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Abstract

Semaglutide-induced facial changes, or “Ozempic face” popularized by media, have gained
increasing recognition since the widespread and growing use of Ozempic (semaglutide) for
weight loss. It refers to facial volume depletion and soft tissue laxity following rapid weight
loss associated with this medication. Semaglutide use can also cause gastrointestinal side
effects, volume loss, and decrease skin quality not only in the face but globally. As the use
of Ozempic becomes increasingly popular, more patients are presenting to cosmetic clinics
for these undesirable esthetic changes. While cosmetic changes following rapid weight
loss is not new, such as those following bariatric interventions, the accessibility and ease of
GLP-1, Glucose-like protein-1, makes this a growing concern among the community. It is
important for clinicians to recognize these potential effects, counsel patients appropriately,
and give options for treatment. This emerging esthetic concern highlights the need for
further investigation into underlying causes, risk factors, and potential interventions.

Keywords: semaglutide; GLP-1 receptor agonist; Ozempic; wegovy; facial lipoatrophy;
weight loss side effects; facial aging

1. Introduction
GLP-1 receptor agonists are commonly used in the management of type 2 diabetes

mellitus and have recently gained widespread popularity for their effectiveness in pro-
moting weight loss. Obesity is a growing global concern and is associated with increased
mortality due to its link with numerous chronic diseases [1]. Obesity has become a global
epidemic in the past few decades but has been documented to exist for tens of thousands
of years. However, these documented cases were the exception rather than commonplace
like they are today [2]. Given the increased occurrence of obesity and its serious health
implications, the availability of a medication that can promote rapid weight loss may
appear to be a breakthrough. One medication which may be the answer to this is GLP-1
such as semaglutide. However, there is limited data on the long-term safety and effects of
semaglutide. Given the serious health implications of obesity, the availability of a medica-
tion that can promote rapid weight loss may appear to be a breakthrough. However, there
is limited data on the long-term safety and effects of Ozempic. Despite its intended use
for diabetes and obesity, GLP-1 RAs are increasingly being used off-label by individuals
who do not meet obesity criteria but wish to lose relatively small amounts of weight. While
effective for weight reduction, GLP-1 use has led to undesirable esthetic side effects, such
as facial volume loss and skin laxity—often termed “Ozempic face.” We hope to explore
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the pathophysiology, prevalence, and management of semaglutide-induced facial changes
with this review.

2. Mechanism of GLP-1 Agonist
Glucagon is a hormone produced by the alpha cells of the pancreas and plays an

important role in regulating glucose levels [3]. It is released from pancreatic alpha cells
when blood glucose levels fall too low [3]. Glucagon then promotes glycogenolysis which
releases glucose from glycogen reserves and increases blood glucose levels [3]. Apart from
its role in blood glucose regulation, glucagon also has multiple metabolic effects. Glucagon
acts on the brain to suppress appetite by signaling satiety, it increases metabolic rate, pro-
motes lipolysis while inhibiting lipid synthesis, promotes hepatic glucose production, and
activates autophagy to support cellular energy homeostasis [4–7]. Glucagon-like peptide
(GLP-1) is an incretin hormone derived from the gastrointestinal system which mimics
some of the same effects of glucagon [8]. However, unlike glucagon, GLP-1 promotes in-
sulin secretion following ingestion of meals [9]. Synthetic GLP-1 peptides are used to lower
blood glucose level by increasing insulin secretion and promoting glucose uptake into mus-
cles [9]. These mechanisms make them an effective treatment in type 2 diabetes mellitus [10].
GLP-1 receptor agonists (GLP-1 RAs), such as semaglutide, function as GLP-1 analogs [11].
They decrease glucagon secretion, slow gastric emptying, and increase glucose-dependent
insulin release [11]. These drugs are also known to reduce appetite and therefore food
intake, leading to weight loss [8]. Additionally, glucagon-like peptide-1 receptor agonist
may provide benefit to any organ system that expresses GLP-1 receptors which include
the renal system, brain, gastrointestinal tract, and cardiovascular systems [9,10]. GLP-1 is
produced by preproglucagon (PPG) neurons in the nucleus of the solitary tract of the brain.
The GLP-1 receptors are found in the hypothalamus, amygdala, mesolimbic reward system,
nucleus tractus olitarius (NTS), and area postrema (AP), which all play a role in the control
of food intake and regulation [12,13]. It is shown to display a critical role with decreasing
inflammation and neuroprotective factors [12]. Native GLP-1 has a very short half-life of
1–2 min which limits its therapeutic uses [11]. This short half-life is due to both inactivation
by the enzyme dipeptideylpeptidas (DDP- and renal elimination [11]. In order to utilize
these benefits for the treatment of diabetes and obesity, different GLP-1 derivatives with
extended half-life have been created. These include liraglutide, exenatide, lixisenatide,
albiglutide, and dulaglutide [14].

The current GLP-1 RAs that are FDA-approved include exenatide, lixisenatide, liraglu-
tide, dulaglutide, semaglutide, and tirzepatide, all of which differ in terms of medication
benefits and routes of administration [15]. Exenatide is a short-acting GLP-1 RA that is
formulated to be administered subcutaneously twice a day. It is the first synthetic peptide
in clinical use [13]. Lixisenatide, structurally similar to exenatide, is administered subcu-
taneously as well but is only once a day [13]. Exenatide was shown to reduce HbA1x by
0.78% while lixisenatide reduced HbA1c by 0.8–0.9% [13]. It is noted that use of exenatide
twice daily and lixisenatide should be avoided in patients with decreased kidney function
as they are mainly excreted by the kidneys [13]. Exenatide was later formulated into an ex-
tended release to be administered once weekly and was able to reduce HbA1c by 1.9% [13].
Other long-acting agents include liraglutide, liraglutide, dulaglutide, and semaglutide.
Liraglutide is administered once daily by subcutaneous injection and is an analog of the
native human GLP-1 and is resistant to dipeptidyl peptidase-4 (DDP-4) deactivation [13].
It was shown to reduce HbA1c by 1.12 [13]. Semaglutide is available in both oral and
subcutaneous formulations [13]. Semaglutide is similar to liraglutide structurally but has
some added resistance to DDP-4 degradation. Overall, semaglutide is better at lowering
HbA1c than dulaglutide, liraglutide, and once weekly exenatide [13]. T he subcutaneous



Cosmetics 2025, 12, 221 3 of 14

formulation of semaglutide has shown to have the best reduction in HbA1c but the oral
semaglutide has shown to provide similar glycemia control [13]. While the oral formulation
may be preferred for some patients, the restrictions on medication timing and interactions
with other medications limit its effectiveness [13].

Tirzepatide is both a dual GLP-1 and glucose-dependent insulinotropic polypeptide
(GIP) receptor agonist (RA) [13]. Glucose-dependent insulinotropic polypeptide (GIP) is an
incretin hormone like GLP that stimulates insulin secretion [16]. GIP has been shown in
laboratory studies to preserve pancreatic beta cells through anti-apoptotic signaling and a
growth factor for insulin-producing beta cells [17]. GIP has also been proposed to have a
role in promoting fat accumulation but does not promote food intake [18,19]. Studies have
shown that when used together, GLP-1 and GIP RA can demonstrate prominent weight
lost and glycemic control [20]. Tirzepatide is a synthetic peptide analog of GIP but has
activity at both GLP and GIP receptors, giving it better efficacy in glycemic control [13]. It
is formulated to be administered once weekly as a subcutaneous injection and can reduce
HbA1c by up to 2.07% when compared to placebo [13]. The dual receptor properties show
greater glycemic control than the single receptor agonist available [13]. In a study regarding
weight loss in patient, with obesity and diabetes, treatment with tirzepatide resulted in
more weight reduction compared to semaglutide [21].

3. Trends in Usage
Obesity has become a global epidemic in recent years and is a major risk factor for

numerous diseases. Its development is influenced by a combination of factors, includ-
ing dietary habits, physical activity levels, socioeconomic status, and stress [22]. Over-
consumption of high-processed foods puts patients at a higher risk of developing obesity,
diabetes, and hypertension [23]. Given the well-established association between obesity
and diabetes mellitus, medications that treat diabetes but also promote weight loss have a
therapeutic advantage. GLP-,1 as discussed above, are used to treat type 2 diabetes and
often have the beneficial, and desired, side effect of weight loss. Even in patients without
diabetes, GLP-1s are able to be useful in weight loss and may help with current obesity
pharmacology management. In a study of patients without diabetes, they found a greater
than 10% weight loss in 69–69% of patients taking once weekly 2.4 mg of semaglutide
subcutaneously for a 68-week trial [24]. GLP-1 receptor agonists have demonstrated efficacy
in promoting significant weight loss in non-diabetic patients, with an average reduction
of approximately 6 kg compared to placebo when taking once weekly 2.4 mg of semaglu-
tide subcutaneously [25]. This offers a treatment option for obese patients who have not
achieved significant weight loss with diet and exercise alone [26]. GLP-1s are now being
requested by patients outside of diabetes management in order to achieve weight loss due
to the significant reduction in mean body weight that can be achieved [27–29]. The use of
GLP-1 has skyrocketed in recent years due to this [30]. A cohort study from the University
of California Health Data Warehouse showed that Ozempic users increased from 569 in
2019 to 22,891 users in 2022 [31]. A study looking at prescribing rates in the UK showed an
increase of GLP-1 RAs in 2022 and 2023 [32]. In another study with twenty-seven countries,
most showed an increasing trend of semaglutide internet searches from January 2021 to
August 2023 [30]. Canada and the United States showed the most sustained increase in
interest during that time [30]. The searches containing semaglutide in this study had weight
loss as a major theme, while diabetes was absent or weak [30]. With the rising popularity
of semaglutide for weight loss, the likelihood of seeing rare side effects increases, which
makes it essential to provide clinicians with adequate information for counseling patients.
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4. Side Effects Associated with GLP-1 RA-Induced Weight Loss
4.1. Gastrointestinal

Gastrointestinal adverse events are common with use of GLP-1 RAs and most
commonly include nausea, vomiting, and diarrhea [33]. Which are thought to be
caused by delayed gastric emptying or inference of GLP-1 RA with receptors in the
area postrema [34]. With the recent popularity of this drug for weight loss, there have
been increasing studies on other potential side effects. These include the risk of develop-
ing gallbladder or biliary tract diseases such as cholelithiasis, cholecystitis, cholangitis,
cholecystectomy, and gallbladder or bile duct obstruction [35]. Although obesity and
type 2 diabetes are known risk factors for gallbladder and biliary tract disease, there is
a lack of research investigating whether the risk of developing these conditions varies
across different obesity profiles in patients using GLP-1 receptor agonists [35]. Random-
ized clinical trials that compared GLP-1 receptor agonists, such as liraglutide, to placebo
for weight management found that there was a higher incidence of acute gallstone
conditions such as cholelithiasis and cholecystitis in patients who were treated with
liraglutide [35]. It is thought that this connection may be due to the delay in postprandial
gallbladder filling caused by liraglutide [36]

4.2. Volume Loss

While gastrointestinal complications are associated with GLP-1 use, weight loss also
associated with it can lead to concerns externally, particularly the unflattering cosmetic
impact on facial appearance. In the body, GLP-1 RAs lower glucose and reduce total
body adiposity from mimicking GLP-1, which allows for rapid weight loss [37]. In a
68-week study, participants using GLP-1 RA were seen to have a 14.9% loss in body
weight compared to the placebo group that had a 2.4% loss in body weight [38]. This
weight loss causes unintended consequences of subcutaneous fat loss, especially in the
face, causing lax and droopy skin. In contrast to gradual weight loss, rapid fat reduction
does not allow the skin enough time to retain elasticity and collagen. This process is
thought to be multifactorial, involving not only the loss of dermal and subcutaneous
adipose tissue but also alterations in adipose-derived stem cell proliferation, metabolic
factors, and hormone secretion [39]. In a study by Nogueiras et al., it was suggested
that when GLP-1 was infused into the central nervous system there was modulation
of adipocyte metabolism which caused decreased fat storage [40]. It was also seen that
the inhibition of adipocyte maturation caused a decrease in the activity of fibroblast
in regenerating the dermis [41]. GLP-1 RAs also indirectly impact dermal estrogen
by decreasing production through a decrease in adipose-derived stem cells [39,42]. In
normal aging, decreased estrogen levels, seen in postmenopausal women, contribute
significantly to skin aging [43]. This includes thinning of the skin, reduced collagen
production, decreased elasticity, dryness, and the formation of wrinkles [43,44]. The
critical role of estrogen in skin health is evidenced by studies demonstrating that estrogen
replacement therapy in postmenopausal women can reverse many age-related changes,
including increased skin thickness and elasticity, enhanced epidermal hydration, and a
reduction in wrinkle formation [43,45–49]. This effect has been demonstrated in clinical
trials showing that postmenopausal women undergoing hormone replacement therapy
exhibited greater skin elasticity, increased water-holding capacity, and thicker skin
compared to non-users [50,51].

4.3. Facial Aging

These effects are seen throughout the body; the most notable concern to patients is
the appearance of accelerated facial aging, which may have an impact on their self-esteem
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and quality of life. Patients may show a gaunt appearance, deepening wrinkles, and loss of
facial volume in cheeks and lips, along with other facial structure changes that resemble
premature aging [52,53]. Rapid fat volume loss in key facial areas associated with youth-
fulness contributes to the perception that patients who have undergone massive weight
loss appear up to five years older than their age-matched peers [54]. While discontinuing
GLP-1 use is an option for patients who worry about the long-term side effects on their skin,
the weight gain after stopping does not redistribute to what it was before the medication,
resulting in persistent facial aging [55].

4.4. Skin Quality

Beyond fat redistribution, which plays a central role in the development of “Ozem-
pic face,” patients also experience a measurable decline in skin quality, further com-
pounding the esthetic impact. In a study by Sami et al., there were skin biopsies taken
from three different groups of patients: patients who underwent cosmetic contouring
procedures but no history of massive weight loss, patients who were morbidly obese
and underwent bariatric surgery, and lastly, patients who had massive weight loss and
were undergoing cosmetic contouring procedures after stable weight loss [56]. The study
found that collagen was significantly thinner in the groups that had massive weight loss
in both the papillary and reticular dermis with significantly less density and damage to
the elastic fiber network in the reticular dermis [56]. This study illustrates the underlying
cellular changes contributing to the decline in skin quality, which are consistent with the
visible physical changes observed in the face. Another study by Rocha et al. compared
the collagen and elastic fibers in the abdominal epigastric skin of patients who had
undergone massive weight loss following bariatric surgery with those of patients with
morbid obesity, aiming to determine whether the weight loss itself contributed to the
clinically perceived deterioration in skin quality [57]. In this study there was a reduction
of thick collagen fibers, increased thin collagen fibers, and increased elastic fiber density
found in the massive weight loss group [57]. There were also alterations in the structure
of the dermis and collagenous remodeling, with the reduction of thick, structured, and
organized fibers with thin, loose, and misaligned fibers [57]. In an additional study,
there was shown to be a decrease in elastic fiber content of the dermis of the abdominal
region of patients who underwent surgical massive weight loss compared to those who
had non-surgical massive weight loss [58]. Patients using GLP-1 also are at an increased
risk of losing nutrients that play an essential role in wound healing [59]. The reduction
in essential fatty acids due to decreased nutrient intake may compromise the integrity of
the skin barrier, leading to a dull and dry complexion [52,60].

Together, the loss of facial fat, hormonal disruptions, structural skin degradation,
and nutritional deficiencies highlight the significant esthetic drawbacks that may out-
weigh the benefits for individuals using GLP-1 agonists primarily for non-medical,
cosmetic weight loss (Figure 1). This off-label use of GLP-1 is steadily increasing, as
shown by data from Denmark, where a proportion of semaglutide uses for patients with
type 2 diabetes (T2D) declined from 99% in 2018 to 67% in 2023 [61]. This correlates with
the increasing popularity of GLP-1 being used among those without diabetes, despite
not being approved for weight loss in non-diabetic patients [39]. With this increasing
patient population, there is an increased demand for cosmetic treatments to restore
facial appearance.
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Figure 1. Clinical Features of “Ozempic Face” [62].

5. Management
Although GLP-1s have gained popularity, the esthetic consequences of rapid weight

loss with them have not been extensively studied and the esthetic management has not
been thoroughly optimized. The first signs of “Ozempic face” may be worsening of
existing wrinkles followed by pronounced changes in proportions to the cheeks, lips, and
overall facial symmetry [39]. These facial changes may be further exacerbated by the
loss of elastin, collagen, fatty acids, and vitamins, accelerating the signs of aging [39].
Current management of these side effects include skin tightening, fat transfer, filler, body
contouring, and surgical interventions (Figure 2). Most patients will see the best benefits
from a combination of many treatments.

Figure 2. “Ozempic Face” management [63].
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5.1. Skin Tightening

Non-invasive procedures for skin tightening include radiofrequency (RF) therapy,
ultrasound-based technology, and laser therapy. All report high patient satisfaction but
have different indications for use based on severity of skin laxity and where on the body.
RF technology creates thermal energy to target dermal layers, inducing tissue injury that
triggers a repair response, leading to collagen creation, tissue contraction, and overall skin
remodeling [64–69]. Monopolar capacitively couple radiofrequency (MRF) in particular
has shown an Investigator Global Aesthetic Improvement Score (IGAIS) of 73%, with
subject satisfaction questionnaires supporting these results [65]. Microfocused ultrasounds
are also increasing in popularity due to their low recovery time and minimal risk. This
ultrasound technology works by stimulating elastin remodeling and collagen creation with
the focal heating of the dermis [70]. When comparing the effectiveness of the microfocused
ultrasound with reduction in skin laxity, tightening of cheek tissue, and improvement in
jawline definition, two-thirds of patients saw an improvement at 90 days [70]. A multi-
modal device combining radiofrequency (RF), ultrasound, and 808 nm laser energy has
shown promise in treating skin laxity across various regions, including the face, neck, arms,
and lower limbs [71]. Patients report high satisfaction rates with this combination device,
offering an effective and non-invasive solution for improving skin laxity [71].

5.2. Filler

Dermal filler is becoming increasingly popular for the replacement of volume depletion
in facial aging. There are several categories of filler such as bovine collagen and hyaluronans.
The goal of these procedures is to provide long-lasting, natural-looking, predictable, patient-
customized, and biocompatible results, though each treatment type differs in how well it
achieves these characteristics [72,73]. When first introduced, hyaluronic acid filler showed
a superior result when used on nasolabial folds compared to bovine collagen and started
its popularity on the market [74,75]. Hyaluronic acid fillers naturally have a short lifespan
in the body; however, when cross-linked with divinyl sulfone, the longevity increases, and
studies have shown they elicit minimal immunological reaction [76]. In one study assessing
both patient and Investigator Global Aesthetic Improvement Scale (IGAIS) scores, 95% of
subjects demonstrated improved full-face IGAIS ratings, and 100% of participants reported
satisfaction with their esthetic outcome [77]. Current treatments of facial aging with HA
filler have evolved to treat multiple facial regions simultaneously as opposed to isolated
areas, aiming to achieve a more harmonious and natural overall esthetic outcome [78–82].

5.3. Fat Transfer

While GLP-1 receptor agonists effectively reduce dermal and subcutaneous adipose
tissue, this effect is non-selective and impacts fat stores throughout the body, including
the face. Autologous fat transfer can be used to correct the unwanted fat loss in the face.
Autologous fat transfer offers a biocompatible alternative to synthetic facial fillers by
replenishing lost volume with the patient’s own tissue [83]. Because fat is biocompatible,
readily accessible, relatively permanent, and able to integrate into surrounding tissues, it
serves as an ideal filler [84–86]. Adipose tissue is harvested and prepared with different
cannula sizes and filter-cartridge techniques which then divide them based on parcel size
and type such as marcofat, microfat, and nanofat [87]. Macrofat and microfat are used to
provide volume restoration to areas of facial deflation, and nanofat is used to improve
skin texture and pigment [87]. Autologous fat transfer shows high patient satisfaction
rates with low complication rates when compared to fillers [88]. In a study that compiled
volume retention rate from autologous fat grafting, it showed an average retention rate of
46% with the range being 26 to 83% [89]. This varied response to retention has patients
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hesitant about the long-term solution. One study investigated the clinical use of milled
electrospun poly(lactic-co-glycolic acid) (PLGA) fibers co-injected with adipose tissue
to improve engraftment outcomes. The findings demonstrated enhanced graft volume
retention, increased vascularity, and improved tissue reperfusion compared to adipose
tissue injections alone [90]. Even though current AFT treatments have various fat retention
rates, there is still a high patient satisfaction rate of 91.1% a little over a year following the
procedure [91].

GLP-1 RAs also indirectly accelerate facial aging by inhibiting adipose-derived stem
cell proliferation, which plays a key role in skin regeneration and repair [39]. By stim-
ulating adipose-derived stem cell proliferation, you may be able to attenuate these side
effects to improve facial alterations with GLP-1 RA therapy and improve skin quality [39].
Intradermal injections of purified autologous processed lipoaspirate cells, which contain
approximately 30% adipose-derived stem cells (ADSCs), have been shown to enhance skin
quality and restore volume by promoting collagen production and releasing growth factors
that counteract signs of skin aging [92]. These cells are also reported to be able to control
and manage the damage of neighboring cells, helping restore surrounding skin [93].

5.4. Surgical Interventions

Patients also have the option for surgical intervention to correct skin laxity following
weight loss. The most common procedures underwent are liposuction, abdominoplasty,
body lift, brachioplasty, and facelift [94,95]. With these options available, each patient can
undergo a combination of each and often require staging of their surgeries for optimal
outcomes [96].

Liposuction is commonly used in adjunction to body-contouring procedures. It may
be performed preoperatively to refine regional contour and is associated with improved
overall patient satisfaction [97].

Abdominoplasty is the surgical removal of excess skin off the adnominal wall [98]. It
also comes with its own set of complications such as wound infection, seroma, hematoma,
deep vein thrombosis, and pulmonary embolism [98].

A total body lift surgery encompasses three portions: an upper body lift (UBL), low
body lift (LBL), and buttock augmentation [99]. The UBL leaves a transverse scar across the
bra line and allows for breast reshaping [99]. The LBL has a circumferential hip transverse
incision that allows for a reduction in loose skin with the addition of buttock augmentation
if necessary [99].

Brachioplasty is a procedure that improves arm deformity that can be caused by major
weight loss, such as excess skin in a canopy-like shape, draping from the axilla to the
elbow [100]. This appearance is distressing for patients and often requires correction. A
brachioplasty removes the excess tissue and can leave the patient with several complications
including nerve damage, lymphatic issues, and an unappealing scar [100].

Major weight loss often results in increased skin laxity and excess skin on the face. A
facelift offers patients the opportunity to rejuvenate their facial appearance and can also
include neck lifting [95]. This procedure removes excess skin and addresses facial and neck
deflation to better define the facial contours [95]. Surgeons may also combine the facelift
with fat grafting to restore volume to the face. However, like any surgery, it carries risks
such as seromas, hematomas, and soft tissue deflation [95].

Patients undergoing these procedures following major weight loss experience signif-
icant improvements in mental health, which positively impact multiple aspects of their
lives [101]. These benefits include increased physical activity levels, improved social
relationships, and increased work performance. These improvements highlight the psy-
chosocial improvements in quality of life that body contouring surgery provides beyond
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esthetic outcomes [102]. Although many patients would benefit from body contouring
surgery, there are many factors in play that restrict access to these surgeries. Many patients
are not able to afford these surgeries; some do not have insurance or may have only partial
insurance coverage [103].

5.5. Current Management

Current measures available include a combination of dermal fillers, autologous fat
grafting, facelift procedures, and potential nutrition optimization to limit effects [39]. Der-
mal fillers are a popular option due to their minimally invasive procedures and immediate
results. However, their long-term interaction with GLP-1 therapy and durability of results
has not been extensively reviewed. Hyaluronic acid filler requires maintenance every
6–18 months, which is not possible for all patients. For those who want longer lasting
results, autologous fat grafting may be an option. Autologous fat grafting refers to harvest-
ing fat from the same person who will receive it, offering a natural and more permanent
solution [43]. Given it is derived from the patient, there is minimal risk of allergic reaction,
and it produces a more natural and permanent result compared to dermal filler. While both
filler and autologous fat grafting effectively restore facial volume, a facelift, or rhytidectomy
with or without platysmaplasty, procedure may be appropriate in more severe cases of
skin laxity.

These common side effects raise an important clinical and ethical question of whether
rapid weight loss is worth the facial consequences, especially for patients utilizing the
medication for cosmetic weight. To answer this question, we need a deeper understanding
of the long-term esthetic impact of GLP-1 therapy and what therapies work for the best
outcomes. Additionally, there is a growing need for appropriate patient counseling on
these side effects as well as standardization of cosmetic correction.

6. Conclusions
While morphologic changes happen diffusely across the body with semaglutide use,

“Ozempic face” is the most distressing to patients and has become a real and increasingly
observed side effect of this popular weight loss medication. For clinicians to properly
prescribe GLP-1 for weight loss, they need to counsel the patient on the potential facial
esthetic repercussions and be aware of available strategies to improve the appearance of
the face after treatment. Ultimately, there is a need for more studies on long-term esthetic
outcomes and optimal strategies for prevention or correction.
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Abbreviations
The following abbreviations are used in this manuscript:

GLP-1 Glucose-like protein-1
GLP-1 RA Glucose-like protein-1 receptor agonist
PPG Preproglucagon (PPG)
DDP-4 Dipeptidyl peptidase-4
GIP Glucose- dependent insulinotropic polypeptide
T2D Type 2 diabetes
MRF Monopolar capacitively couple radiofrequency
IGAIS Investigator Global Aesthetic Improvement Scale
PLGA Poly(lactic-co-glycolic acid
ADSC Adipose-derived stem cell
UPL Upper body lift
LBL Lower body lift
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