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Abstract: Whitening cosmetics with anti-melanogenesis activity are very popular worldwide.
Many companies have tried to identify novel ingredients that show anti-melanogenesis effects
for new product development. Among many plant-derived compounds, polyphenols are thought to
be one of the most promising anti-melanogenesis ingredients. In order to prepare effective whitening
polyphenols, 3,3,4,5,7-pentahydrosyflavone (quercetin) has been widely researched and applied to
commercial products because it is present in high levels in many edible plants. Quercetin is thus
a representative polyphenol and has recently gained attention in the cosmetics field. There are
many controversies, however, regarding the effect of quercetin, based on in vitro studies, cell line
experiments, and human trials. In this review, toxicity and efficacy data for quercetin and its
derivatives in various experimental conditions (i.e., various cell lines, concentration ranges, and other
parameters) were examined. Based on this analysis, quercetin itself is shown to be ineffective for
hypopigmentation of human skin. However, a few types of quercetin derivatives (such as glycosides)
show some activity in a concentration-dependent manner. This review provides clarity in the debate
regarding the effects of quercetin.

Keywords: anti-melanogenesis; polyphenol; whitening cosmetics; hyperpigmentation;
tyrosinase; quercetin

1. Introduction

Melanin plays a significant role in the prevention of skin damage [1]. However, the accumulation
of an abnormal amount of melanin in various parts of the skin results in the development of pigmented
patches that might be viewed as an aesthetic problem [2]. Excessive production of melanin and
abnormal hyperpigmentation from overexposure to ultraviolet (UV) radiation may cause excessive
generation of reactive species, which can lead to various skin injuries, including inflammation, age
spots, melasma, and freckles [1]. In recent years, skin-whitening ingredients have become the most
important components of cosmetic and hygiene products. Therefore skin-whitening ingredients
that show hypo-pigmentation efficacy (i.e., anti-melanogenesis activity) are particularly important.
Many researchers in academia, research institutes, and companies have attempted to identify effective
and safe anti-melanogenesis and/or safe skin-whitening ingredients [3]. Skin-whitening ingredients often
function via the inhibition of melanogenesis, and can also be referred to as anti-melanogenesis agents.

This review describes the fundamental synthesis of melanin, melanin signaling pathways,
and the factors involved in melanogenesis and pigmentation disorders. It also examines the
effects of the well-known whitening compound quercetin on the inhibition of melanogenesis.
Quercetin is a representative polyphenol and has recently gained attention in the cosmetics field
for its antimelanogenic properties. There are many controversies, however, regarding the effects of
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quercetin, based on in vitro studies, cell line experiments, and human trials. Specifically, it is unclear
whether quercetin leads to an increase or decrease in melanin formation. Toxicity and efficacy data
regarding quercetin and its derivatives for various experimental conditions (i.e., various cell lines,
concentration ranges, and other parameters) are also examined in this review.

2. Melanogenesis and Its Signal Pathway

2.1. Melanogenesis Mechanism and the Regulation of Melanin Biosynthesis

Alterations to human skin, hair, and eye color are related to the type, amount, stage, and
distribution of melanin [4,5]. Human skin color is determined by the outermost layer of the skin, the
epidermis, where pigment-producing cells (i.e., melanocytes) are localized for melanin production.
Melanin plays an important role in protecting human skin from the harmful effects of UV radiation.
Upon exposure of the skin to UV radiation, melanogenesis is enhanced via the activation of the key
enzyme tyrosinase, resulting in excessive production of melanin as well as DNA damage, inflammation,
or other skin injuries [6–10]. Melanocytes are derived from fibroblasts in the dermis and keratinocytes
in the epidermis (basal and suprabasal keratinocytes), where melanocytes transfer melanin pigments
into the basal layers of the epidermis [11]. When UV radiation from sunlight exposes the skin to
(photo)-oxidative stress, reactive oxygen species and reactive nitrogen species are generated, resulting
in cutaneous abnormalities such as DNA-damaged epidermal hyperplasia, collagen breakdown,
and inflammation. Humans naturally produce melanin pigments for photo-protection. Stem cell
factor (SCF), adrenaline noradrenaline, α-melanocyte-stimulating hormone (α-MSH), and Wnt
hormones are involved in physiological responses and interact with c-Kit, adrenergic receptors,
melanocortin 1 receptor (MC1R), and Wnt receptors (Figure 1). For example, MC1R signaling regulates
31,51-cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA), promotes cAMP-response
element binding protein (CREB), and ultimately upregulates microphthalmia-associated transcription
factor (MITF) in the nucleus. Upregulated MITF activates tyrosinase-related protein 1 (TRP1)
in the Golgi apparatus. Subsequently, biochemical melanin synthesis (blackish-brown colored
eumelanin and yellowish-red colored pheomelanin) ensues, moving these proteins to melanosomes.
Melanosomes are characterized by four maturation stages and reaction directions. The combined
glutathione or cysteine in DOPAquinone is converted to cysteinylDOPA or glutathionylDOPA, and
pheomelanin is formed. The eumelanin stages are involved in the conversion from DOPAquinone to
L-3,4-dihydroxyphenylalanine (L-DOPA) or leukodopachrome without glutathione or cysteine [12–15].
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Figure 1. (a) Schematic representation of melanosome and melanin formation mechanism; (b) signal 
transduction pathway for anti-melanogenesis activity; and (c) chemical reaction-based melanin 
formation. 
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receptors must be considered. First, the c-Kit receptor is activated by SCF, followed by the activation 
of MAP (mitogen-activated protein) kinase and MITF. Second, adrenergic receptors bind adrenaline 
and noradrenaline, which activate cAMP binding, followed by CREB and PKA activation. Third, 
MC1R receptors are activated by ACTH and α-MSH, and interact with cAMP, via the identical 
adrenergic receptor pathway. In another pathway, nitrogen oxygen (NO) radicals activate guanylate 
cyclase, which activates cGMP and MITF. In particular, Wnt receptor activates GSK3β, which 
promotes phosphorylation and accelerates anti-melanogenesis. The inhibition of phosphorylation in 
GSK3β increases β-catenin and the LEF/TCA complex, and activates MITF [16–19]. For the above 
process, activated MITF promotes the expression of tyrosinase, TRP-1 (DCT), TRP-2 (i.e., DOPA 
chrome tautomerase (DCT)), and PKC-β. As a result, melanin is formed. In contrast, in the 
extracellular signaling process, the phosphorylation of MEK/ERK and P13K/AKT downregulates 
MITF, leading to anti-melanogenesis effects, while the dephosphorylation process activates MITF 
(Figure 1b). The biochemical response for eumelanin and pheomelanin has been explained in Section 
2.1. 

2.3. Inhibition of Melanogenesis through Tyrosinase Inhibition 

Every anti-melanogenesis ingredient acts via inhibitory mechanisms. Five approaches are used 
to inhibit melanogenesis: (1) inhibition of tyrosinase mRNA transcription; (2) aberrant tyrosinase 

Figure 1. (a) Schematic representation of melanosome and melanin formation mechanism;
(b) signal transduction pathway for anti-melanogenesis activity; and (c) chemical reaction-based
melanin formation.

2.2. Signaling Pathways Activating Melanogenesis

To understand the signaling pathway of melanogenesis in physiological responses, four receptors
must be considered. First, the c-Kit receptor is activated by SCF, followed by the activation of MAP
(mitogen-activated protein) kinase and MITF. Second, adrenergic receptors bind adrenaline and
noradrenaline, which activate cAMP binding, followed by CREB and PKA activation. Third, MC1R
receptors are activated by ACTH and α-MSH, and interact with cAMP, via the identical adrenergic
receptor pathway. In another pathway, nitrogen oxygen (NO) radicals activate guanylate cyclase,
which activates cGMP and MITF. In particular, Wnt receptor activates GSK3β, which promotes
phosphorylation and accelerates anti-melanogenesis. The inhibition of phosphorylation in GSK3β
increases β-catenin and the LEF/TCA complex, and activates MITF [16–19]. For the above process,
activated MITF promotes the expression of tyrosinase, TRP-1 (DCT), TRP-2 (i.e., DOPA chrome
tautomerase (DCT)), and PKC-β. As a result, melanin is formed. In contrast, in the extracellular
signaling process, the phosphorylation of MEK/ERK and P13K/AKT downregulates MITF, leading
to anti-melanogenesis effects, while the dephosphorylation process activates MITF (Figure 1b).
The biochemical response for eumelanin and pheomelanin has been explained in Section 2.1.

2.3. Inhibition of Melanogenesis through Tyrosinase Inhibition

Every anti-melanogenesis ingredient acts via inhibitory mechanisms. Five approaches are used
to inhibit melanogenesis: (1) inhibition of tyrosinase mRNA transcription; (2) aberrant tyrosinase
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maturation; (3) inhibition of tyrosinase catalytic activity; (4) acceleration of tyrosinase degradation; and
(5) indirect regulation of tyrosinase activity [20]. Until now, tyrosinase has been the most common target
for therapeutic agents intended to alleviate hyperpigmentation [6–9,21,22]. Multiple approaches could
potentially be used to control pigmentation via the regulation of tyrosinase activity. The transcription
of its mRNA, its maturation via glycosylation, its trafficking to melanosomes, as well as the modulation
of its catalytic activity and/or stability are all targets for tyrosinase regulation. Well-known tyrosinase
inhibitors and their sources include kojic acid, arbutin, glutathione, vitamin A (retinol), vitamin B3

(niacinamide), vitamin C, mulberry, papaya, and licorice root. Among them, the utilization of kojic acid
and arbutin is still common because these agents have repeatedly been demonstrated to be effective
whitening agents. The need for new kinds of natural whitening ingredients increases substantially with
the growth of the market for whitening products. Some whitening products contain a mixture of many
extracts known to contain tyrosinase inhibitors, but other extracts may instead act as antioxidant or
anti-inflammatory agents. A number of tyrosinase inhibitors from both natural and synthetic sources
have been identified. Currently, natural sources, such as polyphenols, have been gaining attention,
reflecting public desire for safe and effective ingredients.

3. Polyphenols and Melanogenesis

3.1. Antioxidant Activity and Melanogenesis

The antioxidant defense system is resistant to free radicals generated in the metabolic
processes [23]. Free radicals damage lipids, proteins, and DNA, and cause many diseases. Therefore,
antioxidants have beneficial effects on the overall health condition of the skin and protect against
UV radiation, ozone, and smoke, among other harmful substances responsible for epithelial cell and
basal cell cancer and immune suppression. Representative antioxidant chemicals are plant-derived
polyphenols. Polyphenols are typically divided into four primary classes: phenolic acids, flavonoids,
lignans, and stilbenes (Figure 2a). Of these, phenolic acids and flavonoids are the most prevalent in
nature and the most widely studied. In general, these molecules share common structural features, i.e.,
multiple aromatic rings and attached hydroxyl groups [24,25].

With respect to antioxidant activity, quercetin is a popular flavonoid aglycone that is found in
a variety of fruits and vegetables, such as onions, curly kale, leeks, broccoli, and blueberries [24,25].
Quercetin is a potent tyrosinase inhibitor, melanogenesis inhibitor in mouse B16 melanoma cells, and
an antioxidant and anticancer agent [26–30]. However, it has the opposite effect as a melanogenesis
accelerator in human melanoma cells [26,31–36]. It has been shown to decrease intracellular tyrosinase
activity and inhibit mushroom tyrosinase activity in a cell-free system [28,29]. In addition, quercetin
inhibits melanin production in B16 melanoma cells in a dose-dependent manner [37]. However, some
studies report the stimulatory effects of quercetin on cellular melanogenesis. Nagata et al. (2004)
reported that quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase
in human melanoma cells and normal human melanocytes [31]. Quercetin and its derivatives also
stimulate melanogenesis in the absence of α-MSH in B16 murine melanoma cells [38]. These opposing
effects of quercetin are widely debated, considering the potential application of quercetin in inhibiting
tyrosinase enzyme activity in the cosmetic field. Like other flavones, quercetin contains a heterocyclic
pyrone ring in its structure, which is connected on both sides to phenolic moieties. It exists in the
form of rutin (quercetin-3-rutinoside), a glycoside containing a disaccharide covalently attached to
the quercetin unit (Figure 2b) [34–36,38,39]. As a therapeutic agent, quercetin plays an important
role in biological activities, e.g., as an anti-allergic, anti-inflammatory, anti-melanogenesis, and
anti-carcinogenic agent [40–42], suggesting that it acts as a free radical scavenging agent for superoxide
anions and lipid peroxyl species.

Thus, among its various biological activities, the antioxidant activity of quercetin is particularly
important for anti-melanogenesis. Quercetin is considered an antioxidative agent that inactivates the
tyrosinase enzyme, mediating the relationship between its antioxidant properties and anti-melanogenesis.
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It is closely associated with the free radical scavenging effect of antioxidant functions in quercetin for
defense against oxidative stress. As a primary condition for anti-melanogenesis effects, the antioxidant
property of polyphenols (herein, quercetin) has been extensively investigated, and these studies have
focused on whether or not quercetin shows anti-melanogenesis effects.
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Anti-melanogenesis depends on the position of OH functional groups in the quercetin structure
(Figure 2b) [34–37]. Structurally, the IC50 value for melanin inhibition by quercetin is 26.5 µM,
while that for inhibition by quercetin-41-O-glucoside is 130.6 µM. However, the cell viabilities for
quercetin and quercetin-41-O-glucoside are 88% and 82%, respectively. Quercetin-3,41-O-diglucoside
and quercetin-3,41-O-rhamnoside (rutin) are safe because they have high antioxidant activity with
a related B ring, but have little effect on hypo-pigmentation. Thus, although quercetin and
quercetin-41-O-glucoside have the ability to reduce melanin content, they also demonstrate cell
toxicity [43]. Conclusively, C41 glycosylation of the quercetin structure doubles its antioxidant
activity but decreases the inhibition of melanogenesis five-fold. Quercetin presents a dilemma with
respect to skin-whitening agents; its safety should be considered for practical human applications.
In addition, 41-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1 Ñ 4)-β-D-glucopyranoside
shows an increase in melanin content by MITF expression with no cytotoxic effects at 10 µM, suggesting
that the C41 site plays a critical role in melanogenesis [35]. Yamauchi et al. (2013) determined that R5
substituted with –OCH3 groups stimulates melanogenesis activity, and both R3 and R5 substituted with
–OCH3 groups result in a cell viability of ~60% at 12.5 µM [35]. These observations support the role of C4
in melanogenesis. In an expanded analysis, Yamauchi et al. (2014) reported that synthesized quercetin
glycosides have an anti-melanogenesis effect and demonstrate less cell toxicity for R1 = cellobiose,
R3 = OH, R5 = cellobiose, or R1 = OH, R3 = cellobiose, R5 = cellobiose, or R1 = glucose, R3 = OH,
R5 = glucose [34]. Other quercetin glycosides show either no anti-melanogenesis effect (or the
acceleration of melanogenesis), cell toxicity, or their combination. Therefore, quercetin glycosides are
not suitable for use as whitening agents [36].
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3.2. In Vitro and in Vivo Anti-Melanogenesis Effects of Quercetin

Most anti-melanogenesis experiments using quercetin have been in vitro, rather than in vivo,
assays. The results for cellular tests of melanin content, tyrosinase activity, mRNA expression, and
protein level expression based on in vitro investigations of quercetin and its derivatives, including
compounds derived from natural extracts, are summarized in Table 1. Generally, B16F10/B16F1
melanoma cells and mouse melanoma cells have been utilized, but human melanoma of vagina
(HMVII) cells and normal human epidermal melanocytes (NHEM) have also been used, though
infrequently. Depending on the concentration of quercetin or its compounds in natural extracts, at low
concentrations, in the range of 10–20 µM, melanin content in cells increases, while at concentrations
of 20–50 µM, it decreases. At a concentration in the range of 50–100 µM, melanin content decreases
and cytotoxicity increases (Figure 3). By contrast, at concentrations of 10–500 µM, the melanin content
increases; however, these concentrations are safe with respect to cell viability. This means that
natural quercetin compounds show less cell toxicity. However, importantly, those compounds are
not effective in reducing melanin content. Furthermore, as shown in Table 1, Nagata et al. found that
tyrosinase activity in cell systems is enhanced, but there is no effect on mRNA expression, resulting
in the overexpression of the tyrosinase protein owing to quercetin treatment at concentrations of
1–20 µM [31]. In a cell-free system, tyrosinase activity is inhibited at 10–100 µM. Interestingly, in a cell
system, tyrosinase activity increased at 5–10 µM, but was inhibited at 20–50 µM. Tyrosinase, TRP-1, and
TRP-2 show different protein expression patterns for the tested quercetin concentrations. Specifically,
at quercetin concentrations of 10 and 20 µM, tyrosinase is overexpressed, but at 50 µM, it is expressed
at slightly lower levels. At quercetin concentrations of 10, 20, and 50 µM, TRP-1 shows gradually lower
expression, while at 5 and 10 µM, TRP-2 is expressed, and at 20 and 50 µM, its expression gradually
decreases [41]. In particular, Takekoshi et al. (2013) reported an increase in melanin content at quercetin
concentrations >50 µM [26]. Tyrosinase and TRP-2 are overexpressed at quercetin concentrations of
5–160 µM, but there is no effect on TRP-1 at quercetin concentrations of 50–160 µM. Likewise, the same
group showed that at 10 µM quercetin, melanin content increases and tyrosinase is overexpressed after
three days [21].

For quercetin in the Capparis spinosa L. extract, the melanin content increases at 50–500 µM and
tyrosinase is expressed at 300 µM after 24 h [33]. Masuda et al. (2012) showed that at 12.5–50 µM,
the melanin content increases, while at 100 and 200 µM, the melanin content decreases [44]. In a cell
system, tyrosinase activity was enhanced at quercetin concentrations of 200 µM. As P-38 MAPK is
overexpressed, MITF is reduced, and ERK1/2 is overexpressed, but the activation of MITF results
in low expression of tyrosinase at the protein level quercetin concentrations of 5 and 200 µM [44].
Quercetin extracted from rosehip (Rosa canina L.) results in a decrease in melanin content at 20 µM
and tyrosinase activity in both cell and cell-free systems is inhibited at 10–40 µM, resulting in
low tyrosinase expression at the protein level at these concentrations [37]. An et al. (2008) tested
quercetin derivatives with taxifolin and luteolin as additives, and the melanin content decreased at
200 µM [39]. In the presence of taxifolin and luteolin in a cell system, tyrosinase activity is inhibited
and tyrosinase is overexpressed at quercetin concentration of 200 µM [38]. Synthesized quercetin
is related to decreased melanin content at concentrations of 6.25–100 µM. It is associated with low
expression of tyrosinase, TRP-1, TRP-2, and p38 MAPK and a lack of stimulation of MITF and
phosphorylated-p38 (p-p38) MAPK [34]. Most quercetin derivatives lead to increased melanin content.
However, quercetin-galactose-rhamnose-xylose and quercetin-glucose-rhamnose result in decreases
at 72 µM after 72 h and the mRNA expression levels of tyrosinase, TRP-1, TRP, MITF, and MC1R are
downregulated. As a result, the tyrosinase protein expression level is low. Arung et al. (2011) found
that quercetin glucoside (Allium cepa) decreases the melanin content at 1–100 µM [43].
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Table 1. Literature summary of in vitro anti-melanogenesis effect by quercetin and its derivatives.

Quercetin Type (Pure or Derivatives) Cell Line Concentration
Range Cell Viability Conc. Melanin Content

* Tyrosinase
Activity (Cell Free

or Cell System)

mRNA
Expression

Protein Level
Expression Reference

Quercetin (3,31,41,5,7-pentahydroxyflavone)
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Takeyama et al.,
(2004) [32]

Quercetin B16F10 melanoma
Cell (mice)

5, 10, and
50 µM >10 µM—Cell toxicity At 5, 10, and

50 µM—Decrease – – – Kim et al., (2012)
[27]

Quercetin Melan-a cells (mice) 0.01–60
µg/mL

0.01–60 µg/mL—No
cytotoxicity 60 µg/mL—Decrease – – – Chun et al., (2002)

[28]
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Table 1. Cont.

Quercetin Type (Pure or Derivatives) Cell Line Concentration
Range Cell Viability Conc. Melanin Content

* Tyrosinase
Activity (Cell Free

or Cell System)

mRNA
Expression

Protein Level
Expression Reference

Quercetin B16F10 melanoma
(mice) 30–50 µg/mL

>30 µg/mL for 48 h
culture with MTT

assay—Cell toxicity
>2.5 µg/mL for 48 h
culture with Trypan

blue test—Cell
toxicity

30–100
µg/mL—Decrease – – – Chun et al., (2002)

[29]

Quercetin – 0–200 µM – <200 µM—Decrease – – – Xie et al., (2003)
[22]

Quercetin (Capparis spinosa L. extract) B16 melanoma cells
(mice) 5–500 µM Up to 500 µM—No

cytotoxicity
At 50–500

µM—Increase –

Tyrosinase,
TRP-1

TRP-2—not
determined

Tyrosinase After 24 h at
300 µM—Increase

Matsuyama et al.,
(2009) [33]

Quercetin (Morinda citrifolia extract) B16 melanoma cells
(mice)

12.5, 25, 50,
100, and
200 µM

–
12.5–50 µM–Increase

100 and
200 µM—Decrease

Tyrosinase activity
(cell system) At 200

µM—Enhance

p-p38 MAPK—
Overexpression
—Depression of
MITF ERK1/2—
Overexpression
—Activation of

MITF

Tyrosinase At 5 and 200
µM—Low expression

Masuda et al.,
(2012) [44]

Quercetin rose hip (Rosa canina L. extract) B16 melanoma cells
(mice)

Eluates 250
µg/mL and
20 µM from

EtOAC
fraction

At 250 µg/mL—No
cytotoxicity At 20

µM—No cytotoxicity

At 250 µg/mL
—Decrease At 20
µM—Decrease

* Tyrosinase activity
(cell free system &

cell system) at
10–40 µM
—Inhibit

– Tyrosinase 10–40 µM
—Low expression

Fujii et al., (2009)
[37]

Quercetin (Anastatica hierochuntica) B16 melanoma 4A5
cells (mice) 0–100 µM At <100 µM—No

cytotoxicity At <30 µM—Decrease

Tyrosinase activity
(cell free system) at

1–30 µM
—Enhance

Tyrosinase
TRP-1 TRP-2

—Low
expression

– Nakashima et al.,
(2010) [45]

Quercetin derivatives Taxifolin

Cosmetics 2016, 3, x 8 of 16 

 

Quercetin 
B16F10 melanoma 

(mice) 30–50 μg/mL 

>30 μg/mL for 48 h 
culture with MTT 

assay—Cell toxicity  
>2.5 μg/mL for 48 h 
culture with Trypan 

blue test—Cell toxicity 

30–100 
μg/mL—Decrease — — — 

Chun et al., (2002) 
[29] 

Quercetin — 0–200 μM — <200 μM—Decrease — — — 
Xie et al., (2003) 

[22] 

Quercetin (Capparis spinosa L. extract) 
B16 melanoma 

cells (mice) 
5–500 μM 

Up to 500 μM—No 
cytotoxicity 

At 50–500 
μM—Increase 

— 

Tyrosinase, 
TRP-1 

TRP-2—not 
determined 

Tyrosinase After 24 h at 
300 μM—Increase 

Matsuyama et al., 
(2009) [33] 

Quercetin (Morinda citrifolia extract) 
B16 melanoma 

cells (mice) 

12.5, 25, 50, 
100, and  
200 μM 

— 
12.5–50 μM–Increase 

100 and  
200 μM—Decrease 

Tyrosinase 
activity (cell 

system) At 200 
μM—Enhance 

p-p38 MAPK— 
Overexpression
—Depression of 
MITF ERK1/2— 
Overexpression
—Activation of 

MITF 

Tyrosinase At 5 and 200 
μM—Low expression 

Masuda et al., 
(2012) [44] 

Quercetin rose hip (Rosa canina L. extract) 
B16 melanoma 

cells (mice) 

Eluates 250 
μg/mL and 
20 μM from 

EtOAC 
fraction 

At 250 μg/mL—No 
cytotoxicity At 20 

μM—No cytotoxicity 

At 250 μg/mL  
—Decrease At  

20 μM—Decrease 

* Tyrosinase
activity (cell 

free system & 
cell system) at 

10–40 μM  
—Inhibit 

— 
Tyrosinase 10–40 μM 

—Low expression 
Fujii et al., (2009) 

[37] 

Quercetin (Anastatica hierochuntica) 
B16 melanoma 4A5 

cells (mice) 0–100 μM 
At <100 μM—No 

cytotoxicity 
At <30 μM 
—Decrease 

Tyrosinase 
activity (cell 

free system) at 
1–30 μM 

—Enhance 

Tyrosinase 
TRP-1 TRP-2 

—Low 
expression 

— 
Nakashima et al., 

(2010) [45] 

Quercetin derivatives Taxifolin  

  
Luteolin  

 

B16F10 melanoma 
cells (mice) 

0–200 μM 0–200 μM  
—Cell toxicity 

At 200 μM  
—Decrease 

Tyrosinase 
Activity by 

Taxifolin and 
Luteolin (cell 

system) At 200 
μM—Inhibit 

— 
Tyrosinase by Taxifolin 

and Luteolin At 200 
μM—Overexpression 

An et al., (2008) 
[39] 

O

OH

OOH

HO

OH

OH

O

OH

OOH

HO

OHLuteolin
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(mice) 30–50 μg/mL 

>30 μg/mL for 48 h 
culture with MTT 
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>2.5 μg/mL for 48 h 
culture with Trypan 

blue test—Cell toxicity 

30–100 
μg/mL—Decrease — — — 

Chun et al., (2002) 
[29] 

Quercetin — 0–200 μM — <200 μM—Decrease — — — 
Xie et al., (2003) 
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Quercetin (Capparis spinosa L. extract) 
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5–500 μM 

Up to 500 μM—No 
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At 50–500 
μM—Increase 

— 

Tyrosinase, 
TRP-1 

TRP-2—not 
determined 

Tyrosinase After 24 h at 
300 μM—Increase 

Matsuyama et al., 
(2009) [33] 

Quercetin (Morinda citrifolia extract) 
B16 melanoma 

cells (mice) 

12.5, 25, 50, 
100, and  
200 μM 

— 
12.5–50 μM–Increase 

100 and  
200 μM—Decrease 

Tyrosinase 
activity (cell 

system) At 200 
μM—Enhance 

p-p38 MAPK— 
Overexpression
—Depression of 
MITF ERK1/2— 
Overexpression
—Activation of 

MITF 

Tyrosinase At 5 and 200 
μM—Low expression 

Masuda et al., 
(2012) [44] 

Quercetin rose hip (Rosa canina L. extract) 
B16 melanoma 

cells (mice) 

Eluates 250 
μg/mL and 
20 μM from 

EtOAC 
fraction 

At 250 μg/mL—No 
cytotoxicity At 20 

μM—No cytotoxicity 

At 250 μg/mL  
—Decrease At  

20 μM—Decrease 

* Tyrosinase
activity (cell 

free system & 
cell system) at 

10–40 μM  
—Inhibit 

— 
Tyrosinase 10–40 μM 

—Low expression 
Fujii et al., (2009) 

[37] 

Quercetin (Anastatica hierochuntica) 
B16 melanoma 4A5 

cells (mice) 0–100 μM 
At <100 μM—No 

cytotoxicity 
At <30 μM 
—Decrease 

Tyrosinase 
activity (cell 

free system) at 
1–30 μM 

—Enhance 

Tyrosinase 
TRP-1 TRP-2 

—Low 
expression 

— 
Nakashima et al., 

(2010) [45] 

Quercetin derivatives Taxifolin  

  
Luteolin  

 

B16F10 melanoma 
cells (mice) 

0–200 μM 0–200 μM  
—Cell toxicity 

At 200 μM  
—Decrease 

Tyrosinase 
Activity by 

Taxifolin and 
Luteolin (cell 

system) At 200 
μM—Inhibit 

— 
Tyrosinase by Taxifolin 

and Luteolin At 200 
μM—Overexpression 

An et al., (2008) 
[39] 

O

OH
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OH

OH

O

OH

OOH

HO

OH

B16F10 melanoma
cells (mice) 0–200 µM 0–200 µM—Cell

toxicity
At 200 µM
—Decrease

Tyrosinase Activity
by Taxifolin and

Luteolin (cell
system) At 200 µM

—Inhibit

–
Tyrosinase by Taxifolin

and Luteolin At 200
µM—Overexpression

An et al., (2008)
[39]
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Table 1. Cont.

Quercetin Type (Pure or Derivatives) Cell Line Concentration
Range Cell Viability Conc. Melanin Content

* Tyrosinase
Activity (Cell Free

or Cell System)

mRNA
Expression

Protein Level
Expression Reference

1. 3-O-methyl quercetin

Cosmetics 2016, 3, x 9 of 16 

 

1. 3-O-methyl quercetin  

  
2. 3’,4’,7-O-trimethylquercetin (Synthesized 

quercetin)  

 

B16 melanoma 
cells (mice) 

— From at 6.25 μM—Cell 
toxicity 

At 6.25–100 μM 
—Increase 

— — 

Tyrosinase TRP-1 
TRP-2 p38 

MAPK—Low 
expression At 3.1–12.5 
μM MITF p-p38 
MAPK—Lack of 

stimulation 

Yamauchi et al., 
(2014) [36] 

A. 4’-O-β-D-glucopyranosyl-quercetin-3-O-β-
D-glucopyranosyl-(1→4)-β-D-glucopyranoside 

 
B. 4’-O-β-D-glucopyranosyl-(1→2)-β-D-gluc
opyranosyl-quercetin-3-O-β-D-glucopyranosyl-
(1→4)-β-D-glucopyranoside (Helminthostachys 

zeylanica root)  

 

Murine B16 
melanoma cells 

(mice) 
— 

At 10 μM—No 
cytotoxicity At 10 μM—Increase 

Tyrosinase 
activity (cell 
system) at 10 
μM—Enhance 

— — 
Yamauchi et al., 

(2013) [35] 
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2. 3’,4’,7-O-trimethylquercetin (Synthesized
quercetin)
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— — 

Tyrosinase TRP-1 
TRP-2 p38 
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expression At 3.1–12.5 
μM MITF p-p38 
MAPK—Lack of 

stimulation 

Yamauchi et al., 
(2014) [36] 

A. 4’-O-β-D-glucopyranosyl-quercetin-3-O-β-
D-glucopyranosyl-(1→4)-β-D-glucopyranoside 

 
B. 4’-O-β-D-glucopyranosyl-(1→2)-β-D-gluc
opyranosyl-quercetin-3-O-β-D-glucopyranosyl-
(1→4)-β-D-glucopyranoside (Helminthostachys 

zeylanica root)  

 

Murine B16 
melanoma cells 

(mice) 
— 

At 10 μM—No 
cytotoxicity At 10 μM—Increase 

Tyrosinase 
activity (cell 
system) at 10 
μM—Enhance 

— — 
Yamauchi et al., 

(2013) [35] 
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B16 melanoma cells
(mice) – From at 6.25

µM—Cell toxicity
At 6.25–100 µM

—Increase – –

Tyrosinase TRP-1 TRP-2
p38 MAPK—Low

expression At 3.1–12.5
µM MITF p-p38
MAPK—Lack of

stimulation

Yamauchi et al.,
(2014) [36]

A. 4’-O-β-D-glucopyranosyl-quercetin-3-O-β-
D-glucopyranosyl-(1Ñ4)-β-D-glucopyranoside
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B. 4’-O-β-D-glucopyranosyl-(1Ñ2)-β-D-
glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-
(1Ñ4)-β-D-glucopyranoside (Helminthostachys

zeylanica root)
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A. 4’-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucop
yranosyl-(1→4)-β-D-glucopyranoside  

 
 

 
 

B. 4’-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranos
yl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopy

ranoside (Helminthostachys zeylanica root)  
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— 
At 10 μM—No 
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At 10 μM—Increase 
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activity (cell 
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μM—Enhance 

— — 
Yamauchi et al., 

(2013) [35] 
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Murine B16
melanoma cells

(mice)
– At 10 µM—No

cytotoxicity At 10 µM—Increase
Tyrosinase activity
(cell system) at 10
µM—Enhance

– – Yamauchi et al.,
(2013) [35]
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Table 1. Cont.

Quercetin Type (Pure or Derivatives) Cell Line Concentration
Range Cell Viability Conc. Melanin Content

* Tyrosinase
Activity (Cell Free

or Cell System)

mRNA
Expression

Protein Level
Expression Reference

Quercetin glucosides (4.5%)
(Wine flavonoid fraction)

Cosmetics 2016, 3, x 11 of 16 

 

Quercetin glucosides (4.5%)  
(Wine flavonoid fraction)  

 

 
 

Melan-a 
cells (mice) 

— At 200 mg/L—Cell 
toxicity 

At 8 mg/L—Increase 

Tyrosinase 
activity (cell 
system) at 40 
and 200 μM 

—Inhibit 

— — Gómez-Cordovés 
et al., (2001) [40] 

A. Quercetin-4’-O-β-glucoside  
 

 
 

B. Quercetin-3,4’-O-diglucoside  
 

 
 
 

B16 
melanoma 
cell (mice) 

— 
>10 μM—Slight cell 

toxicity 
At 10, 100, and 200 
μM—Increase 

Tyrosinase 
activity (cell 

system) At 50, 
100, and 200 
μM—Slight 

increase 

— — 
Yamauchi et al., 

(2014) [34] 
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Melan-a cells (mice) – At 200 mg/L—Cell
toxicity At 8 mg/L—Increase

Tyrosinase activity
(cell system) at 40

and 200 µM
—Inhibit

– – Gómez-Cordovés
et al., (2001) [40]

A. Quercetin-4’-O-β-glucoside
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Tyrosinase 
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— — 
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B. Quercetin-3,4’-O-diglucoside  

 

B16 melanoma cell 
(mice) 

— >10 μM—Slight cell 
toxicity 

At 10, 100, and 200 
μM—Increase 

Tyrosinase 
activity (cell 

system) At 50, 
100, and 200 
μM—Slight 

increase 

— — Yamauchi et al., 
(2014) [34] 

Quercetin 3-O-β-D-galactopyranoside 
(Nelnumbo nucifera Gaertn.) 
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IC50 = 15.67 
μg/mL 

— — 
Cho et al., (2013) 
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B. Quercetin-3,4’-O-diglucoside
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Melan-a cells 
(mice) 

— 
At 200 mg/L—Cell 

toxicity 
At 8 mg/L—Increase 

Tyrosinase 
activity (cell 
system) at 40 
and 200 μM 

—Inhibit 

— — 
Gómez-Cordovés 
et al., (2001) [40] 

A. Quercetin-4’-O-β-glucoside  

 
B. Quercetin-3,4’-O-diglucoside  

 

B16 melanoma cell 
(mice) 

— >10 μM—Slight cell 
toxicity 

At 10, 100, and 200 
μM—Increase 

Tyrosinase 
activity (cell 

system) At 50, 
100, and 200 
μM—Slight 

increase 

— — Yamauchi et al., 
(2014) [34] 

Quercetin 3-O-β-D-galactopyranoside 
(Nelnumbo nucifera Gaertn.) 

 

— — — — 

Tyrosinase 
activity (cell 
free system) 
IC50 = 15.67 
μg/mL 

— — 
Cho et al., (2013) 

[30] 
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B16 melanoma cell
(mice) – >10 µM—Slight cell

toxicity
At 10, 100, and 200

µM—Increase

Tyrosinase activity
(cell system) At 50,

100, and 200
µM—Slight increase

– – Yamauchi et al.,
(2014) [34]

Quercetin 3-O-β-D-galactopyranoside
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activity (cell 
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and 200 μM 
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— — 
Gómez-Cordovés 
et al., (2001) [40] 
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Table 1. Cont.

Quercetin Type (Pure or Derivatives) Cell Line Concentration
Range Cell Viability Conc. Melanin Content

* Tyrosinase
Activity (Cell
Free or Cell

System)

mRNA
Expression

Protein Level
Expression Reference

A. Quercetin-galactose-rhamnose-xylose

Cosmetics 2016, 3, x 11 of 16 

 

A. Quercetin-galactose-rhamnose-xy
lose  

 

B16F10 melanoma 
(mice)  

0–10 μM >300 μM—Cell toxicity 
70 μM After  

72 h—Decrease  
— 

Tyrosinas TRP-1 
TRP MITF 

MC1R—All 
mRNA 

down-regulated 

Tyrosinase–Decrease 
Chao et al., (2013) 

[46]  

B. Quercetin-glucose-rhamnose (rutin) 
(Arthrophytum scoparium)  

 

B16F1 melanoma 
(mice) — 

<100 μM—No 
cytotoxicity 

100 μM Inhibition of 
cellular melanin 

Tyrosinase 
activity (cell 
free system) 

Ethanol 
extract  

(40 μg/mL)  
—Inhibit 

— — 
Taira et al., (2015) 

[38] 

Tyrosinase activity in intracellular (cell) system was significantly inhibited compared to that in a cell-free system. 
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anti-melanogenesis.

In summary, melanin content is not closely associated to tyrosinase activity or mRNA and protein
expression levels [45]. However, Chao et al. (2013) reported that the melanin content is related to
a decrease in tyrosinase activity, a downregulation of mRNA expression, and a decrease in protein
expression levels [46]. Clearly, the anti-melanogenesis effect of quercetin is not clear and it remains to
be determined whether it induces an increase or decrease in melanin content. It is possible that the
effect depends on the quercetin concentration, and this should be tested in vitro using melanoma cells.

In order to evaluate the anti-melanogenesis effect of quercetin, in vivo analyses were performed
using the zebrafish, useful for studies of melanogenic inhibitors or stimulators in terms of deformed
morphologies or cell killing [47], because of its cost-effective and rapid analyses, its close physiological
relevance to humans [48], and the establishment of a transgenic zebrafish for superficial skin
ablation [49]. Chen et al. (2011) found that zebrafish larvae exhibit low toxicity owing to the
radical oxygen scavenging properties of the antioxidant quercetin [42]. Mitochondrial ATPase as
a target in zebrafish embryos modulates pigmentation in both melanocytes and melanoma cells [50].
Xenopus laevis pigment cell development can be tested using NSC 86153 compound but, unfortunately,
not using quercetin [51]. However, an anti-melanogenesis effect of quercetin has not been observed in
the zebrafish model. Therefore, our group recently tested zebrafish for an anti-melanogenic effect based
on quercetin concentration, and found a negligible effect on hypo-pigmentation and cell mortality at
quercetin concentrations >100 µM. These data will be shown elsewhere.

4. Concluding Remarks and Perspectives

Based on a number of in vitro studies and relatively few in vivo studies, quercetin and its derivatives
are not effective anti-melanogenesis agents. Pure quercetin, at >50 µM, results in a decreased melanin
content, while at 10–20 µM, the melanin content increases in a concentration-dependent manner
(Figure 3). Therefore, quercetin is not effective in cosmetic applications as a whitening ingredient.
However, quercetin glycosides may be suitable for anti-melanogenesis purposes with no cytotoxicity.
Other quercetin derivatives, including cyanidins, merit further tests of their anti-melanogenesis effects
in zebrafish, humans, and other animals. To minimize cell toxicity, the use of vitamin C and arbutin
with quercetin has been suggested. The growing demand for whitening cosmetics has had a positive
impact on the search for anti-melanogenesis ingredients. The consistent development of new and
innovative agents drives market growth; hence, new assay techniques and delivery systems are being
developed to improve the application of the agents in cosmetic products.
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Abbreviations

ACTH adrenocorticotropin melanocyte stimulating hormone
cAMP cyclic adenosinemonophosphate
cGMP cyclic guanosine monophosphate
CREB cAMP-response element binding protein
DCT DOPA chrome tautomerase
DHI 5,6-dihydroxyindole
DHICA 5,6-dihydroxyindole-2-carboxylic acid
DOPA 3,4-dihydroxyphenylalanine
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
HBTA 5-hydroxyl-1,4-benzothiazinylalanine
HMVII human melanoma of vagina
ICAQ indole-2-carboxylic acid-5,6-quinone
IQ indole-5,6-quinone
L-DOPA L-3,4-dihydroxyphenylalanine
LEF lymphoid-enhancing factor
MEK methyl ethyl ketone
MAP kinase mitogen-activated protein kinase
MART1 melan-A, MC1R; melanocortin 1 receptor
MC1R melanocortin 1 receptor
MITF microphthalmia-associated transcription factor
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NHEM normal human epidermal melanocytes
NO nitric oxide
OA1 ocular albinism type 1
PAR-2 protease activated receptor 2
PKA protein kinase A
PKC-β protein kinase C-β
PMEL17 Premelanosome protein 17
P13K phosphoinositide 3-kinase
SCF stem cell factor
TCA tricarboxylic acid
TRP-1 tyrosinase-related protein 1
TRP-2 (DCT) tyrosinase-related protein 2 (DOPA chrome tautomerase)
TYR tyrosinase
UV ultraviolet
Wnt wingless type
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