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Abstract: Marine resources represent an interesting source of active ingredients for the cosmetics
industry. Algae (macro and micro) are rich in proteins, amino acids, carbohydrates, vitamins (A, B,
and C) and oligo-elements such as copper, iron and zinc. All those active principles play roles in
hydration, firming, slimming, shine and protection. Marine organisms inhabit a wide spectrum of
habitats. Photo-protective compounds can be obtained from organisms subjected to strong light
radiation, such as in tropical systems or in shallow water. In the same way, molecules with antioxidant
potential can be obtained from microorganisms inhabiting extreme systems such as hydrothermal
vents. For example, marine bacteria collected around deep-sea hydrothermal vents produce complex
and innovative polysaccharides in the laboratory which are useful in cosmetics. There are many
properties that will be put forward by the cosmetic industries.
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1. Introduction

The cosmetics industry is growing on a global scale. Since July 2013, European Commission (EC)
regulation No 1223/2009 defines cosmetics as “any substance or mixture intended to be placed in
contact with the external parts of the human body (epidermis, hair, nails, lips and external genital
organs) or with the teeth and the mucous membranes of the oral cavity with the exclusive or principal
objective to clean, perfume or protect them or, changing their appearance or keeping them in good
condition”. In the point of view of galenic, cosmetics are more or less complex, stable and homogeneous
mixtures, resulting from a formulation which consists in the association of a raw material with another
one. These ingredients are subdivided into three broad categories: active principles, excipients and
additives [1].

This sector is constantly looking for innovations, especially active principles. From this point
of view, the marine world is likely to open up many possibilities. Macroalgae are already widely
exploited by the cosmetic industry [2], but it is still not true for microalgae and marine bacteria.
However, their diversity is considerable. Only a few percentages of algae and marine bacteria have
been identified and described but some are already produced on an industrial scale. They have great
potential as a source of ingredients for cosmetics.

The oceans host a huge biodiversity, with more than 250,000 species described and many other
species still to be discovered [3,4]. Ocean exploration in past decades allowed the discovery of
a multitude of habitats sometimes in extreme environments [5]. They host a variety of organisms that
produce a wide range of active molecules [6]. More than 25,000 new biologically active compounds
have been identified [7]. Among marine organisms, bacteria and algae constitute a major source of
active ingredients. For example, lipid content in microalgae is particularly of interest in the cosmetics
domain. Some species accumulate lipids at up to 90% of their dry weight [8,9]. Microalgae are also
a source of pigments, in particular carotenoids (β-carotene, lycopene, cryptoxanthin), of vitamins
(A, B1, B2, B6, B12 and C) [10], canthaxantin, astaxanthin, lutein and of phycobiliproteins (phycocyanin,
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phycoerythrins) [11–13]. Macroalgae represent a source of minerals, polysaccharides, proteins, lipids,
and secondary metabolites such as phenolic compounds, terpenoïds, halogenated compounds, sulfur
derivatives, and nitrogen derivatives that they can produce.

Bacteria are very abundant and distributed across all marine ecosystems. Many species are
exploited for biotechnological applications and some would be of interest for the cosmetic industry.
Indeed, many compounds from marine bacteria exhibit photo-protective, anti-aging, anti-microbial,
antioxidant and moisturizing activities such as alkaloids, peptides, proteins, lipids, mycosporines and
mycosporine-like amino acids, glycosides, and isoprenoids [14,15].

Coasts also hold a biodiverse array of plants including marine halophytes that still remain largely
unexplored despite a high technological potential. Marine halophytes are often extremophile species
equipped with potent antioxidant systems such as phenolic compounds with established beneficial
therapeutic effects in humans including antioxidant and anti-inflammatory activities.

Here, we summarize some of the potential applications of macroalgae, microalgae, marine
bacteria, marine fish, halophytes and marine mud and water in the fields of hydration, anti-aging,
photo-protection and skin whitening.

2. Active Ingredients for Moisturizing Care

Maintenance of the hydration rate is essential to preserve skin integrity. Topical application of
lipids or molecules that limit water loss is common. Marine organisms produce several molecules
with moisturizing properties such as polysaccharides, fatty acids (sophorolipids, rhamnolipids and
mannosylerythritol) and proteins that are widely used in the skin [4]. In general, the ability to
restore transepidermal water loss (TEWL) to normal relies on omega 6 polyunsaturated fatty acid and
specifically on the 18 carbon atoms fatty acid: linoleic acid and γ-linolenic acid [16,17]. Oil/water
emulsions are formulated to avoid excessive water loss through occlusive ingredients that retain the
water in the skin. Although the extracts of Laminaria are the choice ingredient in this case, a large
number of algae can be used for this purpose. Notably, microalgae of the genus Nannochloropsis are of
particular interest due to their high content in linolenic acid [18]. Moreover, seaweeds rich in serine,
such as Undaria pinnatifida and microalgae of the genus Thalassiosira are also of particular interest [19].

Marine fish proteins mainly consist of collagen, which has been widely utilized in cosmetics for
its moisturizing properties. Skin-hydrating and skin-firming of cosmetics formulated with fish derived
collagen has been evaluated. Serum formulations provide an excellent moisturizing effect for a short
period, whereas the cream is active when regularly applied. The cream formulations appeared to
become more active later, particularly following repetitive applications [20,21]. Low doses of collagen
hydrolysates derived from jellyfish have also demonstrated their potential as moisturizing agents.
They increase skin hydration and reduce TEWL [22].

Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an osmoprotectant produced
by several bacterial species in response to osmotic stress [23]. It has been isolated for the first time from
Ectothiorhodospira halochloris [24]. Ectoine is also produced by other halophilic bacteria, such as alpha-
and gamma-proteobacteria and Actinobacteridae under high salt concentrations [25]. Ectoine presents
a similar capacity to bind water molecules than other osmoprotectants such as glycerol [26,27]. In fact,
ectoine has strong hydration properties and topical application of ectoine formulated products is well
tolerated by humans [28]. Ectoine is an effective long-term moisturizer that prevents dehydration of
the epidermis [23,29]. Ectoine also improves skin inflammation and is currently being investigated
for the treatment of moderate atopic dermatitis [28]. Topical treatment with ectoine (EHK02-01) may
represent a novel option for the treatment of patients suffering atopic dermatitis [28].

3. Active Ingredients to Prevent Skin Aging

Skin aging is tightly linked to extracellular matrix degradation in both epidermal and dermal
layers. Intrinsic factors (genetic) are dominant; however, environmental factors also play an important
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role. Among the latter ones, ultraviolet (UV) exposure, whether natural or in a tan cabin, smoking,
and weather (wind exposure, for example) are important factors.

Carotenoids are major active principles among ingredients with anti-aging properties.
Carotenoids are yellow/orange liposoluble pigments derived from isoprene molecules and composed
of eight units of carbon atoms in which single and double bonds alternate. β-carotene tops this
pigment family and has an excellent capacity to prevent reactive oxygen species (ROS) formation [30].
β-carotene is the main carotenoid produced by the halotolerant microalga Dunaliella salina which is
able to produce more than 10% of β-carotene compare to its dry weight [31]. β-carotene is also used in
anti-aging care formulations as provitamin A.

Astaxanthin applications in anti-aging care also rely on its remarkable antioxidant
property [32,33], which is better than the α-tocopherol one [34]. Haematococcus pluvialis is the richest
source of natural astaxanthin (it can accumulate more than 3 g of astaxanthin kg−1 dry biomass) and
is now cultivated at industrial scale [35–37]. Two rare carotenoids with relevant antioxidant action
(i.e., saproxanthin and myxol) have been isolated from new strains of marine bacteria belonging
to the family Flavobacteriaceae [38]. However, more investigations are required before their use in
cosmetic formulations.

Among the bioactive substances with anti-aging action of marine origin, bacterial polysaccharides
(PSs) are one of the most used. PSs are also produced by microalgae. In recent years, there has been
a growing interest in isolating bacteria from extreme environments such as deep-sea hydrothermal
vents [39–41]. It has been demonstrated that PS have properties including emulsifying, thickening,
absorption and gel formation [4]. Deepsane, a PS derived from marine bacterium Alteromonas macleodii,
has already found application in cosmetics and is commercially available [42] under the name of
Abyssine® for soothing and reducing irritation of sensitive skin against chemical, mechanical and
UVB aggression [40]. Anti-aging products have also been formulated with a mixture of PSs derived
from Pseudoalteromonas sp., Pseudoalteromonas antarctica and Halomonas eurihalina that proliferate in
Antarctic waters. This mixture improves skin structural properties through increased collagen I
synthesis [42]. HE 800, an exo-saccharide analogous to hyaluronic acid, produced by the deep-sea
bacterium Vibrio diabolicus, has the ability to stimulate collagen structuring [4,41].

Marine fish-derived collagen is widely used in cosmetic formulations due to its excellent skin
repair and regeneration properties. Despite its origin, the marine fish-derived collagen has low odor
and improved product mechanical strength. It also possesses a better absorbing capacity than collagen
obtained from other animal sources [20,21].

Alguronic acid based formulations of the Algenist product range from the Solazyme Company are
a mixture of polyssacharides produced by a microalga. Alguronic acid would have shown the ability
to stimulate cell renewal and promote elastin synthesis [43]. Alguard® PF (Frutarom), a polysaccharide
extracted from Porphyridium sp and proposed in the treatment of fine lines, is probably neighboring.

A Chlorella vulgaris extract also appears promising in the anti-age field insofar as it favors collagen
synthesis [44], one of the dermis extracellular matrix macromolecules which diminishes over time
resulting in wrinkle onset. A combination of algae extracts from Meristotheca dakarensis and J. rubens is
available on the market which has been described as stimulating keratin, glycosaminoglycans (GAGs),
and collagens I and III synthesis [2].

Hyaluronic acid is a major component of the skin extracellular matrix [45]. Inducers of hyaluronic
acid synthesis are commonly used in anti-aging care. An aqueous extract of the brown alga
Macrocystis pyrifera that belong to the Laminariaceae family is available on the market to that purpose.
M. pyrifera extract may also stimulate the synthesis of syndecan-4, another important protein of the
extracellular matrix [2].

The aging process reduces skin thickness, elasticity of the skin and curling of elastic fibers in
the skin and gives rise to wrinkles in the skin [46]. Inhibitors of matrix metalloproteinase (MMPs)
may have potential utility as an anti-wrinkle cosmetic product [47]. Matrix metalloproteinase are
Zn2+ extracellular endopeptidases enzymes produced by a variety of cells, including fibroblasts,
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keratinocytes, mast cells, macrophages, and neutrophils. Three major functional groups of MMPs are
described, including interstitial collagenases (degradation of type I, II, and III collagen), stromelysins
(degradation of laminin, fibronectin, and proteoglycans), and gelatinases (degradation of type IV and
V collagens) [48]. They play a major role in wrinkle formation [49,50]. Some studies have shown
that natural and photo aging processes were linked to an increase of MMPs synthesis in fibroblast.
Wrinkles occur following the cumulative impact of extensive collagen degradation by MMPs [49,50].

Innovative sources of MMPs inhibitors can be found in marine resources. The MMP inhibitory
activity of marine fish-derived peptides has been studied. Peptides isolated from seahorses (SHP-1)
have been shown to increase collagen release through collagenases 1, 3 and 13 inhibition [51,52].
Atlantic cod muscle also produces a gelatinase inhibitor similar to the human tissue inhibitor of
MMP-2 (TIMP-2) [53]. The inhibition of MMP activity by marine-derived phlorotannins has also been
investigated [54]. Many seaweed species have been evaluated for their MMP inhibitory capabilities [48].
E. stolonifera derived phenolic compounds eckol and dieckol showed strong inhibitions of MMP-1
expression [55]. Moreover, 6,6′-bieckol derived from Ecklonia cava have been shown to significantly
downregulate the expressions of MMP-2 and -9 through the activation of the NF-κB pathway [56].

Sea water minerals are also known to have beneficial properties [57]. Sea water notably contains
minerals (sodium, potassium, magnesium, calcium, sulfates, and chlorides) which are beneficial for
the skin. Moreover, sea salts can notably be used in cosmetics for skin care [58]. Deep-sea water would
have beneficial properties on general health and especially on skin health, with a positive impact on
atopic dermatitis. The health benefits are claimed to be related to the minerals contained in the sea
water and to the quality of the deep-sea water sources [59].

Sea mud contains various nutrients and minerals, and has been used in skin care and cosmetic
product formulations for their beneficial effects and therapeutic properties on psoriasis and other
skin-related disorders. Sea mud helps to retain water, equilibrates skin pH, promotes acne repair and
prevention, and exhibits anti-aging properties [59,60].

However, sea water and sea mud can contain toxic elements that occur naturally or due to
pollution and must therefore be subject to strict control. Notably, sea mud can entrap heavy metals
due to clay’s high cationic exchange capacity and positive or negative surface charge [61]. Therefore,
metal impurities such as nickel and chrome can be present in cosmetic products containing natural
ingredients. Notably, Dead Sea mud has been tested to determine if nickel and chrome residues can
be detected. It has been demonstrated that chrome and nickel residues naturally occurred in Dead
Sea mud at a low level. However, it has been demonstrated that those heavy metals are retained by
the clay in solid particles. Therefore, the level of skin local exposure to Ni after mud application is at
least seven-fold lower than the local toxicity threshold. Moreover, Dead Sea mud is used as a rinse-off
product which limits the time of contact between the skin and the mud. However, consumers have to
be aware of the presence of these metals through a clear product label to avoid their use by sensitized
persons [62].

4. Active Ingredients for Topical Photoprotection

Three tissue layers constitute the skin; namely epidermis, dermis, and hypodermis that acts as
a chemical and physical barrier. Skin can be damaged by various environmental factors, including
chemicals, ultraviolet (UV), and pollution. Dermatoheliosis, also known as photo-aging, is due to
UVA (400 nm < λ < 320 nm) and UVB (320 nm < λ < 290 nm) induced skin damage [63]. Prolonged
human exposure to UV radiation may result in short-term and long-term effects on the skin [64,65].
The short-term effects are more or less positive. The major ones are represented by the beneficial effects
on mood, the induction of vitamin D synthesis, and immediate skin pigmentation, and detrimental
effects on skin thickening, actinic erythema and tanning. The long-term effects are all negatives and
include photo-induced skin aging and photo-carcinogenesis related to ultraviolet radiation-induced
immunosuppression. The severity of these long-term effects requires the use of appropriate protection
during UV radiation exposure. Clothing and topical protection are part of the overall prevention
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strategy. Sunscreens are categorized as a cosmetic in the European Union. They can be formulated
using about twenty molecules only. It is therefore imperative to promote active research in this domain
in order to bring out new molecules of interest.

Several marine organisms, notably photosynthetic organisms, produce UV-absorbing compounds
such as scytonemins (cyanobacteria), mycosporines, mycosporine-like amino acids (MAAs),
and carotenoids to protect themselves from UV radiation [66–69]. Moreover, despite their
large contribution to marine biodiversity and biomass, the UV filters produced by microbial
components have been poorly investigated. Marine organisms are therefore a major source of
photo-protective compounds.

4.1. Mycosporine-Like Amino Acids

Mycosporine-like amino acids (MAAs) are intracellular water soluble colorless compounds found
in many marine and freshwater organisms [70]. Freshwater microalga Aphanizomenon flosaquae is
a good example which contains MAAs. MAAs are composed of a cyclohexenone or cyclohexenimine
chromophore [71]. They are attached to the core through imine linkages, leading to a combination of
resonating tautomer responsible for UV-absorption [72,73]. MAAs absorb UV radiation ranging from
310–362 nm and dissipate this energy in the form of heat radiation to the surrounding environment [74].
MAAs synthesis occurs in fungi, bacteria, cyanobacteria, phytoplankton and algae. The protection
efficiency of MAAs against UV depends also on the location of these compounds in the cell. MAAs
located in the cytoplasm provide a limited protection against UV while extracellular MAAs constitute
a more effective shield [73,75].

4.2. Scytonemin

Located in the extracellular sheath of some cyanobacteria species, scytonemin is a UVA inducible
pigment [73,76,77]. Scytonemin is able to reduce up to 90% of UV-A radiation into the cells due to
its excellent absorption in this UV range [78–80]. It also absorbs in the UV-B range [81,82]. Oxidative
stress related to UV-A exposure can also trigger synthesis of scytonemin [79].

5. Active Ingredients with Skin Whitening Properties

There is a great demand for whitening cosmetics for the care of lentigo, pregnancy mask, residual
hyperpigmentation or hyperpigmentation following medicine poisoning. Tyrosinase is the key enzyme
of melanin synthesis. Inhibitors of this enzyme are actively sought [83]. Numerous natural compounds
from marine organisms have already been employed as tyrosinase inhibitors, although some of them
(hydroquinones) had negative effects on human health [84]. In recent years, research focused on the
discovery of new marine microorganisms derived skin-whitening compounds.

Among them, zeaxanthin seems to be of particular interest and can be obtained in Nannochloropsis
oculata extract [85]. In the skin whitening area, a Chlorella extract proposed by the company Codif
would also reduce skin pigmentation by more than 10%. 7-phloroeckol, a phlorotannin derived from
E. cava brown seaweed, has been proposed as a skin-whitening agent through its anti-tyrosinase
activity [86].

Marine bacteria have still not been extensively studied as a source of skin-whitening compounds.
However, the marine bacteria Pseudomonas was found to produce the tyrosinase inhibitor methylene
chloride, which reduced the pigmentation of human melanocytes [87]. The marine bacterium
Thalassotalea sp. PP2-459, isolated from a bivalve, is also described to produce a N-acyl dehydrotyrosine
derivatives tyrosinase inhibitor the thalassotalic acids [88]. Astaxanthin, which belongs to the
carotenoids family, also presents interesting depigmentation properties. It would provide a protection
for skin from age spots by reducing melanin production by 40% [89]. The wide majority of
skin-whitening compounds used in cosmetics are still provided by terrestrial organisms, therefore
opening new opportunities for marine skin whitening molecules research in cosmetics [4].
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Pistacia lentiscus is a traditional medicinal halophyte plant of the Mediterranean area, distributed
in saline environments. P. lentiscus leaves contain flavonoids, phenolic acids such as catechin,
β-glucogallin, quercitrin gallate, gallic acid and epicatechin [90–92]. Gallic acid and epicatechins,
catechins are responsible for the potent tyrosinase inhibition capacity of P. lentiscus and could therefore
be effective in the treatment of hyperpigmentation [93–95].

6. Marine Resources as a Source of Excipients and Additives for Cosmetics

6.1. Preservatives

Preservative agents authorized for use in cosmetics are listed in the European Regulation
(EC) 1223/2009, Annex V. They include parabens, a family of antimicrobial molecules that caused
controversy about their safety [96,97]. Preservatives must be added to cosmetic products to prevent
alteration and to exclude microbial contamination. In this context, it is extremely important to develop
new and safe antimicrobial preservatives.

Among anti-microbial compounds of marine origin, macroalgae and microalgae extracts are
promising. Studies highlight the inhibiting properties of extracts of macroalgae Himanthalia elongata
and Synechocystis spp. regarding Escherichia coli and Staphylococcus aureus [98]. Extracts from microalgae
Isochrysis galbana, Chlorella marina, Nannochloropsis oculata, Dunaliella salina and Pavlova lutheri
showed some activity against bacteria such as Pseudomonas aeruginosa or Klebsiella pneumoniae [99].
However, those preliminary results are not sufficient to envisage the use of such extracts for
industrial applications.

It could be noticed that chitosan also presents anti-microbial activity against bacteria, viruses
and fungi [100]. It is a polysaccharide made of glucosamine and a variable number of GlcNAc
residues obtained from chitin, a polymer abundant in marine arthropod exoskeletons and cell walls of
fungi [101,102].

Falcarindiol, a polyacetylene, has been obtained from a chloroformic extract of the halophyte
Crithmum maritimum leaves. Falcarindiol strongly inhibits the growth of different bacteria such as
Micrococcus luteus and Bacillus cereus. Therefore, Crithmum maritimum could be potentially used in
cosmetology as a preservative [103]. Extracts from another halophyte, P. lentiscus leaves and fruits,
also exhibit anti-microbial activity [91].

Peptide with cationic moieties can interact with microbial pathogen membranes and therefore
often exhibit antimicrobial properties. Antimicrobial peptides derived from marine organisms are
currently studied as cosmetic applications, including lotions, shampoos, and moisture creams. Notably,
the HAHp2-3-I fraction derived from the pepsin hydrolysate of half-fin anchovy (Setipinna taty)
contained five cationic peptides (MLTTPPHAKYVLQW, SHAATKAPPKNGNY, PTAGVANALQHA,
QLGTHSAQPVPF and VNVDERWRKL) that exhibit promising antibacterial potential. Antibacterials
have also been isolated from Atlantic mackerel (Scomber scombrus) (SIFIQRFTT, RKSGDPLGR,
AKPGDGAGSGPR and GLPGPLGPAGPK). They demonstrated a partial or a total inhibition property
against Gram-positive (Listeria innocua) and Gram-negative (Escherichia coli) bacterial strains [104–107].

6.2. Essential Oil

Crithmum maritimum L. is a halophyte plant which grows on coastlines. Crithmum maritimum L.
contains a combination a substances that gives to its essential oil its distinctive fragrance—lemony
(due to p-cymene) but also slightly musty, of camphor and sandalwood (due to dillapiole) [108,109].

6.3. Antioxidant

Antioxidants provide protection against the pro-oxidative in human skin exposed to UV radiation.
Antioxidants have a protective effect on human skin as they prevent damage caused by UV-induced
ROS which attack membrane lipids, proteins, and DNA, such as superoxide anion, hydroxyl radicals,
and H2O2. Notably, lipid oxidation by ROS participate to decrease the youthful appearance of skin [59].
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Therefore, cosmeceutical industries used synthetic antioxidants such as butylated hydroxytoluene
(BHT), butylated hydroxyanisole (BHA), tertbutyl hydroquinone (TBHQ), and propyl gallate (PG)
to delay ROS-induced oxidation. However, these synthetic antioxidants must be used with caution
due to potential health hazards [110,111]. Natural antioxidants such as phlorotannins, sulfated
polysaccharides, fucosterol, and fucoxanthins derived from algae therefore represent a safe alternative
for the cosmetics industry [59,112].

Carotenoids are organic pigments, also called tetraterpenoids, meaning that they are formed
of 8 isoprene molecules and contain 40 carbon atoms. Over 750 carotenoids have been described
and can be divided into two categories: xanthophylls, which contain oxygen, and carotenes,
which are purely hydrocarbons [113]. They are mainly produced from fats by plants, bacteria
and some fungi. Carotenoids have many applications including as colorants, food supplements
and cosmetics/nutraceuticals [114]. Notably, carotenoids have antioxidant and anti-inflammatory
properties that contribute to skin photo-protection through inhibition of UVA-induced ROS toxicity
and enter in the formulation of many sunscreens [115].

Marine bacteria, yeast and fungi are an important source of carotenoids [116,117]. As an example,
astaxanthin is produced by different bacteria such as Paracoccus and Agrobacterium and different
yeast species, notably the following genera Rhodotorula, Phaffia, Xanthophyllomyces [4]. Although the
production from yeasts and bacteria is lower compared to algae, yeasts have higher growth rates, easier
cultivation conditions and can be genetically modified to increase carotenoid production rates [117,118].

Algae are also a major source of β-carotene [119]. As soon as the late 1960s, their potential as
a β-carotene source has been investigated. Dunaliella is a unicellular green alga (Chlorophyceae) and
belongs to the genus Dunaliella salina. D. salina production has been optimized to a commercial scale
production of β-carotene as early as the late 1980s. It has been established that the best β-carotene
production can be obtain upon high salinity and intense light [120].

The marine protist Ulkenia sp. and related species such as Thraustochytriidae sp. AS4-A1
are also able to produce antioxidants such as docosahexaenoic acid (DHA) and astaxanthin
(3,3′-dihydroxy-β,β-carotene-4,4′-dione) [121], and carotenoids [122].

Marine halophytes also provide phenolic compounds with potent antioxidant activities [91,123].
The antioxidant capacity of a plant extract is usually closely related to its phenolic content [124].
Therefore, the high levels of phenolic compounds found in L. salicaria (278 mg GAE/g DW) could
be responsible for its high antioxidant activity. High levels of phenolic compounds have also
been linked to high antioxidant activity in other halophytes, including Limonium wrightii [125],
M. edule, L. monopetalum and T. gallica [126–128], and Salicornia ramosissima [123]. Sea fennel
(Crithmum maritimum L.) is also a halophyte of great interest because of its high secondary metabolite
content. C. maritimum leaves notably contain carbohydrates (sucrose, glucose), organic acids (malate
and quinate) and a phenolic compound, notably chlorogenic acid (CGA). Chlorogenic acid exhibits
potent antioxidant activity. Depending on the ground where Crithmum maritimum L. grows, the
plants can accumulate more or less CGA. Sand hill plants accumulate more CGA than those growing
on cliffs [129].

Fish-derived proteins and peptides have also been investigated for their capacity to provide
a protection to the skin from UV radiation [130,131]. Fish skin and jellyfish (Rhopilema esculentum)
collagen and collagen hydrolysate demonstrated their ability to provide efficient protection against
the detrimental effects of UV radiation, especially on the antioxidant system (superoxide dismutase
and glutathione peroxidase). They not only provide protection against the degradation of skin lipids
but also stimulate collagen synthesis, preventing photo-aging [132]. Collagen peptides and gelatin
hydrolysate demonstrate an excellent capacity to prevent skin photo aging by hampering UV-induced
inflammation, collagen destruction and preserving antioxidant enzymatic systems [133,134]
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6.4. Dyes

Among pigments described in algae and cyanobacteria, phycobiliproteins are of great interest
due to their fluorescent properties. It can be distinguished in different pigments displaying different
features among the phycobiliprotein family. Phycoerythrin (PE) is a fluorescent red protein-pigment
which absorbs light in the green light wavelength (λ = 498 nm and λ = 565 nm) and emits in the yellow
light wavelength (λ = 573 nm). Phycocyanin is a blue accessory pigment to chlorophyll, known for its
antioxidant and anti-radical properties [135–137]. Phycocyanin also has fluorescent properties and
absorbs red-orange light wavelength (λ = 630 nm) and emits in the red light wavelength (λ = 660 nm).
Currently, the red microalga Porphyridium cruentum and the cyanobacterium Spirulina platensis are the
main sources of phycoerythrin and phycocyanin, respectively [31].

The diatom Haslea ostrearia has a characteristic extraplastidial color due to the accumulation of
a water-soluble blue pigment to the cell apex: the marennine. This diatom is notably present in oyster
refining tanks. The blue-green marennine pigment they produce is fixed in oyster gills and gives them
their characteristic green color obtained after ripening. The exact nature of marennine is still unclear
despite numerous biochemical characterization tests. However, it has been shown that marennine is
neither carbohydrate nor protein. It would rather be a polyphenolic molecule [138].

7. Conclusions

There is no doubt that cosmetic formulations based on natural marine resource-derived
ingredients is a good marketing argument, although this resource is still poorly exploited. The potential
applications of natural molecules derived from the marine world promise a bright future for the
cosmetics industry that is constantly looking for innovation. Therefore, a wide variety of marine natural
products have received increased attention, especially those derived from micro- and macro-algae
and marine bacteria. However, their potential is far from being fully exploited, especially for deep
sea-inhabiting marine organisms that remain to be described.

Once the valuable species are clearly identified, it will remain to optimize the mode of
production/extraction of the molecules of interest and to perform tests to ensure their effectiveness
and their safety for cosmetic applications.

Conflicts of Interest: The authors declare no conflict of interest.
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