
Citation: Biskanaki, F.; Kalofiri, P.;

Tertipi, N.; Sfyri, E.; Andreou, E.;

Kefala, V.; Rallis, E. Carotenoids and

Dermoaesthetic Benefits: Public

Health Implications. Cosmetics 2023,

10, 120. https://doi.org/10.3390/

cosmetics10050120

Academic Editor: Enzo Berardesca

Received: 14 July 2023

Revised: 18 August 2023

Accepted: 22 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cosmetics

Review

Carotenoids and Dermoaesthetic Benefits: Public Health
Implications
Foteini Biskanaki * , Paraskevi Kalofiri *, Niki Tertipi , Eleni Sfyri , Eleni Andreou , Vasiliki Kefala
and Efstathios Rallis

Department of Biomedical Sciences, School of Health Sciences and Welfare, University of West Attica,
12243 Athens, Greece; ntertipi@uniwa.gr (N.T.); elsfiri@uniwa.gr (E.S.); elandreou@uniwa.gr (E.A.);
valiakef@uniwa.gr (V.K.); erallis@uniwa.gr (E.R.)
* Correspondence: fbiskanaki@uniwa.gr (F.B.); pkalofyri@uniwa.gr (P.K.)

Abstract: Food technology, health, nutrition, dermatology, and aesthetics have focused on colorless
carotenoids. Carotenoids are readily bioavailable and have demonstrated various health-promoting
actions. This article reviews the recent literature concerning carotenoids with the aim to systematize
the scattered knowledge on carotenoids and aesthetics. The applications of carotenoids in health-
promoting and nutrient products and their potential health effects are discussed. The carotenoids,
particularly phytoene and phytofluene, have the unique ability to absorb ultraviolet radiation.
Their distinct structures and properties, oxidation sensitivity, stiffness, aggregation tendency, and
even fluorescence in the case of phytofluene, contribute to their potential benefits. A diet rich in
carotenoid-containing products can positively impact skin health, overall well-being, and the pre-
vention of various diseases. Future studies should focus on generating more data about phytoene
and phytofluene levels in the skin to accurately assess skin carotenoid status. This expanding area of
research holds promise for the development of novel applications in the fields of health and cosmetics.
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1. Introduction

The skin plays a vital role as a natural barrier, shielding us from various external
elements such as radiation, xenobiotics, micro-organisms, etc. However, it can also impede
fundamental processes [1–3]. Skin damage can give rise to a range of disorders that can
potentially develop into diseases, such as infections or even skin cancer. These conditions
have a detrimental impact on overall well-being and health. While a precise and universally
agreed-upon definition is lacking, the term “fructose” typically pertains to the ingestion of
substances present in food items, includingvitamins, peptides, polysaccharides, polyphe-
nols, coenzyme Q10, polyunsaturated fatty acids, and carotenoids [4,5]. Carotenoids are
naturally occurring compounds that can be obtained through the diet from food sources,
added as additives, or taken in the form of supplements, among other products. Certain
carotenoids are consistently present in human plasma, milk, and various tissues, including
the skin [6]. Carotenoids serve not only as natural pigments but also hold significance
in the diet due to their ability to function as provitamin A. Among the carotenoid family,
phytoene and phytofluene are colorless carotenoids that have received limited attention
in dermoaesthetics, cosmetics, and dermatology studies. However, recent comprehensive
reviews have highlighted their importance as major dietary carotenoids found in toma-
toes, carrots, citrus fruits, and their derivatives. These colorless carotenoids are readily
bioavailable, being present as significant carotenoids in plasma, human milk, and the skin.
Furthermore, they contribute to various health effects [7].
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2. UV Radiation Types and Consequences of Exposure

The skin serves multiple essential functions in the human body. It acts as a protective
epithelium, shielding the body from external elements. Additionally, it functions as a
connective tissue, providing support, nourishment, and metabolic processes for organic
and metal components. The skin also plays a role in the sense of touch and serves as an
indicator of overall health. Furthermore, it also serves as a vital organ for environmental
communication [8]. The dermis, a layer within the skin, provides mechanical strength and
elasticity, while the subcutis acts as insulation and mechanical protection, contributing to
thermoregulation [9].

Protection against UV light is crucial to prevent the harmful effects of exposure to
sunlight or artificial sources of UV light. These exposures, often associated with tanning,
can have detrimental consequences. Various disorders can be attributed to UV exposure,
including sunburn, immunosuppression, photocarcinogenesis (the development of skin
cancer due to UV radiation), and photoaging (Figure 1). Photoaging is mainly character-
ized by the breakdown of collagen, leading to the formation of wrinkles. Additionally,
unwanted aesthetic signs of photoaging include telangiectasia (visible blood vessels) and
hyperpigmentation [10]. Thus, safeguarding the skin from UV radiation is essential to
minimize these undesirable effects from both health and aesthetic perspectives. The skin’s
barrier function is primarily attributed to the stratum corneum, which acts as a waterproof
and relatively impermeable barrier. It plays a crucial role in preventing the penetration of
various xenobiotics into the body [11]. The skin employs several mechanisms to protect
against ultraviolet radiation (UVR). These include thickening of the epidermis, DNA repair
mechanisms, programmed cell death, antioxidant enzymes, and skin pigmentation [12].
In certain cases, dietary components, including carotenoids, may also contribute to the
protective role against UVR [13].
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3. Skin Disorders

It is estimated that there are over 1000 known skin disorders, including infections,
drug reactions, psoriasis, eczema, urticaria, acne vulgaris, pityriasisrubra pilaris, Darier’s
disease, ichthyosis, lichen ruber, and various types of skin cancers such as basal cell carci-
noma, squamous cell carcinoma, and melanoma, among others [14,15]. These conditions
contribute significantly to the workload of general practitioners, with approximately one-
fifth of all patient referrals being related to skin pathologies. Consequently, skin disorders
impose a substantial economic burden on individuals and healthcare services [16,17]. More-
over, certain skin disorders are directly linked to exposure to ultraviolet radiation (UVR).
These include photosensitivity disorders, photocarcinogenesis, sunburn, photoaging, and
photoimmune modulation [18,19].
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One example of a photosensitivity disorder is erythropoietic protoporphyria. This rare
inherited hematological disease results in elevated protoporphyrin levels in the plasma,
red blood cells, skin, and feces. Protoporphyrin is an endogenous photosensitizer, meaning
it becomes activated upon exposure to light [20,21]. This activation can ultimately lead to
reactive oxygen species (ROS) forming, causing cellular damage and resulting in clinical
symptoms of photosensitivity. Individuals with erythropoietic protoporphyria experience
itching, burning, and pain in the skin exposed to sunlight, even after just a few minutes
of exposure. This is followed by edema (swelling), erythema (redness), and purpura
(purple discoloration) [22,23]. Along with porphyrins, other endogenous compounds
such as flavins or amino acids can also act as sensitizing molecules in photosensitivity
disorders [24,25].

Sunburn, also known as erythema solare, is an acute skin inflammatory reaction due
to excessive exposure to natural or artificial UV radiation (see Figure 2a). The extent of
sunburn depends on the wavelength of UV radiation, with its effectiveness decreasing as
the wavelengths become longer. It has been estimated that it takes approximately 1000 times
more UVA than UVB radiation to produce the same erythemal (skin reddening) response.
As a result, it is commonly believed that UVB radiation is primarily responsible for causing
sunburn. UVB radiation triggers cytokine-mediated processes and activates neuroactive
and vasoactive mediators in the skin, leading to inflammatory responses [26–29].
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Figure 2. (a) Severe sunburn in a 45-year-old woman (archival material from Dr. P. Kalofiri).
(b) Hyperpigmentation—Melasma and wrinkles at the age of 30 after exposure to solar radiation
(archival material from Dr. F. Biskanaki).

The typical symptom of sunburn is the reddening of the skin and dilation of cutaneous
blood vessels. In more severe cases, blisters and the ablation of the epidermis may also
occur (Figure 2a). It is worth noting that sunburn tends to last longer, up to several days,
in older individuals and those with fairer skin. Sunburn cells refer to keratinocytes that
undergo apoptosis, a form of programmed cell death [30,31].

The minimal erythema dose (MED) represents the minimum amount of UVB radiation
required to cause sunburn and varies significantly depending on an individual’s skin type.
Different skin types have different sensitivities to UV radiation so the MED can vary among
individuals [32–34].

There is compelling evidence suggesting that excessive exposure to ultraviolet ra-
diation (UVR) induces various immunological changes within the immune system, a
phenomenon known as photoimmune modulation [35,36]. Both UVA and UVB radiation
have been shown to have local and systemic immunosuppressive effects. For instance,
following UVR exposure, Langerhans cells-antigen-presenting dendritic cells found in
the epidermis and produced in the bone marrow-undergo functional and morphological
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changes that ultimately lead to their depletion. Additionally, UVR exposure may result in
T-cell tolerance, affecting the immune response [37,38].

Photocarcinogenesis refers to the process initiated by exposure to solar or artificial
light, ultimately leading to the development of skin cancer [39]. UVB radiation is believed
to be directly absorbed into DNA, causing structural damage to the DNA bases. On the
other hand, UVA radiation is considered to induce indirect DNA damage by generat-
ing reactive oxygen species (ROS), resulting in single-strand breaks and DNA-protein
crosslinks [40,41]. These mechanisms contribute to the increased risk of skin cancer associ-
ated with prolonged or excessive exposure to UVR [39] (see Figure 3). It is important to
note that these processes are complex and involve multiple factors, and further research is
ongoing to better understand the detailed mechanisms of photoimmune modulation and
photocarcinogenesis.
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Figure 3. Melanoma-Male back (archival material from Dr. E. Rallis).

The decline in the skin’s structure and function can be categorized into two main
types: intrinsic or chronological aging, which occurs naturally over time and extrinsic
aging, which is attributed to external factors. Extrinsic aging encompasses various factors,
such as chronic exposure to high levels of ultraviolet radiation (UV) or photoaging and
other agents, including smoking, pollution, sleep deprivation, and poor nutrition [42,43].
Chronological aging and photoaging exhibit some histological differences and can some-
times be clinically distinguishable. Skin aging, whether intrinsic or extrinsic, impacts
numerous skin characteristics, processes, and functions. These include diminished regener-
ative capability, changes in pigmentation, compromised thermoregulation, and a decrease
in the strength and elasticity provided by the collagen-rich extracellular matrix, among
others (Figure 2b). The cumulative effect of these changes results in increased skin fragility
and susceptibility to various diseases [44,45]. Photoaging specifically refers to skin aging
caused by chronic exposure to UV radiation (Figure 2b). It is characterized by specific
features such as pigmented lesions, including actinic lentigines or “age spots”, ephelides or
“freckles”, as well as pigmented solar and seborrheic keratosis. Telangiectasia, which refers
to the visible dilation of small blood vessels, is another characteristic feature of photoaging.
These manifestations of photoaging are a result of long-term exposure to UV radiation and
contribute to the overall appearance and condition of aged skin [46,47] (See Figure 4a,b).
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4. Dietary Carotenoids

The impact of nutrition on the skin has long been a subject of interest for scientists,
physicians, pharmacists, and other professionals [48]. Various common food components
are frequently utilized in skincare products and formulations. These include vitamins,
peptides, polysaccharides, polyphenols, coenzyme Q10, polyunsaturated fatty acids, and
carotenoids. These ingredients are often incorporated due to their potential benefits for
skin health and appearance [49].

Carotenoids are a class of isoprenoid compounds that are widely distributed in nature.
They possess diverse structures, physicochemical properties, and activities, which have
evolved to fulfill crucial roles in various biological processes [50]. Carotenoids are involved
in essential functions such as photosynthesis, inter-species communication through color
signaling, nutrition, and overall health. The primary sources of carotenoids through diet
are fruits and vegetables [51]. These natural sources provide an array of carotenoids
that contribute to their vibrant colors and offer potential health benefits when consumed.
Indeed, carotenoids can be found in various diet components beyond fruits and vegetables.
They are also present in herbs, legumes, cereals [52], algae [53,54], foods of animal origin
(such as egg yolk, mammal’s milk and tissues, and seafood) [55,56], food additives (such
as colorants) [57,58], and as dietary supplements. Among the numerous carotenoids, the
main ones found in the diet include lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-
carotene, and lycopene. These carotenoids contribute to the coloration of foods and offer
potential health benefits when incorporated into the diet. In human fluids and tissues, the
most frequently found carotenoids are lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-
carotene, lycopene, phytoene, and phytofluene [59]. They are present at levels ranging from
0 to 2 mol/L in plasma and 0 to 1 nmol/g in tissues [60,61]. Provitamin A carotenoids, such
as α-carotene and β-carotene, are critical in combating vitamin A deficiency. This global
health issuehas various manifestations, including dry eye, impaired growth, compromised
immunity, and increased child mortality rates [62,63].

Furthermore, accumulating evidence over the past three decades suggests that
carotenoids play a role in reducing the risk of developing non-communicable diseases.
These diseases encompass various types of cancers, cardiovascular diseases, bone dis-
orders, skin conditions, neurological disorders, metabolic disorders, and eye disorders.
Carotenoids have demonstrated the potential to promote overall health and prevent these
conditions’ onset [64–66].

Phytoene and phytofluene are unique among carotenoids due to their colorless na-
ture. However, they hold great significance from a biosynthetic standpoint as they serve
as precursors for the synthesis of other carotenoids. As a result, extensive research has
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been conducted to understand their biosynthesis. Within the isoprenoid pathway, the
condensation of two C20 molecules represents the pivotal step in carotenoid biosynthesis,
leading to the formation of (15Z)-phytoene. This geometric isomer is the predominant form
of phytoene found in most organisms capable of synthesizing carotenoids [67]. Phytoene
and phytofluene have received relatively less attention in the fields of food science and
technology, nutrition, health, and cosmetics compared to other frequent carotenoids present
in human fluids and tissues, such as lutein, zeaxanthin, β-cryptoxanthin, α-carotene,
β-carotene, and lycopene. This disparity is attributed mainly to a significant lack of ana-
lytical data available for these colorless carotenoids compared to their more pigmented
counterparts. Their lack of color poses challenges in their detection and quantification,
contributing to the relative neglect of phytoene and phytofluene in research and applica-
tions within these fields [68]. Phytoene and phytofluene have the potential to contribute
to the health benefits typically associated with lycopene. These carotenoids may play a
role in various health-promoting biological activities, individually or in combination with
other compounds. This includes their potential involvement in protection against oxidative
stress [69], inflammation [70], and even exhibiting anticarcinogenic properties [71].

5. Carotenoids in the Skin

The distribution of carotenoids within the skin is not consistent across all layers and
anatomical regions. Typically, the highest concentrations of carotenoids are observed in the
stratum corneum, particularly in close proximity to the skin surface [72]. Oxyhemoglobin
and deoxyhemoglobin play a significant role in the papillary dermis, which is abundant
in blood vessels. In terms of melanin, there are two primary types: eumelanin, which is
a dark brown-black insoluble polymer and pheomelanin, which is a lighter red-yellow
sulfur-containing polymer. Two main pathways have been identified regarding the delivery
and distribution of carotenoids within the skin layers. The first is diffusion from adipose
tissue, blood, and lymphatic vessels, allowing carotenoids to reach the skin layers. The
second pathway involves the secretion of carotenoids through sweat and/or sebaceous
glands onto the skin surface, followed by subsequent penetration into the deeper layers
of the skin [73]. Based on the observation that a higher concentration of carotenoids is
detected in the outer part of the stratum corneum in untreated skin, it has been suggested
that carotenoids are delivered to this location through secretions from eccrine sweat glands
and/or sebaceous glands, similar to the mechanism observed with vitamin E. This hypothe-
sis implies that carotenoids, like vitamin E, may be excreted or released by these glands and
subsequently distributed to the outer layers of the stratum corneum, contributing to the
skin’s overall antioxidant and protective properties. However, further research is needed
to fully understand the precise mechanisms of carotenoid delivery and distribution in the
skin [74]. Studies have shown that when individuals consume carotenoid-rich products,
an increase in the dermal levels of carotenoids can be observed within a relatively short
period, typically ranging from 1 to 3 days.

On the other hand, the turnover or renewal process of the stratum corneum, which
involves the shedding of old skin cells and the generation of new ones, takes a longer dura-
tion of approximately 2 to 3 weeks. This observation suggests that the increase in dermal
carotenoid levels occurs more rapidly than the turnover of the stratum corneum. Therefore,
the carotenoids consumed through diet or supplementation may be transported and accu-
mulated in the skin layers, including the dermis, before they are gradually incorporated
into the newly formed stratum corneum during the natural skin renewal process [75].

6. Factors Acting Skin Carotenoid Levels

Individual differences in skin carotenoid levels are significant and can be attributed
to various factors influencing carotenoid bioavailability. These include dietary patterns,
lifestyle choices, and genetic factors [76]. The levels of antioxidants in the skin, including
carotenoids, are influenced by several variables such as diet, specific skin location or
type, individual characteristics like gender and age, overall health status, and stress factors.
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Environmental factors and lifestyle choices can also impact the skin’s antioxidant levels [77].
It is worth noting that dermal carotenoid levels can be increased relatively quickly through
dietary means. By consuming carotenoid-rich foods or supplements, individuals can
observe an increase in the levels of carotenoids in their skin within a short period [78].
This highlights the dynamic relationship between dietary intake and the deposition of
carotenoids in the skin. Carotenoid distribution in various skin areas exhibits noticeable
differences. Studies have reported that the highest levels of carotenoids can be detected in
specific regions, such as the forehead and palms of the hands.

Conversely, lower concentrations of carotenoids are typically found in areas like the
back of the hands, the inside of the arm, or the dorsal area. These variations in carotenoid
levels across different skin areas may be influenced by differencesin sebaceous gland
activity, blood flow, or local metabolic processes. Additionally, variations in sun exposure,
skin thickness, or the presence of hair follicles in different body regions may also contribute
to the observed differences in carotenoid distribution [79].

The distribution of carotenoids within the layers of the skin is not uniform, with
the higher levels of carotenoids are typically found in proximity to the skin surface, at a
depth of approximately 4 to 8 mm. As the depth increases, carotenoid levels gradually
decrease, extending at least up to a depth of 30 mm [80]. Controlled exposure to sunlight
has been shown to impact circulating and skin carotenoid levels in human volunteers. It
has been observed that exposure to sunlight leads to noticeable decreases in carotenoid
levels. Additionally, exposure to specific types of light, such as visible blue-violet and
infra-red light, has also resulted in decreased skin carotenoid levels. This decrease is likely
attributed to the production of reactive oxygen species (ROS) induced by these types of
light [81,82].

7. Mechanisms of Skin Protection by Carotenoids

There is extensive evidence supporting the role of carotenoids in reducing the risk of
various diseases, including cancer, cardiovascular diseases, and metabolic disorders [83].
Especially provitamin A carotenoids offer benefits to the skin through their conversion
into retinoic acid, which plays vital roles in skin health and function, similar to other
retinoids. These compounds are believed to be involved in processes such as keratinocyte
proliferation, epidermal differentiation and keratinization, inflammation and oxidative
stress reduction, and even enhancing the penetration of topically administered agents,
among other functions [84]. Dietary interventions involving carotenoid-rich products
have been reported to lead to perceived changes in skin color. Among the carotenoids,
astaxanthin has shown potential benefits for the skin, such as protection against erythema
(skin redness) and reduced wrinkling. Astaxanthin is a potent antioxidant with anti-
inflammatory properties that may contribute to these skin-related benefits [85].

Although not one of the major dietary carotenoids, canthaxanthin has been approved
as a food additive in many countries. It has shown usefulness in treating erythropoietic pro-
toporphyria, a genetic disorder characterized by sun sensitivity. However, prolongedand
excessive use of canthaxanthin has raised concerns due to its potential accumulation in the
retina. As a result, caution is advised regarding its general use as a dietary supplement
or additive [86]. The presence of dietary antioxidants and other beneficial diet-sourced
compounds is considered a natural strategy to enhance the skin’s baseline defenses against
photodamage and other aggressors that can impact its health and appearance. β-carotene,
for example, has been shown to offer protection against photodamage caused by visible
and infrared radiation. It may also act as an effective antioxidant in sunscreens, helping
mitigate UV radiation’s damaging effects on the skin [87,88].

8. Inhibition of Lipid Peroxidation

Carotenoids significantly combat oxidative stress by quenching singlet oxygen and
scavenging free radicals, which helps protect cells and tissues from damage. They exhibit
these antioxidant properties not only in solution but also in various biological systems
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such as membranes and cells. However, it is important to note that carotenoids can interact
with other compounds, including both antioxidants and non-antioxidants. Under certain
conditions, such as high concentrations, specific oxygen tensions, exposure to radiation,
or interactions with particular molecules, carotenoids may act as pro-oxidants [89]. This
means that they can promote oxidative reactions instead of inhibiting them. The prooxidant
effects of carotenoids can have different outcomes, depending on the context.

In some cases, their prooxidant behavior could be harmful, leading to increased
oxidative damage and potential health risks. On the other hand, evidence suggests that the
prooxidant effects of carotenoids can be beneficial under certain conditions. The complex
behavior of carotenoids as both antioxidants and pro-oxidants highlights the importance of
understanding their interactions in specific contexts [90].

9. Visible Light-Absorbing Colored Carotenoids-Photoprotection

Beta-carotene, a widely distributed carotenoid found in various foods, including
carrots, palm oil, mango, sweet potato, apricot, and green vegetables, has long been
recognized for its beneficial effects in the treatment of erythropoietic protoporphyria. This
rare inherited hematological disorder is characterized by elevated levels of protoporphyrins
in the plasma, red blood cells, skin, and feces [91]. Protoporphyrin serves as an endogenous
photosensitizer, meaning that it becomes excited when exposed to ultraviolet radiation
(UVR) and can transfer this energy to molecular oxygen in its ground state. This process
generates singlet oxygen, a reactive oxygen species (ROS) that can interact with various
molecules such as DNA, proteins, and lipids, resulting in cellular damage and clinical
symptoms associated with photosensitivity. Patients with erythropoietic protoporphyria
typically experience itching, burning, and pain in sun-exposed skin within minutes of
exposure to sunlight. These symptoms are followed by edema, erythema (redness), and
purpura (purple discoloration). Elevated levels of protoporphyrins and the subsequent
production of singlet oxygen contribute to the onset of these symptoms [92].

Lutein is a dietary carotenoid widely distributed and can be found in various green
vegetables, a diverse range of fruits, and egg yolk. It is known for its yellow pigment and is
commonly consumed through a balanced diet. Lutein plays a significant role in eye health,
particularly in the macula, where it acts as a filter for blue light and provides antioxidant
protection. On the other hand, lycopene is an acyclic carotenoid primarily found in certain
tomato varieties, watermelons, guava, papaya, apricots, and grapefruits. It is responsible
for the red color in these foods and is a potent antioxidant. Lycopene has gained attention
for its potential health benefits, particularly concerning cardiovascular health and prostate
cancer prevention [93,94]. In many in vivo studies, lycopene extracts derived from tomatoes
are commonly used. These extracts often include other accompanying compounds such
as vitamin E and the colorless carotenoids phytoene and phytofluene. These additional
compounds may act synergistically with lycopene, potentially enhancing its biological
effects [95].

10. Carotenoids in Dermoaesthetics

Humans have used carotenoids topically for cosmetic purposes long before their sci-
entific discovery. Carotenoid-containing natural substances, such as plant extracts or oils
rich in carotenoids, have been applied to the skin for their potential benefits, including skin
conditioning, moisturizing, and providing a subtle color or glow. In the 1970s, carotenoids,
particularly canthaxanthin, gained popularity as tanning agents in the form of oral supple-
ments [55,96]. These supplements were marketed to promote a tan-like appearance without
sun exposure. However, concerns were raised regarding the safety of canthaxanthin sup-
plements when taken at high doses. It was observed that continuous intake of high doses,
typically exceeding 30 mg/day, could lead to the formation of canthaxanthin crystals in
the eyes [97]. These crystals could cause adverse effects on vision. However, it’s important
to note that these crystals were reversible and could disappear when the canthaxanthin
intake was discontinued [98].



Cosmetics 2023, 10, 120 9 of 13

Regulatory authorities such as the European Food Safety Authority (EFSA) have
established guidelines and recommended lower doses for canthaxanthin intake to address
safety concerns. The EFSA’s Panel on Food Additives and Nutrient Sources Added to
Food (ANS) has set an acceptable daily intake (ADI) for canthaxanthin at 0.03 mg/kg
body weight per day. This recommendation aligns with earlier recommendations made
by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and the Scientific
Committee on Food (SCF) [99,100].

11. Conclusions

Conclusively, a diet rich in carotenoid-containing products and the avoidance of stress
factors can positively impact skin health, overall well-being, and the prevention of various
diseases. Carotenoids are crucial in promoting healthy dietary patterns and reducing the
risk of serious illnesses, including cancer, cardiovascular disease, eye disorders, osteoporo-
sis, and metabolic diseases. While colored carotenoids have received more attention in
research and applications, the colorless carotenes phytoene and phytofluene have been
overlooked due to their lack of color, making their detection more challenging in the past.
However, emerging evidence suggests that phytoene and phytofluene may be involved
in the health benefits traditionally attributed to colored carotenoids like lycopene, as they
often occur together in foods. These unique carotenoids have distinct characteristics, includ-
ing their ability to absorb UV radiation. Future studies should focus on generating more
data about phytoene and phytofluene levels in the skin to accurately assess skin carotenoid
status. Currently, the emphasis has been mainly on colored carotenoids. Furthermore,
mechanistic studies are needed to understand the specific benefits of colorless carotenoids
in the skin, such as their potential for skin whitening and improving aging signs. This
expanding area of research holds promise for the development of novel applications in the
fields of health and cosmetics.
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