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Abstract: The objective of this study was to analyze the in vitro stability and toxicity of liposomes
containing guarana in skin cell lines. The liposomes were produced by the reverse phase evaporation
method containing 1 mg/mL guarana. The stability of the liposomes was evaluated by physical-
chemical parameters for up to 90 days using three different storage conditions. The cytotoxicity of
guarana (GL), liposomes (B-Lip), and guarana-loaded liposomes (G-Lip) was evaluated on sponta-
neously immortalized human keratinocyte cell lines (HaCaT), murine Swiss albino fibroblasts (3T3),
and human fibroblasts (1BR.3.G). The evaluation was performed using cellular viability analysis. The
techniques used were 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neu-
tral red capturing (NRU), and the analyses were conducted after 24, 48, and 72 h of exposure of these
cells to the different treatments. The G-Lip exhibited physical-chemical stability for 60 days when the
samples were stored in a refrigerator. The GL, B-Lip, and G-Lip demonstrated low cytotoxicity in the
three different cell cultures tested since a small reduction in cell viability was only observed at the
highest concentrations. In addition, greater cell damage was observed for B-Lip; however, guarana
protected the cells from this damage. Thus, G-Lip structures can be considered promising systems for
topical applications.

Keywords: Paullinia cupana; natural products; nanoparticles; stability; cytotoxicity; cell culture

1. Introduction

Plants are important sources of bioactive compounds in modern medicine, and ap-
proximately one-third of the best-selling pharmaceuticals are from natural products or their
derivatives [1–3]. In contrast, many natural active ingredients are unstable compounds that
may undergo degradation, oxidation reactions, or both. In addition, these reactions may
lead to a decrease in or loss of efficacy of the active compounds. For example, incorrect
storage may promote the loss of active compounds, whether for physical or biological
reasons [4,5].

One alternative that attempts to resolve these limitations is the incorporation of
nanoparticles into natural product-based delivery systems, which increases the stability
of the compounds and consequently preserves the therapeutic effects using techniques
that involve nanotechnology [6–8]. These nanoparticles can significantly increase both
the in vitro and in vivo bioavailability of natural products [1]. From this perspective, the
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pharmaceutical industry has increasingly used nanotechnology-based products to create
cosmetic formulations [9–12].

Liposomes are among the nanoparticles used for the development of nanocosmetic
products [4,13–15]. Liposomes are structures formed by a lipid bilayer that can fuse with
the layers when applied to the skin, thereby promoting the release of active compounds,
making them useful as carriers for cosmetic applications [16]. In addition to having a
simple means of preparation, the use of these systems can promote greater absorption
of the active compounds into the skin, so they constitute an interesting system when
discussing cosmeceuticals. The enhanced absorption is associated with prolonged release,
thereby promoting a greater effect [9,17,18]. The lipid structure of the liposomes facilitates
the fusion of active compounds with different layers of the skin. This process is more
advantageous than other nanostructured systems in the transport of nanocosmetics, such
as vitamins, minerals, antioxidants, and anti-aging materials, making it a useful tool in the
field of pharmaceuticals and cosmetics [9,19,20].

Studies of the interactions of these nanoparticles with biological systems, such as their
bioavailability, biodegradability, and toxicity, are of the utmost importance. Hence, it is
essential to know the physicochemical properties of these particles, such as their size, shape,
surface area, morphology, and stability [21]. In addition, precise and predictive risk assess-
ment approaches are required for understanding the potential health and environmental
hazards associated with exposure to nanomaterials [22].

The use of animals in scientific research is the most commonly used method to ensure
safety and low-level toxicity. However, the increase in ethical discussions and regula-
tory standards regarding the protection of animals used for scientific purposes (Directive
2010/63/EU) [23,24], as well as the growing interest in the search for predictive toxicol-
ogy, has been changing the perspective in this line of research [25–28]. Russell and Burch
(1959) [29] postulated the 3Rs principle, which is primarily aimed at the reduction, refine-
ment, and replacement of laboratory animals. Researchers have stated that good science
and animal welfare must go hand in hand. Hence, several alternative methods have been
proposed in an attempt to reduce the number of animals used in experimentation and the
cost of experiments [24,30,31].

In this context, several skin models have been designed to predict the interactions
of chemical compounds and/or nanoparticles with skin barriers by mimicking the skin’s
physiological barriers. Among these models, cellular models are the oldest and best
described in the literature. For skin-related toxicity studies, the most commonly used cell
types are immortalized human keratinocyte cells (HaCaT) and fibroblasts (3T3) because
keratinocytes are the main cells of the epidermis, and fibroblasts represent the main type of
cell in the dermis and are involved in the production of constituents of the extracellular
matrix, such as collagen, glycosaminoglycans, and proteoglycans. In addition, HaCaT
cells, for example, are low-cost cells, with great ease of use and rapid cell proliferation,
in addition to high experimental reproducibility, and they express the main skin surface
markers and the functional activity of isolated keratinocytes [32,33]. Fibroblasts (human or
murine) represent the most used cell type in cell culture because they are easily cultivated
and maintained in vitro. 3T3 fibroblasts are cells from Swiss mouse embryos in which the
fibroblasts have been transformed with the SV40 virus T antigen into a stable growing
cell line. Similarly, human fibroblasts can be easily isolated from different body sites
and easily cultured in vitro [34]. Therefore, in our study, keratinocytes (HaCaT) and
fibroblastic cells (3T3 and 1BR.3.G) were chosen as the model system for the epidermis and
dermis, respectively.

Guarana, Paullinia cupana var. sorbilis (Mart.) Ducke (Sapindaceae), is a native Brazilian
species of considerable economic and social importance [35]. Among the Amazonian
species, guarana is one of the most promising species in the Brazilian flora [36]. Guarana
has a long history of use as a stimulant, mainly by indigenous tribes in Brazil, and it is a
versatile plant due to its potential utility in the food industry, such as in the preparation
of energy drinks, soft drinks, and food supplements [37–40]. Furthermore, guarana is
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widely used in the pharmaceutical industry in the production of drugs and is listed in
the Brazilian Pharmacopoeia [41]. It is present in several cosmetic products due to its
antimicrobial [42,43] and antioxidant activities [37–39,42,44–53]. Due to the high content of
alkaloids in guarana, extracts are added to products for the treatment of gynoid lipodystro-
phy and to anti-aging creams [54,55]. Given the importance of guarana and the increasing
use of its seeds, there has been increased interest in the quality of the products containing
this compound because its chemical structure is predominantly unsaturated and susceptible
to oxidation [56].

In the present study, we evaluated the physicochemical stability of liposomes con-
taining 1 mg/mL guarana powder by reverse phase evaporation. Moreover, based on the
potential topical application of these new nanocarriers, the in vitro cytotoxicity of guarana
(GL), the blank liposome (without guarana, B-Lip), and the liposome containing 1 mg/mL
guarana powder (G-Lip) was tested. The evaluations were conducted in different cultures
of skin cells, fibroblasts (3T3 and 1BR.3.G), and keratinocytes (HaCaT).

2. Materials and Methods
2.1. Materials

Acetonitrile of an analytical standard, dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red dye (NR), cholesterol, and
polysorbate 80 were purchased from Sigma-Aldrich® (St. Louis, MO, USA). Methanol and
trifluoroacetic acid (TFA) were acquired from J.T. Baker® (Mexico City, Mexico). Ethanol
was acquired from Synth® (São Paulo, Brazil). Monobasic potassium phosphate was ac-
quired from F. Maia® (São Paulo, Brazil). Sodium chloride and dibasic sodium phosphate
were obtained from Nuclear® (São Paulo, Brazil). Potassium chloride was obtained from
Qhemis® (São Paulo, Brazil). Lipoid S100® was obtained from Lipoid® (Ludwigshafen,
Germany) and vitamin E from Alpha química® (Porto Alegre, Brazil). Dulbecco’s modi-
fied Eagle’s medium (DMEM), fetal bovine serum (FBS), phosphate-buffered saline (PBS),
L-glutamine solution (200 mM), trypsin-EDTA solution (170,000 U/L trypsin and 0.2 g/L
EDTA), and penicillin-streptomycin solution (10,000 U/mL penicillin and 10 mg/mL strep-
tomycin) were obtained from Lonza (Verviers, Belgium). The 75-cm2 flasks and 96-well
plates were obtained from TPP® (Trasadingen, Switzerland). Guarana powder was kindly
provided by Agropecuary Research Brazilian Enterprise (EMBRAPA Western Amazon in
Manaus, Amazon, Brazil).

2.2. Preparation and Characterization of Guarana-Loaded Liposomes

Liposomes containing 1 mg/mL guarana powder (G-Lip) were prepared by reverse
phase evaporation [57,58] after being previously developed and standardized by our
research group [59]. The soy phosphatidylcholine (0.8 g), cholesterol (0.15 g), and vitamin E
(0.02 g) were solubilized in ethanol (40 mL) with the aid of ultrasound for 5 min. Then, an
aliquot of an aqueous solution (4 mL) of guarana powder (0.1 g) and polysorbate 80 (0.15 g)
in PBS pH 7.4 was sonicated for 5 min, thereby yielding a dispersion of reverse micelles.
The organic solvent was removed by evaporation to form an organogel. The organogel
reverted to vesicles after the addition of the remainder of the aqueous phase by stirring
(300 rpm) for 30 min using a rotary evaporator in a water bath at 40 ◦C. The vesicles were
homogenized at room temperature using filtering sequences through the use of 0.45- and
0.22-µm filter membranes (Millex Syringe Filter®). Blank liposomes (B-Lip) were also
produced by the same method under the identical experimental conditions previously
described, except at this stage, the guarana was suppressed from the formulation.

For the characterization, the average diameter parameters were evaluated by two
different techniques: laser diffraction (Microtrac S3500®, EUA) using the undiluted dis-
persions; and dynamic light scattering (Zetaziser Nano-ZS®, Malvern, United Kingdom)
using samples diluted in ultrapure water (1:500 v/v). The latter method also determined
the polydispersity index (PDI). To determine the homogeneity of the suspended vesicles,
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the span index was calculated from the data obtained by laser diffraction analysis, using
the following formula:

span index =

[
dv (90%)− dv (10%)

dv (50%)

]
where: dv is the size (µm) 10, 50 and 90%.

The zeta potential values of the liposomes were evaluated by the determination of
electrophoretic mobility (Zetaziser Nano-ZS®, Malvern, United Kingdom). The measure-
ments were performed after diluting the formulations in 10 mM NaCl aqueous solution.
The pH values of the formulations were directly determined using a calibrated potentiome-
ter (Digimed DM22®, São Paulo, Brazil). The organoleptic characteristics (appearance,
color, and odor) were visually evaluated, and the changes in the initial sample (time zero)
were observed.

The five main active compounds present in guarana powder (theobromine, theo-
phylline, caffeine, catechin, and epicatechin) were quantified. The quantification end en-
capsulation/incorporation efficiency was determined by reverse-phase high-performance
liquid chromatography (RP-HPLC) using a Prominence® chromatograph (Shimadzu®,
Kyoto, Japan), according to methodologies described and validated by our group [49,59].

The chromatographic instruments and conditions were a Shimadzu HPLC system
(Kyoto, Japan) equipped with an LC-20AT pump, an SPD-M20A photodiode array (PDA)
detector, a CBM-20A system controller, a C18 Phenomenex (4 × 3.0 mm, 5 µm) precolumn,
and an RP-18 Phenomenex column (250 mm × 4.5 mm, 5 µm). Water was used as the
mobile phase with 0.1% TFA (pH 4.2, A) and a methanol–acetonitrile solution (25:75 v/v, B)
in a 90:10 v/v ratio (A:B) at an isocrative flow rate (1 mL/min). The injection volume was
20 µL. The detection was performed at 280 nm. The tests were based on the methodology
described by Klein et al. (2012) [60], and some modifications were validated by our research
group [59].

2.3. Physicochemical Stability Study of Guarana-Loaded Liposomes

The liposome samples containing 1 mg/mL guarana powder were prepared in tripli-
cates and stored at room temperature (RT 25 ± 2 ◦C), in a climatic chamber (CC 40 ± 2 ◦C
and 75% relative humidity) and under refrigeration (RE 5 ± 2 ◦C), and they were analyzed
at 0, 7, 15, 30, 60, and 90 days. The parameters analyzed were the organoleptic characteris-
tics (appearance, color, and odor), precipitate formation or phase separation, mean vesicle
diameter, polydispersity index, zeta potential, pH, concentration of active compounds,
and encapsulation/incorporation efficiency, using the methodology described previously
(Section 2.2).

2.4. Culture of 3T3, HaCaT and 1BR.3.G Cell Lines

The HaCaT, 3T3, and 1BR.3.G were grown in DMEM (4.5 g/L glucose), supplemented
with 10% FBS, L-glutamine (2 mM), penicillin (100 U/mL), and streptomycin (100 µg/mL) at
37 ◦C in 5% CO2. The cells were routinely cultured in 75-cm2 culture flasks and trypsinized
using trypsin-EDTA when the cells reached approximately 80% confluence. The HaCaT
cell lines were obtained from the Eucellbank (University of Barcelona, Spain), whereas
3T3 was obtained from ECACC (Sigma-Aldrich®), and 1BR3.G was donated by Prof.
Ramon Mangues (Biomedical Research Institute Sant Pau of the Hospital de Sant Pau,
Barcelona, Spain).

2.5. Analysis of Liposome Interference with Cell Viability Assays

To eliminate the potential interference of the liposomes with the cell viability assays, an
interference test was performed prior to the experiments, using the methodology described
by Nogueira et al. (2013) [61]. In this analysis, the G-Lip (500 µL) was suspended in
DMEM (500 µL, without FBS and phenol red) containing the MTT dye (0.5 mg/mL) or
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NR (0.05 mg/mL). These solutions were prepared in triplicate and incubated at 37 ◦C in
5% CO2.

After 3 h of incubation, the liposomes were centrifuged (10 min at 19,000 rpm). The
supernatant was removed, and the DMSO (1 mL) or a solution (1 mL) containing 50%
absolute ethanol and 1% acetic acid in distilled water was added for the MTT and NR
experiments, respectively. These solutions were shaken and transferred to a quartz cuvette,
in which a scanning spectrum was plotted in the range of 300 to 700 nm. The absorbance
was recorded at 550 nm using a Shimadzu double beam UV-160A-Vis spectrophotometer
(Shimadzu®, Kyoto, Japan).

2.6. Cytotoxicity Assays

The cytotoxic effects of GL, G-Lip, and B-lip were measured by MTT tetrazolium
salt assay, as described by Mosmann (1983) [62], and neutral red uptake (NRU) assay, as
described by Borenfreund and Puerner (1985) [63]. The 3T3, HaCaT, and human fibroblast
cells were seeded in the 60 central wells of a 96-well plate at densities of 1 × 105, 6.5 × 104,
and 5.5 × 104 cells/mL for 24, 48, and 72 h, respectively. After incubation (24 h, 5% CO2,
37 ◦C), the medium was removed, and 100 µL of the DMEM supplemented with 5% FBS
containing the different treatments at the required concentration (3.91–500 µg/mL) was
added. After incubation under identical conditions as before, the medium was removed,
and 100 µL of MTT in PBS (5 mg/mL) diluted (in a 1:10 ratio) in DMEM was added without
FBS. The phenol red was then added to the cells for a final concentration of 0.5 mg/mL.
Similarly, 100 µL of 0.05 mg/mL NR solution in DMEM without FBS and phenol red was
added to each well for the NRU assay. The controls used in the experiments consisted of
cells and medium without any treatment. The plates were again incubated for 3 h after the
medium was removed. Then, for the MTT assay, 100 µL of DMSO was added to each well to
dissolve the purple formazan product. For the NRU assay, 100 µL of a solution containing
50% absolute ethanol and 1% acetic acid in distilled water was added. After 10 min on
a microtiter plate shaker at room temperature, the absorbance of the resulting solutions
was measured at 550 nm using a microplate reader. The cell viability was calculated by
considering the mean absorbance of each concentration with respect to that of the controls.
The analysis was always performed in triplicate: three wells for each treatment at each
concentration, and all experiments were also repeated three times.

2.7. Statistical Analysis

All the experiments were evaluated in triplicates. The results are expressed as
mean ± standard deviation (SD), and the statistical analyses were performed using one-
way analysis of variance (ANOVA) to determine the differences between the datasets,
followed by Dunnett’s test or Tukey’s post hoc test for multiple comparisons using the
GraphPad Prism software, version 5.0 ®. The differences were considered significant at
p < 0.05.

3. Results and Discussion
3.1. Stability Study of Guarana-Loaded Liposomes

Considering the hydrophilic and lipophilic characteristics of the active compounds
present in guarana, liposomes were the nanostructures selected in our study as vehicles for
the incorporation of guarana powder because the structures allow for the incorporation of
compounds with different characteristics [20,64–67].

In a previous study conducted by our research group [49], we evaluated two different
methods of producing liposomes (ethanol injection and reverse phase evaporation) and
different concentrations of guarana powder associated with these structures (1, 5, and
10 mg/mL). From this initial study, the reverse phase evaporation method and the concen-
tration of 1 mg/mL were selected as the optimum conditions. Hence, the results herein
refer to liposomes produced under the aforementioned conditions (Figure 1).
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Figure 1. (A) Distribution of the mean diameter by the laser diffraction technique; (B) distribution
of the mean diameter by dynamic light scattering; (C) polydispersity index; (D) zeta potential;
(E) pH values. Results are expressed as mean ± standard deviation (n = 3). RT (room temperature,
25 ± 2 ◦C), CC (climatic chamber, 40 ± 2 ◦C and 75% relative humidity), and RE (under refrigeration,
5 ± 2 ◦C). ∗ Significant difference (p < 0.05) in relation to the initial values. ∗∗ micrometric vesicle
diameter (µm).

To verify the formation of a homogeneous and nanometric system, the vesicle diameter
distribution analysis was performed by the laser diffraction technique (Microtrac®). The
initial mean diameter was 147 ± 0.01 nm; this parameter was measured for 90 days under
different storage conditions. The diameter remained stable, with no significant differences
for 7, 15, and 60 days when stored at CC, RT, and RE, respectively (Figure 1A).

From these results, the span index was calculated, with which it was possible to deter-
mine the homogeneity of the suspended vesicles. The initial span values of 0.31 ± 0.10 indi-
cate close distribution of the vesicles. These values remained low (0.72 ± 0.11, 0.79 ± 0.41,
and 0.69 ± 0.31) for up to 90 days when the samples were stored at RT, RE, and CC, re-
spectively. The presence of low dispersion nanometric vesicles was also observed by the
dynamic light scattering technique (Figure 1B).

We observed initial vesicles 165 ± 8.27 nm in size and a PDI of 0.250 ± 0.03, which
remained largely similar for 7 days when stored in RT (172 ± 3.98 nm, PDI 0.273 ± 0.03)
and CC (174 ± 3.03 nm, PDI 0.237 ± 0.02); under this same condition, the destabilization
of the system was observed in 30 days of storage in the presence of micrometric vesicles
(1.355 µm) (Figure 1B). This increase was associated with alterations in the organoleptic
characteristics of appearance, color, and odor at 15 days and was intensified at 30 days
(Figure 2).
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Figure 2. Macroscopic characteristics of the liposomes prepared by the reverse phase evaporation
method, stored under different storage conditions: RT (room temperature, 25 ± 2 ◦C), CC (climatic
chamber, 40 ± 2 ◦C and 75% relative humidity), and RE (under refrigeration, 5 ± 2 ◦C).

In contrast, the vesicles were not significantly different for 30 days when stored under
RE (181 ± 4.70 nm, PDI 0.285 ± 0.04) (Figure 1B), whereas changes in the organoleptic
characteristics were confirmed at 90 days of analysis (Figure 2).

The formulations were also analyzed for the zeta potential by the electrophoretic
mobility technique, using the data presented in Figure 1D. The liposomes had an initial
zeta potential of −9.78 ± 0.98 mV and remained without significant differences for 15 days
when stored in RT (−11.56 ± 3.47 mV) and in CC (−6.40 ± 1.40 mV). For the samples
stored under RE, the initial characteristics were maintained at up to 60 days of storage
(−9.81 ± 2.28 mV).

The low zeta potential values are in agreement with the characteristics of the phospho-
lipid (soy phosphatidylcholine) used for the production of these liposomes [68]. The find-
ings in this paper corroborated the results obtained by Karn, Parkl and Hwangl (2013) [69],
who produced liposomes using Lipoid S100® and cholesterol and obtained vesicles with
potentials of −6.8 to −7.7 mV.

The initial pH values of 7.24 ± 0.04 were maintained without significant differences
for up to 7 days of analysis when the samples were stored at RT (6.92 ± 0.04) and in CC
(7.03 ± 0.01). For the samples stored under RE, no significant differences were observed
over the 90 days (Figure 1E).

The pH values were as expected, based on the preparation of these nanostructures, in
which PBS (pH 7.4) was used as the aqueous phase. The pH change associated with higher
temperatures (RT and CC) is directly related to the stability of the liposomes. It is believed
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that the reduction in pH when the samples were stored under these conditions could be
related to the hydrolysis of the lipids present in the liposomal structures, which at high
temperatures can undergo chemical degradation, leading to a loss of stability [70,71].

It is known that the evaluation of the organoleptic characteristics is of great importance
because physical processes, such as aggregation, flocculation, fusion, or coalescence, can
alter the utility of the liposomes, which can result in the loss of the associated liposomes
and changes in the sizes of the structures [72,73]. The results regarding the organoleptic
characteristics are shown in Figure 2.

In summary, it was observed that the samples stored in CC revealed alterations in color
from 7 days of storage (Figure 2). At 15 days, the samples stored at RT and CC exhibited an
intense rancid odor, with significant changes in the vesicle diameter and polydispersity
index (Figure 1B,C) and pH (Figure 1E). These changes intensified at 30 days of storage,
mainly under the CC condition, with changes in the zeta potential as well (Figure 1D).
Under these two conditions, complete phase separation was observed after 60 days. For the
samples only stored in RE at 90 days, changes in organoleptic characteristics were observed.

Each component, active or not, can affect the stability of a formulation. These al-
terations can be classified as intrinsic, when they are related to factors inherent to the
formulation, such as physical, chemical, pH, reactions, and hydrolysis incompatibility,
among others; or extrinsic, when related to factors external to the formulation, such as time,
temperature, light, oxygen, humidity, packaging material, microorganism, bacteria, or sam-
ple vibration [74]. Among these possibilities, it is believed that the color change at 7 days
for the sample stored in CC may be related to processes extrinsic to the formulation; that
is, the high temperature at which the sample was conditioned may have triggered and/or
accelerated physical-chemical and chemical reactions, resulting in changes in organoleptic
characteristics, such as appearance, color, and odor.

It should also be noted that blank liposomes (in the absence of guarana) were produced
and characterized at the same times under identical conditions (data not shown). The results
were similar to those of the liposomes containing 1 mg/mL of guarana powder; that is,
guarana did not alter the characteristics of the liposomal structures.

The total content and encapsulation/incorporation efficiency of the five main active
compounds (theobromine, theophylline, caffeine, catechin, and epicatechin) were also
evaluated. The results obtained for the total content of the assets are depicted in Figure 3.

The quantification results (Figure 3) indicated the presence of 20.61 µg/mL methylx-
anthines (0.14 µg/mL (0.028%) TEOB, 0.47 µg/mL (0.094%) TEOF, and 20.00 µg/mL (4.0%)
CAF) and 26.00 µg/mL polyphenols (13.00 µg/mL (2.6%) CAT and 13.00 µg/mL (2.6%)
EPICAT) in the guarana powder sample.

For TEOB, the initial content of 104.73 ± 1.11% decreased to 64.80 ± 18.11% (15 days)
and 63.99 ± 2.06% (90 days) when the liposomes were stored in RT and CC, respectively.
When the samples were stored in RE, there were no significant differences in the concentra-
tions until 90 days, with a final concentration of 95.34 ± 1.02% (Figure 3A).

For TEOF, the initial content (91.99 ± 1.07%) significantly changed at 15 days at RT
(84.08 ± 58.71%) and in CC (84.24 ± 58.98%). When the liposomes were stored under RE,
the decrease in the content of this active compound was only observed at 90 days, with a
final content of 40.07 ± 4.93% (Figure 3B).

The CAF demonstrated a reduction in the initial content (100.96 ± 0.59%) after 15 days
when the samples were stored at RT (35.55 ± 31.77%) and in CC (62.90 ± 25.71%). The
initial content of the CAF exhibited no significant difference at 90 days, when the sample
was stored under RE (98.89 ± 4.37%) (Figure 3C).

The polyphenols (CAT and EPICAT) (Figure 3D,E) were the active compounds that
demonstrated the greatest reduction in content, which was already observable at 7 days
of stability, when the samples were stored in CC. The CAT initially showed a content of
92.90 ± 1.07% and was significantly reduced to 10.65 ± 6.90% under this storage condition.
The same outcome was observed for EPICAT, which had an initial content of 85.35% ± 2.99
and, at 7 days, a stability content of 21.51% ± 18.66. When these compounds (CAT and
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EPICAT) were at RT, the content was significantly altered at 15 days, with concentrations
of 80.70 ± 0.45 and 77.90 ± 3.18% for CAT and EPICAT, respectively. Under refrigeration,
the concentration was reduced at 60 days for both active compounds, with content of
63.87 ± 30.03 and 53.78 ± 22.06% for CAT and EPICAT, respectively.

Cosmetics 2023, 10, x FOR PEER REVIEW 9 of 19 
 

 

   

  

 
Figure 3. Total content of liposomal active ingredients containing 1 mg/mL of guarana powder. 
Results are expressed as mean ± standard deviation (n = 3). (A) (theobromine), (B) (theophylline), 
(C) (caffeine), (D) (catechin), and (E) (epicatechin). RT (room temperature, 25 ± 2 °C), CC (climatic 
chamber, 40 ± 2 °C and 75% relative humidity), and RE (under refrigeration, 5 ± 2 °C). ∗ Significant 
difference (p < 0.05) compared to the initial values. 

The quantification results (Figure 3) indicated the presence of 20.61 μg/mL 
methylxanthines (0.14 μg/mL (0.028%) TEOB, 0.47 μg/mL (0.094%) TEOF, and 20.00 
μg/mL (4.0%) CAF) and 26.00 μg/mL polyphenols (13.00 μg/mL (2.6%) CAT and 13.00 
μg/mL (2.6%) EPICAT) in the guarana powder sample. 

For TEOB, the initial content of 104.73 ± 1.11% decreased to 64.80 ± 18.11% (15 days) 
and 63.99 ± 2.06% (90 days) when the liposomes were stored in RT and CC, respectively. 
When the samples were stored in RE, there were no significant differences in the 
concentrations until 90 days, with a final concentration of 95.34 ± 1.02% (Figure 3A). 

For TEOF, the initial content (91.99 ± 1.07%) significantly changed at 15 days at RT 
(84.08 ± 58.71%) and in CC (84.24 ± 58.98%). When the liposomes were stored under RE, 
the decrease in the content of this active compound was only observed at 90 days, with a 
final content of 40.07 ± 4.93% (Figure 3B). 

The CAF demonstrated a reduction in the initial content (100.96 ± 0.59%) after 15 days 
when the samples were stored at RT (35.55 ± 31.77%) and in CC (62.90 ± 25.71%). The 
initial content of the CAF exhibited no significant difference at 90 days, when the sample 
was stored under RE (98.89 ± 4.37%) (Figure 3C). 

The polyphenols (CAT and EPICAT) (Figure 3D,E) were the active compounds that 
demonstrated the greatest reduction in content, which was already observable at 7 days 
of stability, when the samples were stored in CC. The CAT initially showed a content of 
92.90 ± 1.07% and was significantly reduced to 10.65 ± 6.90% under this storage condition. 
The same outcome was observed for EPICAT, which had an initial content of 85.35% ± 

0 d 7 d 15
 d

30
 d

60
 d

90
 d 0 d 7 d 15

 d
30

 d
60

 d
90

 d 0 d 7 d 15
 d

30
 d

60
 d

90
 d

0
10
20
30
40
50
60
70
80
90

100
110
120

Storage Conditions

A
ct

iv
e 

co
m

po
un

d 
(%

)

RT RE CC

*

*

*

*

0 d 7 d 15
 d

30
 d

60
 d

90
 d 0 d 7 d 15

 d
30

 d
60

 d
90

 d 0 d 7 d 15
 d

30
 d

60
 d

90
 d

0
10
20
30
40
50
60
70
80
90

100
110
120

Storage Conditions

A
ct

iv
e c

om
po

un
d 

(%
)

RT RE CC

*

*

*
* *

*

* * *

0 d 7 d 15
 d

30
 d

60
 d

90
 d 0 d 7 d 15

 d
30

 d
60

 d
90

 d 0 d 7 d 15
 d

30
 d

60
 d

90
 d

0
10
20
30
40
50
60
70
80
90

100
110
120

Storage Conditions

A
ct

iv
e c

om
po

un
d 

(%
)

RT RE CC

*

* *
*

*

* * *

0 d 7 d 15
 d

30
 d

60
 d

90
 d 0 d 7 d 15

 d
30

 d
60

 d
90

 d 0 d 7 d 15
 d

30
 d

60
 d

90
 d

0
10
20
30
40
50
60
70
80
90

100
110
120

Storage Conditions

A
ct

iv
e c

om
po

un
d 

(%
)

* * *

*

*
*

* * *
*

*

RT RE CC

0 d 7 d 15
 d

30
 d

60
 d

90
 d 0 d 7 d 15

 d
30

 d
60

 d
90

 d 0 d 7 d 15
 d

30
 d

60
 d

90
 d

0
10
20
30
40
50
60
70
80
90

100
110
120

Storage Conditions

A
ct

iv
e c

om
po

un
d 

(%
)

RT RE CC

* *
* *

*
*

*
*

* *

*

A B 

C D 

E 

Figure 3. Total content of liposomal active ingredients containing 1 mg/mL of guarana powder.
Results are expressed as mean ± standard deviation (n = 3). (A) (theobromine), (B) (theophylline),
(C) (caffeine), (D) (catechin), and (E) (epicatechin). RT (room temperature, 25 ± 2 ◦C), CC (climatic
chamber, 40 ± 2 ◦C and 75% relative humidity), and RE (under refrigeration, 5 ± 2 ◦C). ∗ Significant
difference (p < 0.05) compared to the initial values.

In general, the condition that yielded the highest stability of the active compounds was
under RE. For TEOB and CAF, the content remained unchanged throughout the stability
study. When stored in RE, the CAT and EPICAT exhibited significant reductions at 60 days
of stability, whereas TEOF demonstrated a reduction at 90 days.

The reduction in the content, particularly for the polyphenols (CAT and EPICAT)
when the samples were stored in CC, could be caused by the oxidation of these compounds
at higher temperatures. In previous studies, the polyphenols present in cocoa exhibited
enzymatic oxidation when high temperature and high humidity were used to dry this
product [75,76].

The literature also describes the polyphenols as unstable structures that may undergo
possible oxidative processes when under neutral and alkaline conditions. This instability
was visualized through three degradation processes: decomposition into smaller molecules,
polymerization in other molecules, and oxidation to oxidative molecules under natural
conditions [77].

In our study, we demonstrated protection against this alkaline degradation when the
polyphenols were incorporated into liposomal structures. When the formulations were
stored in RE, the content of polyphenols (CAT and EPICAT) was maintained without signif-
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icant differences for up to 60 days of stability. In previous studies, when the degradation of
these CAT and EPICAT compounds present in guarana was evaluated at baseline alkaline
conditions (0.1 M NaOH), the final CAT and EPICAT contents were approximately 62.13%
and 23.25%, respectively, when the guarana powder was exposed to this condition for
15 min.

Data from the literature indicated that green tea liposomes containing polyphenols,
such as catechin, prepared with lecithin, cholesterol, and phosphate buffer at pH 6.62, exhib-
ited greater stability of this active compound against oxidative processes when compared
to non-nanostructured green tea [78].

After the total quantification of the active compounds present in guarana, the encap-
sulation/incorporation of these active substances was determined in the liposome sample.
The results of this evaluation are presented in Table 1.

Table 1. Efficiency of encapsulation/incorporation of liposomes containing 1 mg/mL of guarana
powder, prepared by the reverse phase evaporation method (n = 2).

Reverse Phase Evaporation
Active Initial (%) * 90 Days (%) **

TEOB Not determined Not determined
TEOF Not determined Not determined
CAF 17.02 ± 0.60 30.13 ± 0.23
CAT 74.34 ± 1.93 51.65 ± 0.77

EPICAT 87.53 ± 0.94 70.88 ± 2.17
TEOB (theobromine), TEOF (theophylline), CAF (caffeine), CAT (catechin), and EPICAT (epicatechin). * The
initial condition was considered for the samples stored in RE at 24 h of preparation. ** The final condition was
considered for the samples stored in RE at 90 days of experiments.

It was not possible to determine the encapsulation/incorporation for TEOB and TEOF
because the concentration of these active components in the sample of guarana analyzed
was very low: 0.14 µg/mL (TEOB) and 0.47 µg/mL (TEOF). Although the values satisfied
the detection limits of the method, they were less than the limits of quantification.

The compounds analyzed in our study exhibited different interactions with the liposo-
mal structures, resulting in different encapsulation/incorporation. There are two kinds of
substances that may be stably associated with liposomes: highly water soluble substances
and highly lipid soluble substances. In this context, the hydro- or lipophilicity of each
active compound will determine whether it will be encapsulated or incorporated into the
lipid bilayer. The higher hydrophilicity of CAF compared with that of CAT and EPICAT
may justify its lower incorporation into the liposome structure. Similarly, the composition
of soy phosphatidylcholine confers higher permeability to the membrane, leading to lower
incorporation for compounds with hydrophilic characteristics [70,79].

For CAF, the initial encapsulation/incorporation was 17.02 ± 0.60% but increased to
30.13 ± 0.23% after 90 days of storage under RE. From these results, it is believed that the
CAF is free in the dispersion, evincing low encapsulation/incorporation because it is a
highly hydrophilic compound. With the passage of time, a greater interaction or permeabil-
ity may occur with the liposomal system, thereby resulting in better internalization and a
subsequent increase in encapsulation/incorporation. This hypothesis was proven when
new tests for the encapsulation/incorporation of CAF were performed after 7 days of lipo-
some stability stored under refrigeration. In this period, the encapsulation/incorporation
of CAF was 32.61 ± 0.36% and was maintained at 30.13 ± 0.23% until 90 days of stability.

On the other hand, for highly lipophilic materials, such as CAT and EPICAT, when
produced by preparation methods using organic solvents, the incorporation into the lipid
bilayer is usually close to 100% because these compounds interact with the lipid layers of
the liposomes, thus increasing their encapsulation/incorporation [80].

The CAT and EPICAT revealed higher incorporation when compared to the CAF, with
values of 74.34 ± 1.93 and 87.53 ± 0.94%, respectively. It should be noted that the incorpo-
ration for these compounds was elevated for up to 90 days of stability (CAT, 51.65 ± 0.77%
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and EPICAT, 70.88 ± 2.17%) when the samples were stored under RE conditions, and
even the total content of these compounds exhibited a significant reduction at 60 days and
was ~60% at 90 days under this same condition.

3.2. Cytotoxicity Studies

Oxidative stress is one of the main mechanisms contributing to the aging of skin [81].
In this respect, the use of products with potential antioxidant effects can exert beneficial
actions on the same, thereby protecting it against aging [82].

In previous studies [37–39,42,44–46,83–85], guarana demonstrated potent antioxidant
activity, thereby making it a product of great interest in the cosmetics industry. In studies
previously conducted by our research group, it was observed that guarana’s antioxidant
activity was maintained when it was incorporated into liposomes [49].

Immortalized human keratinocytes are cell lines that retain the capacity for epidermal
differentiation. They are the most abundant cells in the epidermis. Therefore, they are
kept directly in contact with active substances that are capable of permeating the stratum
corneum. Likewise, fibroblast cell lines are the most abundant cell type in the human
dermis and allow for the verification of possible damage when the developed product
penetrates this layer.

The MTT and NRU assays used for the evaluation of cytotoxicity are based on the color
detection of the substances by spectrophotometry and their refraction or light absorption
ability. Some nanoparticles may interfere with the spectrophotometric reading system [86–88].

Before the cellular viability experiments, the possible interference of the liposomes
with MTT and NR was evaluated. The scanning spectra for the liposome samples were
found to be similar to the controls, both for MTT and NR. These results indicated that
there is no interference of liposomes with the cell viability techniques used, thus showing
reliability in the results obtained. The results for the cell viability of 3T3 cells are presented
in Figure 4.

For the 3T3 cells, the NRU assay (Figure 4A,C) demonstrated a decrease in the cell
viability at the highest concentration tested (500 µg/mL) for the three different treatments
(GL, B-Lip, and G-Lip) after 24 and 48 h of exposure. Moreover, a decrease in cell viability
at concentrations of 250 and 500 µg/mL was observed after 72 h. This reduction was
visualized for the different treatments, showing no statistically significant differences
among them (p > 0.05). For GL, after 72 h (Figure 4E), the viability reduction occurred from
the concentration of 125 µg/mL (with a final viability of 77.74%). The liposomes (B-Lip
and G-Lip) maintained viability higher than 90% at this concentration.

The cell viability determined by the MTT assay (Figure 4B,D,F) exhibited a decrease in
the B-Lip cell viability at a concentration of 31.25 µg/mL after 24 h of cellular exposure and
remained low after 48 and 72 h. On the other hand, the GL induced a decrease in the cell
viability at concentrations of 500 µg/mL (after 24 and 48 h) and 250 µg/mL (after 72 h).
The G-Lip viability reduction was only observed at a concentration of 500 µg/mL. The
results of the cell viability for HaCaT evaluation are shown in Figure 5.

The cell viability of HaCaT cells determined by the NRU assay demonstrated a de-
crease of 500 µg/mL after 24 h (GL, 87.36 ± 7.09%) (Figure 5A) and 48 h (GL, 82.63 ± 8.74%;
B-Lip, 80.54 ± 7.02%; and G-Lip, 71.02 ± 5.83%) (Figure 5C). When these cells were exposed
to the different treatments for 72 h, the viability reduction occurred at a concentration of
250 µg/mL (GL, 88.49 ± 3.62% and B-Lip, 86.38 ± 8.24%) (Figure 5E). On the other hand, at
the lowest concentrations assayed (3.91, 7.91, and 15.63 µg/mL), a slight cell proliferation
occurred for the liposomes (B-Lip and G-Lip).

The cell viability of the HaCaT cells by the MTT assay showed a decrease of 500 µg/mL
after 24 h (B-Lip, 66.41% ± 10.13) (Figure 5B) and 48 h (GL, 75.95 ± 14.91%; B-Lip,
55.41 ± 10.04%; and G-Lip, 65.42 ± 6.30%) for the different treatments (Figure 5D). Simi-
larly, this decrease occurred at a concentration of 125 µg/mL (B-Lip) and 500 µg/mL for
the different treatments after 72 h (Figure 5F).
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Figure 4. In vitro study by cell viability for 3T3 cells. Data were generated from two different
protocols: the NRU and MTT techniques at 24 h, 48 h and 72 h. Cell viability by the NRU (A,C,E) and
MTT (B,D,F) after 24 h (A,B), 48 h (C,D), and 72 h (E,F), respectively. Three different formulations
were analyzed: GL (1 mg/mL guarana powder), B-Lip (blank liposomes), and G-Lip (liposomes
containing 1 mg/mL guarana powder). Results are expressed as mean ± standard deviation (n = 3).
* Significant difference (p < 0.05) in relation to the control cells (100% viability).
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Figure 5. In vitro study by cell viability of HaCaT cells. Data were generated from two different
protocols: the NRU and MTT techniques at 24 h, 48 h and 72 h. Cell viability measured by the
NRU (A,C,E) and MTT (B,D,F) analyzed at 24 h (A,B), 48 h (C,D) and 72 h (E,F), respectively. Three
different formulations were analyzed: GL (1 mg/mL guarana powder), B-Lip (blank liposomes), and
G-Lip (liposomes containing 1 mg/mL guarana powder). Results are expressed as mean ± standard
deviation (n = 3). * Significant difference (p < 0.05) in relation to control cells (100% viability).
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The results of the human fibroblast cells treated with guarana (GL) and liposomes
(B-Lip and G-Lip) are shown in Figure 6.
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Figure 6. In vitro study by cell viability of human fibroblasts cells. Data were generated from two
different protocols: the NRU and MTT techniques at 24 h, 48 h and 72 h. Cell viability measured by the
NRU (A,C,E) and MTT (B,D,F) analyses at 24 h (A,B), 48 h (C,D), and 72 h (E,F), respectively. Three
different formulations were analyzed: GL (1 mg/mL guarana powder), B-Lip (blank liposomes), and
G-Lip (liposomes containing 1 mg/mL guarana powder). Results are expressed as mean ± standard
deviation (n = 3). * Significant difference (p < 0.05) in relation to control cells (100% viability).

Changes in the cell viability determined by the NRU assay were only observed for
human fibroblasts at the highest concentration (500 µg/mL) for GL, with a slight reduction
(13.16%) after 72 h (Figure 6E).

The MTT assay (Figure 6B,D,F) demonstrated significant changes (p < 0.05) after 72 h
from a concentration of 62.5 µg/mL for B-Lip (Figure 6F). It was also observed that, after
24 h (Figure 6B), GL and B-Lip exhibited a significant increase (p < 0.05) at 500 µg/mL,
indicating slight cell proliferation.

A comparison of the different cell viabilities assessed by MTT and NRU revealed a
higher cytotoxic response by MTT than by NRU, independent of the cell line tested. This
observation has already been described by Nogueira et al. (2011) [89] in a prior study. Ac-
cording to the authors, differences in cytotoxic responses may be related to the mechanisms
of toxicity exerted by the compounds, involving an initial effect on the metabolic activity of
the cells primarily detected by the MTT technique. However, the plasma membrane and
the lysosomal compartments may be affected in one phase, exhibiting less damage when
analyzed by the NRU technique.

According to Oliveira (2009) [90], the reduction in the cell viability using nanostruc-
tures is acceptable at up to 90%. This finding establishes a standard classification for
viability, considering the non-cytotoxic percentage change for viability >90%, slightly cyto-
toxic from 80% to 89%, moderately cytotoxic from 50% to 79%, and highly cytotoxic at less
than 50%. Liposomes (B-Lip) have, on average, moderate cytotoxicity.
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The results of the cellular viability observed in our study suggest a protective effect of
guarana against the damage of cytotoxicity caused by liposomes for the different cell lines
tested since a greater reduction in viability was observed in B-Lip when compared to G-Lip
and GL.

The possible protective effect against cytotoxic damage evidenced by guarana may be
related to the antioxidant activity exerted by their content on phenolic compounds (present
in catechins), which are mainly found in guarana seeds. These compounds actively protect
the body against the effects of free radicals, helping to prevent diseases [83]. It is worth
noting that one of the components of the G-Lip formulation tested here is vitamin E, which
has antioxidant activity; however, based on experiments performed previously [49], vitamin
E did not express antioxidant activity in the formulation when evaluated by the DPPH
method since no antioxidant activity was observed for the control formulation (B-Lip); on
the other hand, antioxidant activity was observed for the G-Lip formulation, proving that
guarana is responsible for the antioxidant activity observed in the G-Lip formulations.

In previous studies, Peirano et al. (2011) [54] demonstrated that guarana presented 23%
higher cellular esterase activity than formulations without guarana, exerting a vitalizing
effect on skin fibroblasts.

Basile et al. (2005) [42] evaluated the antioxidant activity of guarana in 3T3 cells by the
malondialdehyde test (MDA), following cell damage by the ferric ammonium citrate (FAC)
test. A reduction of 62.5% in the lipid peroxidation was observed when 2 µg/mL guarana
concentrations were used, given that it is dose dependent. Likewise, the antioxidant
potential was correlated with the presence of phenolic compounds.

Also, in another study, Bittencourt et al. (2013) [38] determined the protective effect of
guarana extract by the MTT technique after exposing fibroblast cells (NIH-3T3) to sodium
nitroprusside (SNP, 10 µM) for 6 h. The assay was conducted at a concentration that was
able to decrease by >90% the cellular viability of 3T3 cells. With the addition of guarana ex-
tract at concentrations of 0.5, 1, 5, 10, and 20 mg/mL, the authors observed that guarana was
able to reverse the SNS toxicity, especially at lower concentrations (<5 mg/mL), indicating
a protective effect of this compound.

4. Conclusions

This study describes the stability of liposomes containing 1 mg/mL guarana powder
and produced by reverse phase evaporation. These liposomes revealed physicochemical
characteristics suitable for the type of nanostructure under study and demonstrated stability
for 60 days when the formulations were stored under refrigeration conditions (RE ± 5 ◦C).
The in vitro cytotoxicity studies for skin cells, 3T3, HaCaT, and human fibroblasts demon-
strated a small reduction in cell viability. However, the reduction in cell viability for B-Lip
was greater compared to those for GL and G-Lip, thus evidencing possible protection by
guarana from cytotoxic effects. In this sense, guarana-loaded liposomes present a potential
application for topical administration.
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