solids content 

TA Titratable acidity 

TAC Total antioxidant capacity 

TP Total phenolics 

TF Total flavonoids 

TYR Tyrosinase 
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