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Abstract: Skin is protected from the harmful effects of free radicals by the presence of an 

endogenous antioxidant system. However, when exposed to ultraviolet (UV) radiation, 

there is an imbalance between pro-oxidants and antioxidants, leading to oxidative stress and 

photoaging of the skin. It has been described that free radicals and other reactive species 

can cause severe damage to cells and cell components of the skin, which results in skin 

aging and cancer. To prevent these actions on skin, the use of topical antioxidant 

supplementation is a strategy used in the cosmetics industry and these antioxidants act on 

quenching free radicals. There are many studies that demonstrated the antioxidant activity 

of many phytochemicals or bioactive compounds by free radical scavenging. However, 

many bioactive substances are unstable when exposed to light or lose activity during 

storage. The potential sensitivity of these substances to light exposure is of importance in 

cosmetic formulations applied to skin because photo-degradation might occur, reducing 

their activity. One strategy to reduce this effect on the skin is the preparation of different 

types of nanomaterials that allow the encapsulation of the antioxidant substances. Another 

problem related to some antioxidants is their inefficient percutaneous penetration, which 

limits the amount of the active ingredient able to reach the site of action in viable 

epidermis and dermis. In this sense, the encapsulation in polymeric nanoparticles could 

enhance the permeation of these substances. Nanocarriers offers several advantages over 

conventional passive delivery, such as increased surface area, higher solubility, improved 

stability, controlled release, reduced skin irritancy, and protection from degradation. The 

different nanocarrier systems used in cosmetics include nanolipid delivery systems such as 

solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), nanoemulsions 
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(NEs), nanoparticles (NP) suspension, and polymer NPs, among others. In this review, we 

present the different types of nanomaterials used in cosmetic formulations to obtain the 

best effect of antioxidants applied onto the skin. 

Keywords: skin; antioxidants; nanocarriers; nanovesicles 

 

1. Introduction 

The skin is the outer barrier of the body, and it is exposed to various exogenous sources of oxidative 

stress, including ultraviolet radiation and pollutants. As a response to these oxidative attacks, reactive 

oxygen species (ROS) and other free radicals are generated in the skin [1]. 

Skin is protected from the harmful effects of free radicals due to the presence of an endogenous 

antioxidant network consisting of a variety of lipophilic (e.g., vitamin E, ubiquinones, carotenoids) and 

hydrophilic (e.g., vitamin C, uric acid, and glutathione) substances, and it is responsible for the balance 

between pro-oxidants and antioxidants. As the first defense, ROS are reduced by antioxidant enzymes, 

such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, as well as endogenous and 

exogenous small molecules, such as glutathione and vitamins C and E [2]. When biomolecules are 

oxidized, they are repaired or replaced by biological protective systems. Nevertheless, biomolecules are 

gradually oxidized in an irreversible manner, and accumulation of these biomolecules over time alters 

biological functions, eventually leading to aging and age-related diseases [3]. 

When exposed to UV radiation, there is an imbalance between pro-oxidants and antioxidants, 

leading to oxidative stress and photoaging of the skin [4]. The constant action of UV rays on the skin 

depletes the antioxidants present in the skin over time. Antioxidants present in the stratum corneum are 

susceptible to UV exposure and a single suberythemal dose can deplete their concentration to almost 

half [5]. 

Some studies have also demonstrated that visible and near-infrared (VIS/NIR) lights induce the 

development of free radicals in skin [6,7]. For this reason, sunscreen with an effect in the whole solar 

spectrum should contain UVB and UVA filters for the UV range, physical filters for the entire range, 

as well as antioxidants for the infrared (IR) range [8,9]. 

An impairment of the balance between oxidants and antioxidants, due to an increased exposure to 

exogenous sources of ROS, has been defined as “oxidative stress” and involves oxidative damage of 

lipids, proteins, and DNA. Topical administration of antioxidants is regarded as an interesting strategy in 

reducing ROS-induced skin damage since it may improve skin antioxidant status [1]. 

2. Antioxidants 

Of the various enzymatic and non-enzymatic antioxidants present in the skin, vitamin E homologue, 

also known as α-tocopherol (tocopherol), is considered the most active, lipid-soluble,  

membrane-bound antioxidant. Tocopherol acts primarily by two mechanisms; as an antioxidant, it will 

donate one of its electrons to a free radical, thereby stabilizing it. In addition, tocopherol is known to 

slow down the process of collagen breakdown [5]. 
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When the endogenous antioxidants are insufficient to reduce oxidative stress, then antioxidants 

from different sources can be applied to the skin in different cosmetic formulations. 

Retinol has been intensively investigated to study the physiology and function of skin. Retinol is 

stored in the skin as retinyl ester or is converted into retinoic acid. Retinoic acid is the biologically 

active retinoid; however, retinol is less irritating and produces similar effects as retinoic acid. This quality 

makes retinol more favorable for use in cosmetic products. Although trans-retinol is extensively used 

in the cosmetic industry, there is insufficient information on its quantitative penetration and 

distribution within the different layers of the skin [10]. 

Polyphenols are a group of chemical molecules characterized by the presence of phenol units in  

their molecular structure and are the most abundant antioxidants present in fruits and vegetables.  

The efficiency of polyphenols as antioxidant compounds greatly depends on their chemical structure. 

Flavonoids, a class of polyphenols, are the most potent antioxidants present in plants, and catechin is 

an example of this class found abundantly in green tea extracts. Resveratrol, another polyphenol that is 

considered to be an important antioxidant from the family of stilbene, is abundantly found in the skin 

of grapes, nuts, and berries [11]. Resveratrol shows geometric isomerism, but only trans-resveratrol 

presents several biological effects, such as anticancer, anti-aging, and antioxidant activities. It is an 

interesting drug to be incorporated in dermal products. Resveratrol has poor oral bioavailability, short 

half-life, and is extensively metabolized in the body [12]. 

Curcumin is another polyphenol that gives color to the rhizomes of Curcuma longa. It is most 

commonly used in traditional medications and cosmetics. Studies have shown that curcumin is also poorly 

absorbed in the gastrointestinal tract [13]. Curcumin is a potent free radical scavenger quenching 

superoxide anions, singlet oxygen, and hydroxyl radicals and inhibiting lipid peroxidation [14]. 

Quercetin, coenzyme Q10, and vitamin C, among others, are the most used antioxidants for topical 

application. Supplementing skin with topical antioxidants may strengthen antioxidant capacity and 

thus reduce reactive oxygen species-induced skin damage. A good candidate for a topical antioxidant 

should fulfill two conditions: (i) the candidate should permeate through the stratum corneum and (ii) 

reach the deeper cutaneous layers without significant leakage into systemic circulation [15]. 

The attributes of different polyphenols and other antioxidants make them excellent candidates for 

skin treatment; however, in some cases, their poor water solubility makes their application difficult.  

On the other hand, there are good antioxidants such as vitamin C used in cosmetics and dermatological 

preparations because of their favorable effects on skin. However, vitamin C has a poor chemical stability 

in heterogeneous systems and may undergo dismutation reactions [16]. One strategy to avoid this type 

of inconveniences is the formulation of these antioxidants as nano using different nanocarriers. 

3. Nanocarriers 

Nanocarriers have emerged as a promising drug delivery system offering several advantages over 

conventional passive delivery, such as increased surface area, higher solubility, improved stability, 

controlled release of active ingredients, reduced skin irritancy, protection from degradation, increased 

drug loading, and improved permeation of actives into the skin [17]. 

In this sense, Lohani et al. have reviewed the use of nanotechnology in cosmetics and its  

advantages [18]. There are different types of nanoparticles: (a) liposomes consisting of spherical  
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self-closed vesicles of colloidal dimensions, in which the phospholipid bilayers sequester part of the 

solvent in which they freely float into their interior, and the lipid bilayer is mainly composed of natural 

or synthetic phospolipids; (b) nanocapsules that consist of vesicular systems that are made up of 

polymeric membranes in which an inner liquid core is encapsulated at the nanoscale level (10 nm to 

1000 nm); (c) solid lipid nanoparticles which consist of submicron colloidal carriers composed of 

physiological lipid dispersed in water or in aqueous solution of surfactant; (d) nanocrystals which are 

aggregates composed of several hundreds to thousands of atoms that combine into a cluster (10–400 nm) 

and are used for the delivery of poorly soluble actives; (e) niosomes which are nonionic surfactant 

vesicles devised by using nonionic surfactants and have high entrapment efficiency, improved chemical 

stability, and enhanced penetration. Niosomes have the advantage of accommodating hydrophilic, 

lipophilic, and amphiphilic drug moieties. They are less toxic and expensive than liposomes but they 

have disadvantages such as aggregation and leaking of the entrapped drug (Figure 1). 

 

Figure 1. Examples of different types of nanoparticles. (a) Liposome showing a phospholipid 

bilayer surrounding an aqueous interior; (b) solid lipid nanoparticle; (c) nanocapsule 

loaded with an active ingredient [18]. 

Many lipid nanocarrier products available on the market are for cosmetic applications. Nanostructured 

lipid carriers (NLCs) belonging to the second generation of lipid nanoparticles are stable to leakage 

and have high drug loading capacity [19]. Lipid-based nanosystems that have been investigated for 

topical applications include solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and 

nanoemulsions (NE) [20]. SLN are composed of lipids that are solid at ambient temperature, whereas 

NLC are mixtures of solid and liquid lipids. Some of the advantages of SLN and NLC include the use 

of physiological lipids in the composition, the avoidance of organic solvents, the possibility to produce 

concentrated lipid suspensions, and the availability of established scale-up processes [21]. Topical 

application of SLN- and NLC-based systems have been studied with various active compounds such as 

vitamin E, vitamin A, and retinoic acid, among others [22]. 
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3.1. Nanocarriers for Resveratrol Administration 

Recently, an extensive review of the nanoformulations with resveratrol has been published [23] with 

special focus on the application of resveratrol as a cancer therapy. In this sense, nano-sized formulations 

are additionally advantageous in cancer therapeutics due to the enhanced permeability and retention 

(EPR) effect by which these molecules accumulate preferentially in cancer tissues as was postulated. 

For the application on skin, resveratrol-loaded solid lipid nanoparticles (SLN) have been developed 

and the cellular uptake, transport, and internalization in keratinocytes have been studied [24]. The 

particles readily crossed the cell membrane in as little as 15 min and, in comparison with resveratrol in 

solution, the SLN-encapsulated drug exhibited greater intracellular delivery, solubility, and stability. 

SLN were able to protect resveratrol from photo degradation, enhance its uptake in porcine ear skin, 

and improve its anti-lipoperioxidative activity, appearing as a promising delivery system [25]. 

Liposomes and niosomes can increase the residence time of the drug in the stratum corneum and 

epidermis, reducing the systemic absorption of the drug. The advantages of niosomes over liposomes 

are their higher chemical stability and their low cost. Niosomes loaded with resveratrol showed higher 

delivery of resveratrol in deeper layers of the skin compared to liposomes; then they are better as 

carriers of resveratrol. Niosomes have been prepared with different proportions of polyglyceryl-3 

dioleate (PLU) or glycerol monooleate (PEC) and cholesterol. In particular, niosomes composed by  

30 mg/mL of PEC and 30 mg/mL of cholesterol (PEC-niosomes 30:30) allowed the highest amount of 

resveratrol to be accumulated in the stratum corneum as is shown in Figure 2 [26]. Another study has 

demonstrated the efficacy of [27]. 

 

Figure 2. Percentage of resveratrol accumulated in stratum corneum (SC), epidermis, dermis, 

and receptor fluid (RF) applied onto the skin into P90-liposomes and PLU- or PEC-niosomes. 

Each value is the mean ± SD of six experimental determinations. No statistical differences  

(P > 0.05) were found in samples labelled with the same symbol (*, +, #, °). Reproduced with 

permission from [26], published by Royal Pharmaceutical Society, 2013.  

Another possibility is the simultaneous encapsulation of resveratrol with curcumin in lipid-core 

nanocapsules, as has been proposed recently. Skin penetration studies showed an increased delivery of 

resveratrol into deeper skin layers upon co-delivery in comparison to the encapsulation of one individual 

polyphenol. The authors demonstrated that the interaction of curcumin with the lipid bilayers of the 
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stratum corneum facilitated the penetration of the less lipophilic resveratrol across the skin barrier into 

the epidermis and dermis [28]. 

The co-encapsulation of resveratrol and curcumin in niosomal systems affected the entrapment 

efficiency values, with respect to the formulations containing the single antioxidant. The in vitro 

percutaneous permeation of the antioxidants appeared to be controlled and improved with respect to the 

corresponding free solutions used as the control. Moreover, the antioxidant combinations resulted in a 

promoted ability to reduce free radicals due to a synergic antioxidant action and, for this reason, these 

niosomal formulations showed potential in the transdermal delivery of antioxidant molecules and may 

be useful in the cosmeceutical field [29]. 

3.2. Nanocarriers for Vitamin C 

Vitamin C has been used in cosmetic products due to its biological activity as a non-enzymatic 

soluble antioxidant. Vitamin C can protect biomolecules against oxidative degradation through its ability 

to scavenge and reduce reactive oxidizing molecules and free radicals. However, vitamin C is unstable 

and can be easily oxidized under aerobic conditions, the rate of which is increased with increasing heat 

of UV light levels [30]. In order to avoid this oxidation, many derivatives of vitamin C have  

been introduced, including various esters, such as ascorbylpalmitate (AP) and retinylascorbate, 

bis(Lascorbicacid-3,3′)phosphate, and L-ascorbic acid 2-phosphate. AP has been the more popular ester, 

used as an antioxidant additive in cosmetic products because of its improved stability and better skin 

penetration in comparison to vitamin C. The deceleration in the AP degradation has been obtained by 

encapsulation of AP into microemulsions, bilayer vesicles, polymeric nanoparticles, and solid lipid 

nanoparticles [31]. To increase the stability of AP, it is possible to make a nanocarrier with an 

antioxidative property, attaching the natural dietary antioxidant curcumin onto poly(vinyl alcohol) 

(PV(OH)), a nontoxic, biocompatible, and biodegradable hydrophilic polymer. The obtained  

curcumin-grafted PV(OH) polymer (CURPV(OH)) was then fabricated into a nanocarrier and AP was 

encapsulated into the CUR-PV(OH) nanocarrier. The stability of the encapsulated AP was evaluated 

and it demonstrated better stability compared to free AP, as can be observed in Figure 3 [32]. 

 

Figure 3. Stability of dry free AP (unencapsulated AP), or AP encapsulated in different 

nanocarriers, after storage at 30 °C under light-proof conditions with normal air exposure. 

Reproduced with permission from [32], published by Wiley Periodicals, Inc., 2013. 
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3.3. Nanocarriers for Quercetin Delivery 

Quercetin has been demonstrated as the flavonoid with the highest antioxidant activity, characterized 

by multiple mechanisms. Moreover, the topical application of quercetin decreases skin damage 

induced by exposure to UV radiation [33]. However, the skin protective activity of quercetin is 

insufficient due to its poor percutaneous penetration that limits the amount of the compound reaching 

the site of action in the epidermis [34]. Different formulations of quercetin have been developed based on 

microemulsions, encapsulation in lipid nanoparticles, and silica nanoparticles in order to enhance its 

penetration in the skin. Results of this study demonstrated that the emulsion containing silica 

nanoparticles was the only vehicle which could significantly enhance the in vivo penetration of 

quercetin into the human stratum corneum, with the advantage that the silica particles were confined in 

the upper layers, limiting the potential toxicological risks [35]. This study was performed in humans in 

real conditions, considering the reported differences between human and animal skin and the 

alterations observed in excised human skin when the studies are performed in vitro [36]. 

Nanostructured lipid carriers of quercetin have been developed using a solvent 

(chloroform/acetone)-based emulsification technique and evaluated for topical delivery [37]. One of 

the major disadvantages of a manufacturing method involving the use of organic solvents can be 

toxicological issues arising from solvent residues. For this reason, a solvent-free, solid lipid-based 

nanosystem of quercetin using a probe ultrasonication process has been developed. This process 

showed, using in vitro permeation studies with full thickness human skin, higher amounts of quercetin 

to be localized within the skin compared to a control formulation with particles in the micrometer 

range. Such an accumulation of quercetin in the skin is highly desirable since the efficacy of quercetin 

in delaying ultra-violet radiation-mediated cell damage and eventual necrosis mainly occurs in the 

epidermis [38]. 

3.4. Nanocarriers for Coenzyme Q10 Delivery 

Coenzyme Q10 (CoQ10) is the only lipophilic cellular antioxidant endogenously synthesized in 

humans. It is a cofactor in the mitochondrial respiratory chain and it is essential to transfer free 

electrons from complexes I and II to complex III during oxidative phosphorylation and ATP synthesis. 

CoQ10 acts as an antioxidant in the skin with 10-fold higher levels in the epidermis than in the dermis. 

It has been used in cosmetics due to its ability to reduce photo-aging in vivo, which could be attributed 

to the capacity to increase production of basal membrane components, fibroblast proliferation, and 

protection against oxidative damage [39]. The difficulty of CoQ10 in reaching the deeper layers of the 

skin determines its inclusion in different carriers. In this sense, liposomes, lipid nanoparticles, solid 

nanoparticles, and nanostructured lipid carriers (NLC) are more often used for this purpose [40]. 

Among them, nanostructured lipid carriers have been used successfully for dermal delivery of CoQ10 

due to its highly lipophilic character [41], but the possible interference with intracellular biochemical 

processes should be investigated. It has been recently demonstrated that ultra-small lipid nanoparticles  

promote the penetration of coenzyme Q10. In this publication, the cell viability and the efficiency of 

these nanocarriers were examined in HaCaT cells [42]. 
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Recent study demonstrated that nanostructured lipid carriers induced some subtle cytotoxic effects 

and they did alter the redox state level on human dermal fibroblasts under normal and oxidative 

conditions, but genotoxicity was not observed. The use of reduced CoQ10 decreased these effects 

because CoQ10 is a highly active antioxidant and maintains mitochondrial functionality. Then the use 

of antioxidants could be considered when preparing NLC for cosmetic delivery purposes in order to 

prevent undesirable effects on cells by the carrier systems used. The geno- and cytotoxicity should be 

evaluated, especially under conditions which closely mimic their normal usage [43]. 

3.5. Nanocarriers for Other Antioxidants 

Curcumin is a major phytopolyphenolic compound consisting of three curcuminoids derived from 

turmeric (Curcuma longa) rhizomes, a spice commonly used in curries and other South Asian cuisine, 

and in both Ayurvedic and Chinese medicine for the treatment of skin diseases and wound healing, 

among other applications. Curcumin is a potent free radical scavenger quenching superoxide anions, 

singlet oxygen, and hydroxyl radicals and inhibiting lipid peroxidation. However, upon exposure to 

sunlight, free curcumin degrades rapidly, reducing its antioxidant capacity. To avoid this effect,  

one strategy is to encapsulate it into biodegradable, safe, inexpensive, and commercially available 

polymeric nanospheres, which offers protection from photo-degradation and retains its antioxidant 

capacity [14]. 

Tocopherol is considered the most active, lipid-soluble, membrane-bound antioxidant present in the 

skin. However, the constant bombardment of UV rays on the skin depletes the antioxidants present in 

the skin over time and a decreasing gradient of tocopherol from the deeper to the outermost layers of 

the stratum corneum has been reported in the literature. In order to protect the skin from oxidative 

stress, tocopherol should be supplemented topically to replenish the antioxidants in the upper layers of 

the skin [44]. 

Synthetically available tocopherol is a highly viscous skin irritant and light-sensitive liquid.  

This property makes it difficult to incorporate tocopherol in topical/cosmetic formulations. Therefore, 

tocopherol acetate, a prodrug ester, is used in most of the anti-aging formulations available on the 

market [45]. Another option is to formulate tocopherol into nanocarriers to produce a non-irritant, 

stable, and cosmetically appealing aqueous formulation. The results confirmed that nanostructured 

lipid carriers (NLC) induced a higher release of tocopherol than nanoemulsions; thus, NLC are 

promising nanocarriers for cosmetic delivery [5]. 

Finally, alpha lipoic acid (ALA) is a naturally occurring fatty acid with potent antioxidant activity 

which exists in the mitochondria of all kinds of prokaryotic and eukaryotic cells. ALA is known as a 

network antioxidant due to its ability to regenerate/recycle itself as well as other antioxidants, such as 

vitamins C and E, so that they can continue destroying free radicals [46]. There available data of 

formulations containing 5% ALA producing a dramatic reduction in facial lines in cases associated 

with photo-aging, and for this reason, this compound has gained the attention of cosmetologists and 

dermatologists. One of the strategies to formulate this compound is as cubosomes, which are discrete, 

submicron, nanostructured particles of bicontinuous cubic liquid crystalline phase which are able to 

incorporate large amounts of drugs or actives [47]. A recent study has demonstrated that the 

formulation of ALA in cubosome dispersion has excellent results in reducing facial lines with almost 
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complete resolution of fine lines in the periorbital region and upper lip area and an overall 

improvement in skin color and texture in most volunteers [48]. Table 1 shows different studies 

demonstrating that the use of nanoformaulation enhances the skin delivery of antioxidants. 

Table 1. Different nanoformulations that enhance the skin delivery of different antioxidants 

and other advantages demonstrated by different methods. 

Antioxidant Nanoformulation Methods Advantages Reference 

Resveratrol 
Solid lipid 

nanoparticles 

In vitro photo-degradation  
Protection from photo-

degradation  Carloti et al. 

2012 [25] 
In vitro porcine skin Enhance uptake in skin 

Resveratrol 
Fosfolipid 

vesicels 

DPPH radical scavenging 

activity assay 

Increase efficiency and 

stability of carriers 

Caddeo et al. 

2013 [27] 

Resveratrol + 

curcumin 

Lipid-core 

nanocapsules 

In vitro static Franz 

diffusion cell human skin 

Increase delivery of 

resveratrol into skin 

Friedrich et al. 

2015 [28] 

Resveratrol + 

curcumin 
Niosomes 

In vitro static Franz 

diffusion cell rabbit skin  

DPPH radical scavenging 

activity assay 

Increase delivery of 

resveratrol into skin  

Increase antioxidant activity 

Tavano et al. 

2014 [29] 

Q10 

Ultra small  

nano-structured 

lipid carrier (NLC) 

In vitro static Franz 

diffusion cell porcine skin 

Increase delivery of Q10 into 

skin 

Schwarz et al. 

2013 [42] 

Q10 

Ultra-small lipid 

nanoparticles 

(usNLC) 

In vitro human keratinocyte 

cell line HaCaT 

Strongest reduction of the 

radical formation  

and non-toxic 

Lohan et al. 

2015 [42] 

Quercetin 
Solid lipid 

nanosystems 

In vitro static Franz 

diffusion cell human skin 

Higher amounts of quercetin 

within the skin 

Bose et al.  

2013 [38] 

Quercetin 
Colloidal silica 

emulsion 

In vivo human  

penetration assay 

Enhance penetration into 

stratum corneum in human 

Scalia et al. 

2012 [35] 

4. Conclusions 

The administration of antioxidants to skin is fundamental to reduce aging and to achieve protective 

effects on the skin. However, their stability is not always enough to guarantee their effects on skin and 

their delivery into deeper layers of skin is not always possible. Different nanocarriers have been 

proposed with the objective to increase the stability and the delivery of them into the skin in order to 

obtain their highest activity. The type of nanocarrier varies depending on the antioxidant under 

consideration and this should be taken into account when formulating different cosmetic products 

based on these antioxidants. Another important aspect to consider is the potential genotoxicity and/or 

cytotoxicity of the nanocarriers, especially under conditions similar to the normal usage in cosmetic 

formulations. Lastly, this should be evaluated and considered before formulating any cosmetic based 

on these nanocarriers. 
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