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Abstract: This paper explores the physical, social, and environmental dimensions of how climate
change impacts affect drinking water safety in a rural context in developing countries. Climate
impacts, such as contamination or the reduced availability of preferred drinking water sources
due to climate-related hazards, threaten water safety in rural areas and these impacts will likely
worsen as climate change accelerates. We qualitatively examined these impacts in a community
in rural Vanuatu using three approaches side-by-side: adaptation, vulnerability, and resilience.
We employed a mixed methods case study methodology that combined semi-structured interviews,
technological and environmental surveys, and observations. We demonstrate the influence of
physical infrastructure design, social structures mediating water access, and the availability of
multiple sustainable water resources on water safety with respect to climate impacts. We also
show how the initial problematization of how climate affects water safety can influence subsequent
actions to address, or overlook, issues of infrastructure design and maintenance, social equity,
and natural resource management for water access. Improvements to rural drinking water safety
management in the context of climate change should take a pluralistic approach, informed by different
conceptualizations of climate impacts, to account for the varied causal pathways of reduced water
safety for different members of a community.

Keywords: adaptation; climate change; developing countries; resilience; rural water services;
vulnerability; water quality; water, sanitation and hygiene

1. Introduction

Climate and water experts are confident that people living in rural areas around the world will
experience major impacts from climate change through water supplies [1]. Climate-related events,
such as intense rainfall, severe storms, dry spells, extremely hot days, and storm surges, damage
or destroy water supply infrastructure, diminish the availability of water resources, and reduce
the quality of water used for consumption [2,3]. Human-induced global warming has already led
to an increase in the frequency, intensity, and amount of heavy precipitation events; more frequent
heatwaves; and mean sea level rise worldwide [4,5]. Climate-related risks for human and natural
systems will continue to increase as global warming continues, especially for poor and vulnerable
populations [6]. Climate-related water safety risks, which are already important to manage, will likely
become increasingly critical to address in rural areas for the foreseeable future.

Strategies for drinking water safety management that address risks related to climate variability
and change are needed to deliver safely managed water services in rural areas of the developing
world. Safely managed water services are those that are accessible on premises, available when needed,
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and free from contamination [7]. The majority of people living in low-income and lower-middle-income
countries reside in rural areas [8]. Although data availability is poor, the proportion of the rural
population in the least developed countries using improved water supplies that are free from fecal
and priority chemical contamination is estimated to be 30% [7]. Climate-related hazards are one driver of
the use of contaminated water sources, as we explain later in this paper. Moreover, the poorest and most
marginalized people are likely to bear a disproportionate burden of climate change impacts when
accessing safe water as a result of their relatively high levels of exposure to hazards and diminished
capacity to respond [9]. Drinking water safety management strategies that account for climate-related
risks could reduce the proportion of people consuming water from contaminated water supplies.

In this paper, we explore the contributions of three different approaches—adaptation, vulnerability,
and resilience—to understanding how climate impacts, such as contamination or the reduced availability
of preferred drinking water sources due to climate-related hazards, threaten water safety in a rural
developing country context. The purpose of the paper is to present empirical evidence of how each
approach frames climate impacts differently and to discuss the implications for policy and practice.

This paper is structured to first cover existing literature on how climate-related hazards (e.g., floods,
drought, storms, and sea level rise) compromise water quality and water access in rural developing
country contexts and to introduce the theories of the adaptation, vulnerability, and resilience approaches.
We then present the methodology and results of a case study in rural Vanuatu which applies these
three approaches to reveal a breadth of considerations for climate impacts on water safety. Finally,
the implications of the findings for drinking water service policy and practice with respect to climate
change are discussed.

2. Climate and Water Safety

2.1. How Does Climate Variability and Change Influence Drinking Water Safety in Rural Areas of
the Developing World?

In this paper, we refer to drinking water safety as the consumption of safe drinking water. Safe
drinking water is defined as water that “does not represent any significant risk to health over a
lifetime of consumption, including different sensitivities that may occur between life stages” [10].
Climate impacts, through normal climate variability or climate extremes driven by global warming,
influence drinking water safety by reducing the quality of preferred drinking water sources and/or
causing people to shift to alternative sources that pose health risks. Although climate impacts also
influence access to safely managed water services by affecting water reliability, physical accessibility,
and affordability, the focus of this study is on water safety.

Table 1 summarizes the ways in which hazards associated with existing climate variability
and ongoing climate change can detrimentally affect drinking water safety in relation to rural water
supplies in developing countries.

Table 1. Climate impacts on water safety in rural contexts.

Climate-Related Hazard Impact on Water Safety Ref.

Frequent and/or intense rainfall events

Greater trend of E. Coli and thermotolerant coliform contamination
in boreholes, piped schemes, and rainwater harvesting systems. [11]

Increased surface runoff that carries fecal matter from soil
and latrines into surface and groundwater sources. [12,13]

Contamination of groundwater sources from sanitation
containment units via underground pathways through soil

or aquifers.
[14]

Increased agitation of the layer of sludge at the bottom of
rainwater harvesting containers which causes pathogens to be

suspended from the sludge into the water column.
[15]
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Table 1. Cont.

Climate-Related Hazard Impact on Water Safety Ref.

Dry spells or droughts, and extremely hot temperatures

Reduced stream and river flow which raises
pollution concentration. [16]

Increase in growth of algae and some toxic bacteria in surface
water and increase in wildfires that raise contaminant loads

in surface water, which exert strain on water treatment processes
(if present, such as in rural towns).

[17,18]

Diminished groundwater recharge, combined with
over-abstraction, leading to salinization of groundwater sources. [19]

Unavailability of water at improved water sources causing users
to access more distant water sources which raises the likelihood of

contamination while transporting water home
[20,21]

Extreme storms and cyclones

Increased surface runoff that carries fecal matter from soil
and latrines into surface and groundwater sources. [12,13]

Damage or destruction of water treatment facilities or other water
supply infrastructure that results in people resorting to

unimproved or distant water sources.
[3]

Sea level rise

Permanent changes to salinity of groundwater. [19,22]
Increased likelihood of marine flooding (e.g., from storms surges)

and groundwater inundation leading to salinization of wells
and boreholes.

[23,24]

Rising groundwater tables which increase the risk of sanitation
pollution to groundwater sources. [14]

Climate change projections vary across regions of the world, but it is likely that climate change will
worsen these impacts on rural water safety in most places. The rising mean sea levels, increasing number
of heatwaves, increasing frequency and intensity of heavy rainfall worldwide, and increased risk of
drought in some regions [4,5] increases the likelihood and severity of climate-related hazards impacting
drinking water safety. Hence it is imperative to consider their management with increased urgency.

2.2. Three Approaches to Account for Climate Change in Drinking Water Safety Management

In this section, we briefly present the theoretical basis for and practical examples of three
approaches to drinking water safety management drawn from global environmental change and water,
sanitation, and hygiene (WASH) literature. These three approaches—namely, adaptation (also known
as risk hazard), vulnerability, and social-ecological system resilience—are well-established in broader
climate change, disaster, and development discourses and policy [25–29]. For example, an adaptation
approach was used in the United Kingdom Climate Impacts Programme to guide national investment
decisions on managing expected climate risks, a vulnerability approach was used in national drought
management policy in Brazil to reduce unequal suffering, and a resilience approach has been used
to analyze the failure of agricultural production in the Goulburn Broken Valley of Australia [26].
It is important to note that these approaches are not mutually exclusive and can be effectively employed
together. However, we present them discretely here to illustrate their different potential contributions
to drinking water safety management.

The adaptation approach focuses on making adjustments to a system in response to actual or
expected climate hazards and their impacts in order to offset potential harm. The approach typically
follows the steps of (1) identifying where and when certain climate hazards may appear, (2) assessing
the extent to which they can cause losses (e.g., in terms of reduction in water quality), and (3) how
the impacts of hazards may be offset or moderated by adaptation actions [30]. In short, the risk that a
particular hazard poses for a system is assessed, then adaptations are designed to pre-empt and/or
manage that risk.

The risk that a climate hazard poses to a system is a product of the system’s exposure and sensitivity
to the hazard [31]. Exposure is defined in general as the degree, duration, and/or extent to which a
system is in contact with, or subject to, a hazard, while sensitivity is the degree to which a system is
modified or affected by a hazard [32,33]. Projections of future climate scenarios are typically used
to assess how climate change may increase or decrease levels of system exposure to a particular
climate hazard (e.g., a projected increased an intense rainfall events in a region by 2050). The methods
for assessing a system’s sensitivity to a climate hazard can range from computerized models to
simpler dose-response functions (observing the change in effect on a system as levels of exposure to a
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hazard change) based on experiences and understanding of the system’s behavior [34]. Adaptations
to the system that aim to reduce risk are then designed and may be assessed in terms of their
cost-effectiveness or other multi-criteria analyses [30].

Water Safety Plans (WSPs) are a WASH analogue of the adaptation approach that focus on physical
risks to water quality. WSPs ensure water safety through the assessment and management of risks
to water quality from catchment to consumer [35]. In the WSP process, hazards and hazardous
events are identified; risks are assessed in terms of the likelihood/frequency that the hazard may occur
and the severity/consequences if it does occur; and appropriate control measures for reducing risk are
designed, implemented, and monitored. A climate-resilient WSP guide has been developed which
follows the same WSP logic but additionally guides users to consider the future and present risks to
water safety that climate variability and change create [36].

In public discourse, the term “adaptation” is sometimes used in association with vulnerability
or resilience approaches (e.g., adaptations that reduce vulnerability or enhance resilience). There is
much conceptual overlap between the approaches that is beyond the scope of this paper to discuss.
We refer to adaptations as actions taken to adjust the water system (comprising water infrastructure
and technologies, water resources, and their management) to resist specific anticipated hazards.

A vulnerability approach seeks to enable people, particularly the most disadvantaged social
groups, to address climate change impacts in general by addressing the root causes of their vulnerability.
The vulnerability of people, defined as a propensity or predisposition to be adversely affected by
climate change [37], is conceived to be strongly influenced by social and political processes [38].
These socio-political processes unequally expose people to climate hazards, make them more
susceptible to harm from climate change, and restrain their ability to influence responses that
would benefit them [38,39]. Climate change, in turn, exacerbates poverty and inequality, which
deepen vulnerability [40]. This approach raises questions of who is most vulnerable and why and how
vulnerability is differentiated [41]. Through the identification of who is most vulnerable to climate
change impacts and why, interventions may be designed to address inequalities and empower people
to more effectively respond to impacts.

A vulnerability approach to climate impacts on water safety would first seek to
understand the inequalities and power relationships within a rural town, community, or household,
then assess the extent to which these make people more vulnerable to reduced water safety from climate
impacts. However, the WASH sector has engaged little with vulnerability approaches in relation to
climate change, instead tending to evoke technological and biophysical-focused responses to climate
change [42,43]. Although it does not have explicit consideration of climate change, one example of a
vulnerability approach to drinking water safety management is the Equitable Water Safety Planning
guide [44]. The Equitable Water Safety Planning guide follows the WSP steps, but instructs users to
seek the meaningful participation of different social groups in the WSP process, identify diverse user
groups, and investigate their differential experiences with water prior to understanding how they are
affected differently by hazards [44]. It also instructs users to implement control measures that address
the root causes of differential exposure to hazardous events. A similar process could be followed with
a focus on how the diverse experiences of water users create differential exposure to climate-related
hazardous events presently and in the future.

Resilience has been conceptualized in numerous ways that focus on different aspects of society or
nature (e.g., psychological, disaster, and ecosystem resilience) [45], but the social-ecological system
(SES) has emerged as a common analytical focal point in the climate change–development nexus
literature [46]. An SES is any system comprising social and ecological components that interact
in complex and adaptive ways. SES resilience is defined as “the capacity of a system to absorb
disturbance and reorganise so as to retain essentially the same function, structure, and feedbacks—to
have the same identity” [47].

An SES resilience (hereafter referred to as “resilience”) approach focuses on enhancing the capacity
of an SES to adapt to change, particularly unexpected change, through reorganization while ensuring
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the functionality of the SES is maintained [47,48]. Reorganizing means that one or more components
of the SES (which may be social actors and organizations, physical infrastructure and technologies,
or environmental resources) adjust to changes in environmental conditions. Resilience approaches
strongly emphasize the role of the natural environment in providing services [49]. Although research
is still emerging on the conditions that make a system resilient, researchers have compiled “principles”
for building resilience in systems [50], as shown in Table 2.

Table 2. Principles for building resilience in systems.

Principle Definition

Maintain diversity and redundancy Optimize levels of diversity and redundancy of SES components such that there are
multiple options and insurance for responding to disturbances.

Manage connectivity
Understand the way and degree to which SES components are connected to one another,
and strengthen connections that spread useful material or information while weakening

connections that propagate disturbances.

Manage slow variables and feedbacks

Identify slow-changing variables that are key to keeping a system stable and prevent
the variables from crossing thresholds that would cause system collapse. Strengthen

feedback loops that keep key variables within thresholds and weaken feedback loops that
do the opposite.

Foster complex adaptive systems thinking Promote a worldview or mental model that views the world as comprising dynamic
and interacting systems.

Encourage learning Encourage learning through experimentation and monitoring, especially in real-time.
Broaden participation Actively engage all stakeholders in management and governance processes.

Promote polycentric governance systems Implement multi-scalar, nested, and collaborative governance systems that are matched to
the scale of the problem.

Adapted from [50].

To date, applications of an SES approach to WASH services have primarily been conceptual [51,52],
but emerging evidence demonstrates how some resilience principles can support drinking water safety.
Access to multiple types of water sources enables people to switch between sources if a climate hazard
(e.g., flooding) causes one type of source (e.g., wells) to become contaminated and unusable [53]
(“redundancy and diversity” principle). People do not necessarily choose the safest sources amongst
their multiple options [54,55], but interventions can provide guidance to water users and service
providers about which water sources are most likely to be safest to drink from under different climate
conditions [20,56]. In a study in Ethiopia, the real-time monitoring of and response to drought impacts
on rural improved groundwater supplies led to increased rates of their functionality so that fewer
people needed to rely on emergency water trucking [57], which is considered an unimproved water
source and often unregulated in terms of water quality [58] (“encourage learning” principle). Expert
opinions suggest that decentralized water supply infrastructure reduces the potential for widespread
contamination and public health risk from increasingly frequent and intense rainfall events [59]
(“connectivity” principle). However, direct evidence of this in a rural setting is absent.

3. Materials and Methods

3.1. Case Study Site

Vanuatu is a sovereign archipelago nation located in the South Pacific Ocean approximately
1750 km east of Australia. The total population is estimated to be approximately 276,000, with 75%
of people living in rural areas [7]. The country has a tropical climate with distinct dry and wet
seasons, although the seasonal cycle can vary considerably based on the phase of the El Niño Southern
Oscillation [60]. Average temperatures range from 24 to 27 ◦C, and average monthly rainfall ranges
from approximately 100 mm in September to over 300 mm in March [60].

Recent climate trends and projections of climate change in Vanuatu show increases in temperature,
mean sea level rise, and significant uncertainty related to rainfall. Annual and seasonal mean
and maximum temperatures in Vanuatu have increased significantly since 1948, and sea level has
risen at a higher rate than the global average [60]. Future climate projections over the course of
the century suggest an increase in the number of very hot days; more frequent days with extreme
rainfall; a continued increase in sea level; less frequent but more intense cyclones; and significant
uncertainty as to whether annual and seasonal rainfall will increase, decrease, or stay the same [60].
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The 2017–2030 Vanuatu National Water Policy recognizes that water supplies in rural areas are
typically managed by community-based committees and calls to “professionalize” management by
rewarding committees that develop efficient management systems [61]. The policy also calls for
increased access to financing for households to purchase drinking water products, including rainwater
storage tanks [61]. However, the extent to which the policy has been operationalized to date is unclear.

The case study site was on a low-lying limestone island located 3.5 km offshore of
Lakatoro—the capital of the neighboring Malekula Island. The size of the island is approximately
1.1 km2. Seven villages, comprising a combined population of approximately 700, existed on the island.
Most community members are fishers, although some grow and sell produce or work in Lakatoro.
The villages were treated as a single community in this study because they shared water supplies,
were in close proximity to one another, and jointly made decisions on community development issues.
The location of the case study site within Vanuatu is marked in Figure 1.

Figure 1. Location of the study site community in Vanuatu (Source: modified from http://commons.
wikimedia.org).

http://commons.wikimedia.org
http://commons.wikimedia.org
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Water needs on the island are primarily met through the joint use of eight unprotected hand-dug
wells and several dozen rainwater harvesting systems spread throughout the community. There are no
significant surface water bodies on the island. Only one of the eight wells had a cover (that did not
seal). All the well parapets were under 1 m tall, and five well parapets were under 50 cm tall. None of
the wells had platforms or lining. Water was retrieved from each well using rope and buckets, except
for one well that was fitted with a solar pump. Data on the technical characteristics of the solar pump
were not collected. Groundwater on small low-lying islands typically exists as a shallow freshwater
lens that sits above seawater [19]. The wells were informally managed collectively by the householders
that used them. Figure 2 shows the layout of the community and approximate location of the wells.

Figure 2. Study site community (Source: ©2017 Centre National D’études Spatiales (CNES)/Airbus,
DigitalGlobe, Westminster, Colorado, CO, USA).

Most rainwater harvesting systems were attached to domiciles and built by homeowners. Storage
receptacles for these systems included pre-fabricated plastic tanks, in situ underground cement tanks,
and other locally sourced materials such as drums or barrels. Homeowners managed their own private
domestic rainwater harvesting systems. A few communal rainwater harvesting systems were installed
on communal buildings like the church, school, and meeting hall by external support agencies. These
communal systems have no management entity in place.

3.2. Methods

A qualitative case study methodology was followed to demonstrate how climate variability
and change impacts can influence drinking water safety in a rural context using the adaptation,
vulnerability, and resilience approaches. The adaptation, vulnerability, and resilience approaches
were chosen to explore climate impacts on water safety because they are influential on theory,
practice, and policy in relation to global environmental change across a range of sectors [25–29].
Because an existing conceptual framework for applying these theories to a rural water service
did not exist at the beginning of this study, we inductively used concepts from the adaptation,
vulnerability, and resilience theories to construct different framings of climate impacts on water safety.
Case studies are commonly used to conduct research or assessments in adaptation, vulnerability,
and resilience studies because they provide in-depth detail of the complex ways that climate interacts
with society and nature [41,49,62]. Our methods included semi-structured interviews, technological
and environmental surveys, and observations of water supplies and how community members interact
with them under different weather conditions.
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The case study site presented in this paper is a rural community in Vanuatu that accesses water
via community-managed systems. This was a suitable site for this study because Vanuatu is classified
as having a lower-middle-income economy [63], and community management continues to be the most
common water service management model in rural areas of developing countries [2].

The assessments of how climate impacts influence drinking water safety in the community
were primarily collected through semi-structured interviews. An interview guide was prepared
with questions focused on climate impacts on water management and water access at household
and community levels in relation to adaptation, vulnerability, and resilience concepts. In relation
to adaptation concepts, interviewees were asked about how frequently they experienced various
climate hazards, how different climate hazards affected the water supply functionality and access,
and the actions that households and the community commonly took in response to expected or actual
climate hazards.

In relation to vulnerability concepts, the interviewees were asked about participation
in decision-making about water supplies, household ability to meet water needs, the perceptions
of fairness in the community relating to water access, and gender norms around the community
and household water management.

In relation to resilience concepts, the interviewees were asked about practices in accessing multiple
water sources, backup options when primary water sources failed, how water management practices
changed across seasons, innovations in response to climate impacts, and if and how government
authorities beyond the community scale provide support to help households meet water needs.

The participants were recruited from different spatial areas within the community to gain a variety
of perspectives using different water supplies and were identified via transect walks and snowballing.
After obtaining consent from the participants, all the interviews were conducted face-to-face in Bislama.
The field team comprised a white male researcher and a Ni-Vanuatu female assistant. The assistant
aided in interpreting and the interviews were recorded on a voice recorder. The interviews were
conducted at the choice location of the participants, usually the home. A total of 29 interviews were
conducted. All the participants were over the age of 18. Due to cultural norms, it was sometimes a
challenge to find families comfortable with a female member speaking on their behalf. Consequently,
the sample was gender biased, with 17 male participants and 12 female participants.

All the interviews were transcribed into English by the field researcher and analyzed qualitatively.
The transcriptions were read multiple times then coded deductively and inductively. Provisional
coding [64] was used, whereby a predetermined list of codes derived from adaptation, vulnerability,
and resilience theories was used to find empirical evidence of key concepts. Descriptive coding [64] was
also used to inductively identify themes that were not captured by the predetermined list. The findings
were developed and elaborated on through freestyle writing on the evidence gathered by the codes.

Other methods were used to corroborate the responses of interview participants. The water
infrastructure was surveyed using a WSP-style risk assessment [65], whereby potential contamination
hazards and risks were identified and documented for community and household water systems.
The water catchments were also surveyed to note land use activities and whether the natural vegetation
was altered around water sources. Finally, the field researcher was based in the community for
one month and recorded the experience through observation notes and journaling. In particular,
the researcher observed the conditions of water supplies on dry and rainy days and noted sanitary risks
or changes in their functionality. The researcher also observed community members collecting water
from communal water points on dry and rainy days and noted how water was collected, by whom,
and whether queuing occurred. These observations and assessments were used to gain more insight
about the issues reported by the research participants during the interviews.

This mix of methods was used to document cause-and-effect relationships between climate
hazards and outcomes in the community, which strengthens the internal validity of the study.
Although the impacts discovered in this study may not be generalizable to all rural settings due
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to the context-specific nature of climate interactions with society and nature, the lessons learned
as elaborated on in Section 5 of this paper are widely applicable to rural water services.

All the participants gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the University of Technology Sydney Human Research Ethics Committee (Ref no. 2015000306)
and the Vanuatu Cultural Centre.

4. Results

In this section, we problematize the impacts from climate variability and climate change for
water safety in the participating community through three approaches: adaptation, vulnerability,
and resilience. We identify observed, reported, and potential issues for water safety relating to existing
climate impacts and how climate change could worsen them.

4.1. Adaptation Approach—Increased Physical Risks from Climate Hazards to Water Safety

An adaptation approach can be used to assess the current and future physical risks that climate
variability and climate change create for water safety. The risks for the community’s water supplies are
made with reference to the climate trends and projections for Vanuatu described above.

The wells in the community are exposed to contamination from heavy rainfall. The participants
described incidents of surface water runoff carrying debris into wells and degrading the water quality:
“When we sleep during the night, if it rains too much, it will go inside the well. So we must clean the well again”.
Technological surveys of the wells found that missing well covers and short parapets could allow
the direct ingress of floodwater into the wells. During the community stay, substantial pooling around
the wells on rainy days was observed. This could allow for ingress underneath the well parapets,
because none of the wells had platforms or lining. Although no latrines were observed within 20 m
of the wells, the ground in the island has a shallow layer of soil over porous limestone, which could
facilitate the pit latrine pollution of wells from longer distances during wet periods. An increase in days
with heavy rainfall, as projected, would be expected to heighten contamination risks to the wells.

The future salinization of the wells due to sea level rise is also a concern. The participants reported
that water from one well has always had a salty taste. Another well that had a solar pump installed on
it produces a noticeably salty tasting water during dry periods. None of the participants reported that
climate-related events affected the salinity of the water in the other wells. However, it was noted from
environmental surveys that all the wells were located within a few hundred meters of the coastline.
Groundwater lenses on small islands are known to become thinner and more susceptible to saline
intrusion during dry periods [66]. Further, it is widely accepted that rising sea levels seriously threaten
to make more permanent changes to the salinity of groundwater resources on low-lying islands [19,22].
Increasing sea level rise from climate change, combined with a potential for reduced dry season rainfall
(although uncertain), threaten the water quality of the wells.

The rainwater harvesting systems in the community, the only improved water sources, are sensitive
to high temperatures and decreased rainfall. The participants reported that rainwater storage tanks
commonly became empty during hot and dry periods: “When the sun is strong for a long time, we use
up [the water in the tank] I think after one, two, or three months”. Some owners of domestic rainwater
harvesting systems reported being able to ration water to last through the dry season, but this is more
challenging when the dry season is hotter and drier. When households are unable to access water
from rainwater tanks, they usually revert to drinking water from the unimproved hand-dug wells.
The risk of water shortages in rainwater harvesting systems, and households consequently drinking
from unimproved wells, could increase if the number of very hot days grows as projected, or if the dry
season or annual rainfall decreases.

An increase in the number of days of extreme heat could cause some rainwater tanks to crack.
Many rainwater tanks in the community are constructed in situ underground by pouring concrete into
molds or by binding cement blocks with mortar. Three participants mentioned that their aboveground
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cement rainwater tanks were prone to leakage, and it seems likely that underground cement tanks likely
leak (or allow underground ingress) as well. High temperatures can adversely affect the mechanical
properties and serviceability of setting and hardened concrete [67]. Therefore, an increase in extremely
hot days could increase the tendency of cement rainwater tanks to leak and allow ingress from
contaminated groundwater.

4.2. Vulnerability Approach—Unequal Capacity to Respond to Climate Impacts Exposes Some to Water Safety
Threats More than Others

Using a vulnerability lens, the impacts of climate change on water safety in a community can be
interpreted in terms of who can most (or least) readily access safe water and why. A salient example of
this in the community is the ability to access rainwater harvesting systems—the only improved water
source on the island.

Owning a domestic rainwater harvesting system is advantageous in the community because it
provides access to an on-site improved water source and an additional layer of water security by
complementing the wells. Communal rainwater harvesting systems, such as one built on a church,
are free for the whole community to use. However, there is no mechanism for rationing, so they run out
of water quickly because families rush to collect as much water from them as they can while water is still
available. The wells are less attractive because the well water is sometimes turbid, many community
members are aware the well water is unsafe for drinking without treatment, and retrieving water from
and queuing at distant wells is wearisome. Consequently, dozens of households in the community
mobilize scarce resources to procure domestic rainwater harvesting systems for their families in order
to secure safe drinking water.

Although domestic rainwater harvesting systems are popular in the community, the cost of
constructing one is prohibitive for many families. Participants remarked that the upfront cost of
materials, especially for the tank, prevented them from building a system: “Sometimes it costs too much.
Like the cost of a tank, to make blocks, buy cement”. The wealthiest families, or those with family members
sending remittances, purchased pre-fabricated polyethylene tanks which technological surveys showed
had the fewest sanitary risks. In situ cement block tanks were a cheaper option but have relatively
more sanitary risks. Yet, income-earning opportunities for rural families in Vanuatu are difficult to
come by. Consequently, poorer households without a rainwater system often have no choice but to use
unprotected wells that are more likely to be contaminated or rely on a neighbor’s rainwater system.

Households that rely on a neighbor’s domestic rainwater harvesting system are subject to the rules
of access that the owner sets for them. For example, the authority of the owner to grant permission
to use their system is respected by others. As one participant described: “If you want to get [water]
someplace, you must ask. If the owner is not there, you must wait. When he returns, you ask if he can allow it
or not”. Another participant conveyed discomfort with using another household’s rainwater system:
“Sometimes you feel that you are going too often. You feel ashamed to go”. During interviews, some owners
described rules that they set for use of their stored water, such as that water could be collected for
drinking only during dry periods. Thus, rainwater system owners were in a position to dictate
the terms of water access for non-owners because ownership granted them authority.

Further, as the proportion of households that self-provision water supplies increases,
the households that are left behind are increasingly burdened with looking after the wells. During
the rainy season when the wells become visibly contaminated or damaged from intense rainfall,
village members typically pool resources to repair and restore the wells. With the increasing number
of families who meet their water needs during the wet season with rainwater harvesting systems
and choose not to contribute to well maintenance during this time, relatively poorer families who still
rely on wells are left with a greater share of the maintenance burden.

This is relevant with respect to climate change because, as the adaptation approach section
describes, climate change increases risks to water safety especially for the wells. Wealth distribution
within the community is a powerful determinant of who will be most exposed to this increased risk.



Resources 2020, 9, 77 11 of 18

4.3. Resilience Approach—Human-Environment Interactions Threaten the Capacity of Water Resources to
Deliver Safe Water

Taking a resilience approach, the threat that climate variability and change pose to water safety
in the community can be assessed in terms of the water system’s tolerance for variability and volatility
and avoiding critical thresholds. In this case, we consider the “water system” to comprise the available
water resources, the physical water infrastructure, the water users, and the water management
structures. In this section, we present evidence of how selected resilience principles are relevant for
water safety and climate change (evidence was not found for all the principles in this study, but this is
reflective of resource constraints of the study. Other principles may still be relevant).

The diversity of multiple, decentralized water supplies gives the community a degree of tolerance
for the impacts of climate variability on water quality. The proliferation of discrete rainwater harvesting
systems in the community, in addition to the eight wells, means that community members have
numerous options for accessing water (resilience principle of redundancy). If rainwater systems
are dry due to prolonged dry periods, water is still available from the wells, which participants
remarked have never gone dry before. If intense rainfall contaminates the wells, water is available
in rainwater tanks. Having different water supplies that are not affected the same by various climate
hazards makes it less likely that a single climate hazard cuts of all water access (resilience principle of
diversity). Furthermore, having numerous discrete water supplies helps to ensure that failures to water
supplies are more likely to be isolated and not completely cut off water access (resilience principle of
connectivity). This arrangement helps to deal with the future uncertainty in rainfall patterns due to
climate change.

A critical threshold for the water service in the community is the level of groundwater that can be
abstracted before the salinization of a water source occurs. On small islands, groundwater pumping
technology risks the salinization of the freshwater lens through “upconing”, whereby brackish water
in the “transition zone” (the zone where the freshwater lens and seawater meet underground) is pulled
upward [19]. The participants remarked that this had been experienced at one well where a solar
pump was installed to make collecting water less arduous: “Now it is becoming salty. I think because
the dry season is too strong, it is causing a lack of water. The solar pump is pulling it but it is becoming salty”.
Once the water in the well became saline, participants reported that they began rejecting it for drinking,
which marks the important threshold. Although upconing is reversible by discontinuing or slowing
pumping rates, repeated incidences of upconing can cause the thickness of the transition zone to
permanently increase [68]. This means that the salinization threshold can potentially move to become
more restrictive if upconing repeatedly occurs. The management of this feedback (e.g., by limiting
the amount of abstraction by season) is critical for ensuring the well is not permanently salinized
(resilience principle of management of feedbacks). At the time of the visit, the participants remarked
this was not being proactively managed.

The salinization threshold is relevant to climate change impacts because of mean sea level rise.
Climate change-driven sea level rise could combine with the increased water abstraction from wells to
cause the salinization threshold to become more quickly and frequently crossed, resulting in degraded
water quality and potentially the abandonment of the wells.

Another example of a feedback mechanism relates to how land management affects the water
quality of the wells. Vegetation and good soil structure promote the infiltration of rainwater into
the ground [69], which is then purified as it percolates toward the water table [70]. An environmental
survey found that the development of living spaces on the island has led to the clearing of natural
vegetation and compacting of the topsoil. As a result, the land’s infiltration capacity has decreased
and surface runoff has increased, which causes problems with spills of contaminated runoff into
open wells. The participants reported that this, in turn, leads users to take up coping responses such
as treating the well water through boiling (often using firewood sourced by clearing more vegetation,
which continues a feedback loop).
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This feedback mechanism that affects water safety may be exacerbated by climate change.
If the number of days with heavy rainfall increases as projected, this may lead to increased contamination
events from surface runoff and an increase in trees being cut down to source firewood for boiling water
as a treatment.

5. Discussion

In this section, we discuss the potential responses that could be taken to address the existing
and possible climate impacts on water safety in the community and the implications of our findings
for WASH policy and practice.

5.1. Possible Responses to Climate Impacts on Water Safety through Each Approach

One outcome of problematizing climate variability and change impacts on water safety through
different approaches is that it produces sharply different recommendations for how to respond. Table 3
summarizes the potential interactions between climate and water safety presented in this paper and lists
the possible responses that government or civil society organizations (CSOs) could make to improve or
maintain water safety.

Table 3. Summary of potential interactions between climate and water safety and the possible responses
government or civil society could make.

Approach Climate Interactions with Water Safety Possible Responses

Adaptation

Contamination of wells due to increase in number of
days with heavy rainfall Install well platforms, high parapets, and well covers.

Salinization of wells due to sea level rise Dig new wells further inland. Increase number of
rainwater systems or install desalinization units.

Water shortages and leakage of rainwater tanks due
increase in number of extremely hot days

Increase rainwater storage capacity and improve tank
building techniques and materials.

Vulnerability

Poorer households cannot afford domestic rainwater
harvesting systems that are more likely to provide

safe water than dug wells

Subsidize the cost of rainwater tanks for
poorer households.

Owners of private domestic rainwater harvesting
systems in part dictate terms of water access for

non-owners

Establish a management entity for communal
rainwater tanks that prioritizes water needs of

poorest households.
Poorer households sharing a greater burden of well

maintenance in the wet season
Upgrade wells and allocate resources to support their

operation and maintenance.

Resilience

A variety of discrete water supplies gives community
members multiple options for safely accessing water

Upgrade and support upkeep and utilization of
water supplies drawing on different water resources.

Increased groundwater abstraction threatens to
salinize wells

Support community to set rules to moderate
groundwater abstractions and monitor well salinity.

Land clearance contributing to increased surface
runoff and contamination of groundwater

Restore vegetation on the island. Support alternative
treatment methods to boiling to break feedback loop.

It should be noted that it is assumed that the responses in Table 3 would improve water safety
in this context based on commonly accepted knowledge about contamination pathways, but further
research is needed to verify this and to understand who would benefit most. Future quantitative
studies may examine the association between water quality, seasonal or climatic events, and technical
or managerial characteristics of the water supply and catchment system. For example, associations
between the frequency of intense rainfall and high sea levels with groundwater contamination,
or groundwater monitoring to model water balance across seasons. Mixed methods research could
provide insights on how financial (e.g., rainwater tank subsidies) or institutional interventions
(e.g., rule-setting or management support) influence the decisions of different people to drink safe
or unsafe water when certain climatic conditions are experienced. Evidence generated by studies
like these would support informed decisions about developing actions to address climate impacts on
water safety.

The impacts and responses in Table 3 are only a small sample of those that could be generated using
each approach to examine climate change impacts on rural water safety, but illustrate the influence that
initial conceptualizations have on actions taken to respond to climate change. Responses following
an adaptation approach primarily involve investing in making technological improvements in order
to reduce risks to water quality. The vulnerability approach leads to responses that focus on water
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governance and management that supports equality. Finally, responses following the resilience
approach are both biophysical and social, but tend to relate to water resource management.

Each set of responses are mostly complementary and can and should be employed together to
ensure people drink safe water as climate hazards worsen. Systematic climate hazard identification,
risk assessments, and control measure implementation can reduce the water quality risks from climate
change in the community. However, the community capacity to implement control measures is not
homogenous and initiatives are needed to ensure the outcomes are equitable. For example, increasing
rainwater storage capacity could help to address water shortages, but additional attention is needed
to ensure that poorer households can afford rainwater tanks or get water when they need it from
communal tanks. Ensuring equitable access to a water supply with climate risk management measures
in place can also be complemented by the resilience responses that aim to manage social-ecological
interactions to support the community to sustain multiple water resources for them to flexibly draw on
as the climate changes in unpredictable ways.

If each of the different approaches are not accounted for in government or CSO interventions to
improve water safety, it is easy to see how water safety can be inadvertently undermined in other ways.
For example, sealing the wells and adding pumps may help to prevent contamination from surface
runoff, but also risks salinizing the groundwater in the future if sea level and abstraction rates rise.
Increasing equitable access to diverse water supplies can enable people to dynamically choose which
water source to drink from depending on the prevailing seasonal or climate conditions, but if they are
not trained on how to recognize and manage sanitary risks, they may choose to drink from less safe
sources (as documented by [54]). A wide perspective of water safety that encompasses the physical,
social, and environmental dimensions is needed to ensure that people can always drink safe water
under climate change.

5.2. Implications for Policy and Practice

The different ways that climate change can influence drinking water safety in rural settings
calls for pluralism in policy and practice. Policy should recognize the contributions of both natural
and social sciences in understanding how people can be exposed to unsafe drinking water due to
present climate variability and future climate change. Case studies such as this that illustrate this or
research that directly shows evidence of climate impacts on water quality and public health outcomes
help to inform policy. Frameworks that link different disciplinary knowledge bases can help to bring
different scholarly contributions on climate change impacts on water access together in a coherent
way [71]. There is also a need to translate research findings and conceptual thinking such as that
provided in this paper into concrete, practical interventions that can be taken to scale.

Partnerships between WASH researchers and implementers, and climate change authorities,
will be important for developing practical responses to climate impacts on water safety. Much
of the latest thinking on responding to climate change is complex and overwhelming to WASH
stakeholders that are new to this field. Researchers and climate change authorities that have worked
in other sectors that have successful implemented climate change programs can help government
and WASH CSO implementers to make sense of various concepts and how they might apply to water
safety. Implementers can provide practical experience of water safety actions that can be feasibly
implemented in rural settings and considerations for taking those actions to scale. Collaborative
workshops between CSOs, other in-country stakeholders, and researchers to brainstorm and critique
ideas and engage with other sectors that have implemented successful climate change programs
to learn from their experiences could help with developing practical solutions. The production of
empirical evidence through case studies or experimental methods is needed to assess the effectiveness
and equity of intervention outcomes.

While from a theoretical perspective, water safety management interventions should address
all of these multiple dimensions, it should be recognized that resources for investment in a rural
developing context are scarce. For example, in a given situation funding may be needed to upgrade
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water infrastructure to better manage risks, diversify water sources, and offer subsidies to poorest
households to increase household safe storage capacity, but budgets may be limited to carry out all
of these. Decisions on which investments are most likely to most effectively improve water safety
and public health outcomes must be evaluated on a case-by-case basis. The involvement of different
community social groups, governments, and CSOs in discussions, as well as consultations with climate
experts, should inform these investment decisions.

6. Conclusions

Climate change threatens drinking water safety in rural areas in multi-dimensional ways.
In applying adaptation, vulnerability, and resilience analyses side-by-side in a case study in Vanuatu,
we have demonstrated the contributions that different approaches can make to problematizing climate
variability and change for rural drinking water safety in developing countries. The adaptation approach
raises the importance of recognizing water quality risks created by present and future climate hazards.
The vulnerability approach points to how social processes cause climate impacts to create more water
safety issues for some than others. The resilience approach highlights the value of enabling people to
have flexibility in how they access safe water under unpredictable climate conditions, and the need
to sustain water resources. These complementary approaches can and should be employed together
when considering drinking water safety management under climate change. If any approach is applied
in isolation, it is possible that important dimensions of water safety will be overlooked or undermined.

A key implication of this research is that the global WASH sector’s focus to date on technological
and infrastructural improvements for managing risks from climate hazards has made important
contributions to water safety but must be expanded. Climate change impacts will not affect water safety
for people living in rural areas to the same level, even for people living in the same community. Further,
not all climate hazards and their risks for water safety are predictable, and some will emerge over many
years as climate change continues to accelerate. A broader appreciation of the multivariate threats
to water safety that climate variability and change pose in the present and future and corresponding
actions to address those threats are essential to achieving universal access to safe water in an
ever-dynamic world.
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