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Abstract: The use of sugarcane residues in mortar and concrete is believed to contribute to the
reduction of environmental problems, such as the reduction of mining of natural aggregates as well as
the improper disposal of sugarcane residues. Therefore, in this study, bagasse fiber and bagasse sand
were added into the preparation of the interlocking concrete blocks, and the flexural strength and
an environmental assessment of the blocks were analyzed. The flexural strength of the blocks was
not affected by the addition of the bagasse fiber and bagasse sand. In addition, the environmental
load of interlocking concrete blocks using sugarcane residues was lower than the blocks using
conventional aggregates due to the greater simplicity of acquisition of the residues. Moreover, in the
scenarios where the blocks are supposedly made on smaller islands, the emissions increased due to
long-distance transportation, since conventional aggregates come from other islands.

Keywords: sugarcane bagasse fiber; sugarcane bagasse sand; flexural strength; interlocking concrete
block; environmental assessment

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO), sugarcane is
produced in more than 100 countries in tropical and subtropical regions of the world [1], characterized
by warm temperatures. Of the sugar manufactured around the world, 70% is from sugarcane [2].
Further, sugarcane has been used for the production of bioethanol in some countries, such as Brazil.
However, during the manufacture of the sugar and ethanol, a high quantity of residues are generated.
Among the residues, there is the bagasse [3], which is usually used as a primary fuel source in
sugar/ethanol mills [3,4]. As a result, residual products composed of sand, ash [5–9], and unburned
bagasse are generated from the boilers. The sugarcane residues are generated in large quantities and
create a serious disposal problem for the sugar/ethanol industry, affecting the environment and public
health [10]. In several countries, these residues have been mainly discarded as soil fertilizer. However,
in view of the environmental impact, this method of disposal is far from being the most suitable
one [11,12]. This is because the bagasse ash does not have adequate mineral nutrients. In addition,
solubilization and leaching tests performed on bagasse ash samples indicated the presence of heavy
metals [5].
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On the other hand, according to Lizhen Huang [13], the total CO2 emission of the global
construction sector was 5.7 billion tons in 2009, contributing to 23% of the total CO2 emissions produced
by global economic activities. In addition, as cited by Bas J. et al. [14], the heavy industry sector,
such as cement and steel production, is a major source of greenhouse gas emissions. The cement and
steel industries together accounted for 8% of global energy use and 15% of global anthropogenic CO2

emissions in 2012. The dependency of the construction sector on natural resources like sand and gravel
is another issue. Exhaustive mining leads to problems such as vegetation loss, loss of water retaining
strata, lowering of the groundwater table, and disturbance in the existing ecosystem. For these reasons,
several regions adopted mining restrictions, which reduced the availability of good aggregates at
shorter haul distances. As a consequence, the transportation of aggregates from longer distances to
construction sites increased the cost, which increased the total cost of construction [15,16], as well as
impacting the environment with CO2 emissions due to long distance transportation.

Okinawa Prefecture is one of the 47 prefectures of Japan and is located in the southwest of Japan.
Since Okinawa Prefecture consists of a series of small islands, the concrete aggregates are generally
crushed stone and sea sand because of the lack of adequate river to obtain ordinary river aggregates [17].
In addition, the mining/collection of the aggregates is concentrated on the main island of Okinawa,
where the capital city Naha is located. Therefore, the aggregates are transported from the main island
of Okinawa to smaller islands by vessels. Figure 1 illustrates the prices per m3 of the fine aggregates,
which are available online and published monthly in a magazine [18,19], and the location of sugar
factories in Okinawa Prefecture [20].
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The use of sugarcane residues as construction aggregates provides a more sustainable alternative
for the construction industry and the sugar/ethanol industry [21]. The use of local sugarcane residues
as aggregates for concrete, especially for islands with small land area, are desirable, since it can
reduce environmental load and decrease transportation CO2 emissions. In addition, the development
of more construction material options is very important, since a country’s policies may repeatedly
change. Japan’s government announced that it aims to reduce coal-fired power generation by about
90% by 2030 [22]. This can dramatically reduce fly ash production in all of Japan, and consequently,
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it may impact the use of fly ash as aggregates. Therefore, this study aims to assess the environmental
impacts of the utilization of sugarcane residues as concrete aggregates in the production of interlocking
concrete blocks.

2. Interlocking Concrete Blocks

2.1. Materials

The surface layer of all interlocking concrete blocks was made using white Portland cement (WPC)
and quartz sand (QS). The base layer of all interlocking concrete blocks was made using ordinary
Portland cement (C), coarse aggregate FM (Fineness Modulus): 5.00 (G), and fine aggregate FM: 3.05 (S).
Note that tap water (W) and the chemical admixture (CA (MasterMatrix 200, 1.03–1.07 g/cm3)) for
immediate demolding products (air entrainment type) were used in both layers for the preparation of
the interlocking concrete blocks.

Figure 2 shows a diagram of the aggregate production process using sugarcane residues.
The sugarcane residues (raw bagasse and burned residues) were acquired from a sugar mill in
Okinawa Prefecture, Japan. The raw bagasse was dipped in water at 30 ◦C for 30 min and then dried
in the open air. The intent of this process was to reduce the residual sugar content of the bagasse and
eliminate impurities [21,23–26]. Afterwards, the residues were classified by a sieving process. Raw
bagasse that passed through a 9.52 mm sieve and remained in a 4.75 mm sieve was classified as bagasse
fiber (BFL). The burned residues that passed through a 1.18 mm sieve and remained in a 0.297 mm
sieve were classified as bagasse sand (BS). The physical properties of the materials are given in Table 1.
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Table 1. Physical properties of cement and aggregates.

Properties
Materials

Surface Layer Base Layer

WPC QS C G S BFL BS

Density (g/cm3) 3.05 2.60 3.16 2.68 2.68 0.49 1.29

Total alkali content (%) 0.1 — 0.56 — — — —

Specific surface area (cm2/g) 3440 — 3280 — — — —

Loss on ignition (%) 2.79 — 2.26 — — — —
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2.2. Concrete Mixture

The mix proportions of the surface and the base layer of interlocking concrete blocks are shown in
Table 2. The composite of the surface layer is the mixture with the water to cement ratio (W/C) of 0.25.
Note that the surface layer mixture was the same for all blocks. In the case of the base layer, composite
C is the mixture with W/C of 0.15. Composite C represents the standard interlocking concrete block
and contains no sugarcane residue materials. The BFL2 block was prepared with bagasse fiber volume
ratios of 2% in comparison to the total quantity of aggregates. Moreover, the interlocking concrete
block using bagasse sand (BS) was prepared. In this case, the bagasse fiber volume ratio is 2% and the
BS volume ratio is 5%, for a total of sugarcane residue ratio of 7% in comparison to the total quantity of
aggregates. All residue materials were replaced in place of the aggregates in the same proportions.

Table 2. Mix proportions of the surface and base layers of specimens.

Layer Composites Residues Residues w/c Unit (kg/m3)

Type (Vol. %) WPC QS C W G S BFL BS CA

Surface — — — 0.25 582.6 1721.7 — 145.6 — — — — 1.2

Base

C — —

0.15

— —

436.1 64.0

1068.0 1068.0 — — 1.1

BFL2 Bagasse Fiber 2 — — 1046.6 1046.6 7.8 — 1.1

BS
Bagasse Fiber 2 — —

993.2 993.2 7.8 51.4 1.1
Bagasse Sand 5 — —

2.3. Preparation of Blocks

The surface layer concrete was prepared using an oscillating type mixer (OM-70NB8). First,
the cement and the quartz sand were placed into the mixer and dry mixed for 20 s at low speed
(rotation speed: 120 ± 5 rpm). After that, the mixer speed was changed to high speed (rotation speed:
216 ± 5 rpm), and the dry mixing was continued for 30 s. Then, the water and admixture were placed
into the mixer and mixed for 20 more seconds at low speed (rotation speed: 120 ± 5 rpm) and 50 s at
high speed (rotation speed: 216 ± 5 rpm).

In the case of the base layer concrete, the cement and sand were placed into the mixer and dry
mixed for 20 s at low speed (rotation speed: 120 ± 5 rpm) and for 30 more seconds at high speed
(rotation speed: 216 ± 5 rpm). Later, the residues, water, and admixture were placed into the mixer
and mixed for 30 more seconds at low speed (rotation speed: 120 ± 5 rpm) and 60 s at high speed
(rotation speed: 216 ± 5 rpm). All mixtures were mixed in an oscillating type mixer (OM-350NB8).

The mixture of the base layer of interlocking concrete blocks was cast in a formwork of
98 × 198 × 60 mm, pressed (about 2682.5 kgf), and vibrated (50 Hz, 4000 rpm) for about 1 s. Right
after, the mixture of the surface layer of interlocking concrete block specimens was cast on the base
layer mixture in the formwork, pressed (about 3756.0 kgf), and vibrated (55 Hz, 4500 rpm) for 4 more
seconds. Then, the specimens were de-molded, placed in a room, and cured for 1, 3, 5, 7, 10, 14,
and 28 days. The outline of specimens is shown in Figure 3.
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2.4. Flexural Strength Test

A flexural strength test was performed on 3 blocks of each mixture in order to determine the
flexural strength of the blocks according to JIS A 5371 at 28 days.
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3. Environmental Assessment

3.1. Goal and Scope

The objective of this study was to make an environmental assessment comparison between
interlocking blocks with sugarcane residues and conventional interlocking concrete blocks. However,
except for aggregates where the proportions were modified (see Table 2), materials such as cement,
water, and chemical admixtures were excluded from the scope of the research, as well as the mixing
process that was carried out under the same conditions for all mixtures. The scope of recycling
interlocking concrete blocks removed after the end of their useful life as pavement was also excluded
from the analysis. Usually, the main destination of recycled mortar and concrete is the construction
of pavement [27]. In this study, it was assumed that the interlocking blocks used here will have no
problems and can be recycled into pavement materials.

Based on the above, the study has focused only on the parts of sugarcane residues and
conventional aggregates and has set the scope of the investigation to the raw materials, manufacturing,
and transportation processes.

3.2. System Boundaries of Scenarios

Three scenarios were considered on the main island of Okinawa Figure 4 the system boundaries
on the main island of Okinawa.
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As seen in Figure 4, scenario C considers the environmental assessment of the conventional
interlocking concrete blocks in which sugarcane residues were not used. Scenario BFL2 and BS consider
the environmental assessment of the interlocking concrete blocks with the addition of sugarcane
residues. The mix proportion of the blocks used in each scenario is shown in Table 2.

In addition, similar scenarios were applied on two other islands: Minamidaito and Yonaguni.
In these cases, the means of transport change, resulting in a more complex way of transportation.
Figures 5 and 6 show the system boundaries in the cases of Minamidaito and Yonaguni, respectively.
Note that in the scenarios of Minamidaito and Yonaguni, it was assumed that the blocks were prepared
near the main port of each island in order to avoid the use of other transportation. In addition,
the sugarcane residues are produced on the same island where the interlocking concrete blocks were
supposedly produced (see Figure 1); therefore, the residues do not need vessel transportation.

The environmental load in all scenarios in both aggregate mining/collection and transportation
processes was calculated. However, since the bagasse residues are waste, the process of
mining/collection was not considered. The functional unit of the assessment assumes 1000 L of concrete.
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3.3. Inventory

The environmental assessment analysis includes emissions associated with aggregate
manufacturing and transportation. The environmental load associated with aggregate manufacturing
and transportation is shown in Table 3. The truck and vessel assumed for the transportation of the
aggregates, including the residue materials, were a 10 ton dump truck with a diesel engine and a
500 ton capacity vessel.

Table 3. Environmental load associated with aggregate manufacturing and transportation [28,29].

Unit Carbon Dioxide Sulfur Oxide Nitrogen Oxide Dust and Soot
(*) (kg-CO2/*) (kg-SOx/*) (kg-NOx/*) (kg-PM/*)

Fine aggregate kg/t 3.7 0.00860 0.00586 0.00199

Coarse aggregate kg/t 2.9 0.00607 0.00415 0.00141

Dump truck km·t 0.117 0.0000901 0.000875 0.0000735

Vessel km·t 0.162 0.00280 0.00470 0.0000721

The equation used to calculate the total environmental load is as follows:

EL =
∑
ME

[(AS × ES) + (AG × EG)]+
∑
TE

[(TS × Et) + (TG × Et) + (TR × Et)] (1)
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where EL: total environment load (kg); ME: sum of emissions by aggregate (kg); TE: sum of emissions
by aggregate transport (kg); AS: amount of fine aggregate (kg); ES: emissions by fine aggregate (kg/ton);
AG: amount of coarse aggregate (kg); EG: emissions by coarse aggregate (kg/ton); TS: transport distance
of fine aggregate (km); TG: transport distance of coarse aggregate (km); TR: transport distance of
sugarcane residues (km); and Et: emissions by transport (kg/(km·ton)).

The distance from the mining/collection place of the aggregates and residues to the plant where
the interlocking concrete blocks were prepared is shown in Table 4.

Table 4. Distance from mining/collection place to plant.

Scenario Transportation Route Distance (km)

From/To Fine and Coarse Aggregate Residues

Main Island
dump truck 1 Motobu/Uruma 51.4 —

dump truck 2 Uruma/Uruma — 9.5

Minamidaito
dump truck 3 Motobu/Naha 85.7 —

dump truck 4 Minamidaito/Minamidaito — 5.5

vessel 1 Naha/Minamidaito 388 —

Yonaguni dump truck 5 Yonaguni/Yonaguni — 6.0

vessel 2 Ishigaki/Yonaguni 131 —

4. Results and Discussion

4.1. Flexural Strength Test

Figure 7 shows the results of the flexural strength test after 28 days of curing. According to JIS A
5371, the interlocking concrete blocks with a flexural strength above or equal to 3 N/mm2 could be
used as pavement for pedestrians restricted to light vehicle traffic. When the flexural strength is above
or equal to 5 N/mm2, the restriction is extended to heavy vehicle traffic.
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As can be seen in Figure 7, the flexural strength was 7.80, 7.60, and 7.96 N/mm2 for C, BFL2,
and BS, respectively. From these results, it can be said that the addition of sugarcane residues in the
interlocking concrete blocks does not negatively affect the strength of the blocks.

4.2. Environmental Load Associated With Production of Interlocking Concrete Blocks

Figures 8–11 show the amount of carbon dioxide, sulfur oxide, nitrogen oxide, and dust and soot
emissions, respectively.
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As Figures 8–11 illustrate, the application of sugarcane residues can decrease the discharge of
high-environmental-load substances into the air, water, and soil. A determining factor in the impact of
concrete with sugarcane residues is the lower use of natural aggregates, which decrease the impacts
from their extraction. In the BFL2 scenario, the percentage of decrease of the substances was around
1.96%, 1.97%, 1.94%, and 1.95%, while in the BS scenario, in which the volume of the residues used in
the mixture was 7%, it was around 6.67%, 6.80%, 6.54%, and 6.65% in comparison to the C scenario for
carbon dioxide, sulfur oxide, nitrogen oxide, and dust and soot emissions, respectively.

In the cases where the blocks are supposed to be made on the islands of Yonaguni and Minamidaito,
the carbon dioxide, sulfur oxide, nitrogen oxide, and dust and soot emissions increase due to the
long-distance transportation, since the conventional aggregates come from other islands. However,
in the scenarios in which the sugarcane residues were added into the mixture, the emissions were
smaller than the standard interlocking concrete block. In the case of BFL2-Y, the percentage of decrease
of the substances was around 1.99%, 2.00%, 2.00%, and 1.99%, while in the case of BS-Y it was 6.92, 7.00,
6.98, and 6.89 in comparison to the C-Y scenario; in the case of BFL2-M, the percentage of decrease
of the substances was around 2.00%, 2.00%, 2.00%, and 2.00%, while in the case of BS-M it was 6.98,
7.00, 6.99, and 6.97 in comparison to the C-M scenario for carbon dioxide, sulfur oxide, nitrogen oxide,
and dust and soot emissions, respectively. These results are similar to the results obtained on the main
island of Okinawa. However, the proportions of the environmental load were smaller than in the case
of the main island, due to the need to transport the aggregates by vessels from other islands. In the case
of Yonaguni, the aggregates are transported by vessels from the island of Ishigaki, which is located
around 131 km from Yonaguni, and in the case of Minamidaito, the distance is around 388 km from the
main island, where the aggregates were collected.

Although the environmental assessment analyses were performed in a simple way, the results
point to a consistent environmental benefit resulting from the replacement of conventional aggregates
with sugarcane residues. This contribution of the decrease of the environment load may be greater if the
sugarcane residues are set to replace the fine aggregates only. In addition, if we consider that sugarcane
can sequestrate up to 0.66 tons of CO2 per ha per year [30], and even that a part of the bagasse is burned
at the mill as fuel and generates CO2, the carbon in sugarcane fiber came from CO2 that was already
present in the atmosphere [31], and the addition of these residues in the preparation of interlocking
blocks may be considered highly eco-friendly. Accordingly, the optimization of the concrete mixture
and strength of interlocking blocks should be investigated in detail in order to decrease the dependency
of conventional aggregates from other islands and, consequently, the environmental load.

4.3. Cost Analysis Associated With Production of Interlocking Concrete Blocks

In addition, an easy cost analysis was carried out by setting the price for CO2 reduction credits at
¥4500 (USD 59.71)/t·CO2 [32]. In the case of BFL2 and BS scenarios, on the main island, the concrete
cost decreases to around ¥2 (USD 0.02) and ¥6 (USD 0.06), respectively, in comparison to C. In the
case of Yonaguni, the concrete cost decreases to around ¥5 (USD 0.05) and ¥16 (USD 0.15) for BFL2-Y
and BS-Y, respectively, in comparison with C-Y. In the last case, in Minamidaito, the concrete cost of
BFL2-M and BS-M decreases in comparison to C-M to around ¥15 (USD 0.14) and ¥51 (USD 0.48),
respectively. These values reinforce that the use of local agro-residues, such as sugarcane residues,
can favor the reduction of construction costs. However, some precautions must be taken so that these
residues do not undergo various production processes, since this may increase the production costs of
the residues as aggregates.

5. Conclusions

The environmental load associated with the production of interlocking concrete blocks using
sugarcane residues as aggregates was found to be smaller than that of using conventional aggregates,
largely due to the greater simplicity of acquisition of the residues. In the scenarios where the blocks
are supposed made on the islands of Yonaguni and Minamidaito, the carbon dioxide, sulfur oxide,
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nitrogen oxide, and dust and soot emissions increase due to long distance transportation, since the
conventional aggregates come from other islands.

In addition, the flexural strength for interlocking concrete blocks prepared with no sugarcane
residues, blocks prepared with bagasse fiber volume ratios of 2% in comparison to the total quantity of
aggregates, and blocks prepared with bagasse fiber volume ratio as 2% and bagasse sand volume ratio
as 5% in comparison to the total quantity of aggregates, was 7.80, 7.60, and 7.96 N/mm2, respectively.

6. Future Plans

This study has to be supplemented by additional experiments on interlocking concrete blocks
containing higher fiber content. In addition, special attention should be given to the durability, since
the behavior of organic matter, such as bagasse fiber, in concrete is still poorly understood.
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