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Abstract: Changes in the mobility patterns have evoked concerns about the future availability of
certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of
this article is to determine if resource use aspects are adequately reflected within life cycle assessment
(LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to
2018 are evaluated regarding their objective, scope, considered impact categories, and assessment
methods—with a focus on resource depletion and criticality. The performed analysis shows that only
24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the
studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show
higher results for mineral and metal resource depletion than internal combustion engine vehicles
(ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for
the highest burdens. Only few publications approach resource criticality. Although this topic is a
serious concern for future mobility, it is currently not comprehensively and consistently considered
within LCA studies of electric vehicles. Criticality should be included in the analyses in order to
derive results on the potential risks associated with certain resources.

Keywords: life cycle assessment; electromobility; resources; resource depletion; criticality; supply risks

1. Introduction

In recent years, societal and political interest in electric mobility has increased due to rising
environmental challenges such as climate change, inner city pollution, and predicted shortage of fossil
fuels [1]. A reduction in fossil resource use and environmental impacts is predicted when changing
from combustion engines to alternative drivetrain technologies including electric vehicles (EV). Several
countries have already set goals for the future share of electric vehicles or launched programs for their
market introduction [2]. The European Union for example aims at cutting the vehicles with combustion
engines in half by 2030 and phasing them out in cities by 2050 [3]. Sales of electric vehicle are on the
rise worldwide, with China and Norway being the main drivers. In the coming years, an enormous
increase in sales of electric vehicles is predicted to reach about 4 million in 2020, 18 million in 2025,
and 21 million in 2030 [2,4–8].

Concerns about introducing electric vehicles in a mass market are mostly related to an elevated
demand of resources, e.g., the use of lithium in lithium ion batteries [9–14]. The growing material
consumption by the industry and the need for higher resource efficiency are issues which have been
heavily discussed in the last years [15,16]. The replacement of conventional vehicles by EV means a

Resources 2020, 9, 32; doi:10.3390/resources9030032 www.mdpi.com/journal/resources

http://www.mdpi.com/journal/resources
http://www.mdpi.com
https://orcid.org/0000-0001-7238-4881
http://dx.doi.org/10.3390/resources9030032
http://www.mdpi.com/journal/resources
https://www.mdpi.com/2079-9276/9/3/32?type=check_update&version=2


Resources 2020, 9, 32 2 of 20

profound change in the resource use patterns worldwide. In particular, the demand for lithium, cobalt,
rare earth elements, and graphite, which are essential for battery production, is expected to increase
vastly, as shown in Figure 1. It is predicted that the demand for lithium-ion batteries will grow seven
times by 2025 and by 11–13 times by 2030 [5,17]. An inadequate supply of these resources might have
implications on economic prosperity and employment [18].
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Figure 1. Predicted increase in resource demand in a 100% electric vehicles (EV) world (percentage
change compared to today’s global production) [19].

Life cycle assessment (LCA) [20,21] is a method that could be used to investigate potential
environmental impacts of the resource use of different drivetrain technologies. Over the past decade,
many publications have analyzed the environmental impacts of alternative drivetrain technologies
compared to conventional vehicles powered by internal combustion engines. Multiple methods to
assess resource efficiency of product systems have been developed and integrated into LCA [22].

As shown by Berger et al. (2020) [22] and Sonderegger et al. (2020) [23], for the assessment of
resource use several methods exist addressing a variety of aspects including the depletion of resources,
future efforts of mining resources, thermodynamic accounting, and supply risks. Depending on the
research question, one or more methods could be chosen. For example, to determine the depletion
of resources by considering currently existing and developing mines, the abiotic resource depletion
(ADP) method [24–26] based on economic reserves is chosen to answer this question.

The present article provides an overview of LCA studies on electric vehicles and the respective
batteries published over the last 10 years. It analyzes whether and how the reviewed publications
address the impact category “resources”. The focus of the publication is on metals and mineral
resources. For that, we investigated which impact assessment methods for resource use are applied,
as well as the overall conclusions regarding resource use for electromobility. It is also verified if the
applied assessment methods are suitable to address the criticality of resources.

2. Methodology

This article analyzed LCA studies on electric vehicles from 2009 to 2018 (included). For this,
the databases ScienceDirect and Web of Science were searched using the following keywords: “LCA”
OR “life cycle assessment” AND “electromobility” OR “electric vehicles”. From all identified studies,
studies were selected which attended following criteria: (a) an LCA of a vehicle or vehicle parts was
conducted; (b) results were displayed in impact categories and an interpretation was performed.

The selected studies were examined in a four-step approach (see Figure 2). In the first step,
key information of the studies was extracted considering following aspects:
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• author(s),
• title of publication,
• date of publication,
• objective of the study,
• functional unit,
• analyzed drivetrain technologies, vehicle parts, and life cycle stages,
• considered impact categories and applied impact assessment methods (see Section 3.1).

Figure 2. Four-step approach to analyze selected studies.

In the second step, a refinement of publications with focus on resource use assessment was
performed. Special attention was given to studies analyzing the battery of EV, since it is a potential
hotspot for the use of critical materials in electric mobility. In the third step, publications considering
resource use were investigated regarding their applied impact assessment methods (see Section 3.2).
Again, a focus was laid on batteries of EV (see Section 3.3) and whether the studies considered resource
depletion or criticality (see Section 3.4). In the last step, overall conclusions on the resource use in the
examined case studies were drawn (see Sections 4 and 5).

The term “electric vehicle” (EV) comprises vehicles with different types of engine and may
include battery electric vehicles (BEV), which draw all of their power from the electric grid and hybrid
electric vehicles (HEV) including plugin hybrid electric vehicles (PHEV), which combine an internal
combustion engine with an electric propulsion system. For the purpose of this publication, the term
EV will be adopted for all types of passenger electric vehicles.

3. Results

Altogether, 103 publications were analyzed, whereas 76 considered a complete LCA of an electric
vehicle (see Figure 3) and 27 studies focused exclusively on battery production. Most papers were
published in the years 2015, 2017, and 2018. Overall, an increasing trend of publications was observed,
which reflects the growing interest in analyzing electromobility from the life cycle perspective.

Most of the examined studies (65) aimed to compare environmental impacts of emerging drivetrain
technologies (e.g., battery electric vehicle) with conventional internal combustion engines. The other
studies did not perform any comparison, examining only electric vehicles. A total of 45 of the studies
investigated the vehicles entire life cycle, i.e., material extraction, vehicle construction, use, and end-of
life phase. Four of the overall reviewed studies concentrated solely on the use phase of electric vehicles
and partly compared them with the use of conventional technologies. Three other studies evaluated
only the manufacturing stage. A total of 13 of the studies investigated the well-to-wheel impacts but
did not consider end-of-life.
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Figure 3. Yearly and cumulated number of publications performing life cycle assessment (LCA) on
electromobility as well as number of publications considering resource use.

3.1. Evaluated Impact Categories

In Figure 4, the considered impact categories as well as applied methods are presented. As very
different types of impact categories were applied in the examined studies, similar impact categories
were aggregated for this review in order to facilitate the interpretation of results. Overall, five impact
clusters could be identified: climate change, energy, resources, damages to air, water and land, and human
health. The cluster climate change contains the categories global warming potential, carbon dioxide emissions,
and greenhouse gases emissions. Energy use and cumulative energy demand were subsumed under the
cluster energy. Additionally, other formulations in relation to energy consumption were summarized
under this term (e.g., primary energy demand, energy consumption etc.). Other frequently used categories
like particulate matter formation, ozone layer depletion, photochemical oxidation, freshwater and marine aquatic
ecotoxicity, acidification, eutrophication, terrestrial ecotoxicity, and land use change were aggregated under
damages to air, water, and land. The category human health only covers the impacts from human toxicity.
The cluster resources contains the impact categories abiotic depletion, mineral resources depletion, metal
depletion, and fossil resources depletion.

Figure 4. Overview of the impact categories applied in the analyzed publications.
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As shown in Figure 4, most studies analyzed a variety of impacts and did not focus much
on resource use assessment. The majority of the studies addressed the impact category climate
change (also referred to as greenhouse gas emissions, carbon dioxide emissions, and global warming
potential). Further, it is apparent that another emphasis was on the impact categories acidification
and eutrophication.

3.2. Assessment of Resource Use in Electric Vehicle LCA

In this section, publications considering resource use were analyzed. A total of 25 publications
addressed resource use related to electric vehicle production and use stage. Different assessment
methods were applied, but some authors did not apply any impact assessment method to assess
resources and solely tracked the used resources for the production of an electric vehicle without any
further investigation. In step 2, a refinement was done, and 15 publications were selected for further
analysis. All selected publications evaluated complete vehicles and provided impact assessment of
vehicle manufacturing, operation, and end-of-life (see Table 1).

In seven publications, the ADP method as part of CML-IA (Centrum voor Milieuwetenschappen—
Impact Assessment) was applied—with its different versions regarding characterization factors
(CFs) [27]. In CML-IA, resource use is evaluated by the indicator abiotic resources depletion (ADP) [28].
Most of the authors that applied CML-IA used ADP in its aggregated form (with ADPelements and
ADPfossil being merged). However, the CML-IA authors advised against such a practice and provided
separate lists of CFs [27]. When fossil, mineral, and metallic resources were assessed jointly (aggregated
ADP), EV achieved better results than ICEV due to higher influence of fossil fuels in the overall life
cycle of the vehicles [29–32]. An exception was Yu et al. (2018) [33], where EV performed worse than
the ICEV. A separate assessment of ADPelements led to higher impacts of EV if compared to ICEV [34,35].

In three other publications, the ReCiPe method [36] was used, which applies the indicators
mineral resource depletion (MDP) and fossil resource depletion (FDP). When ReCiPe was applied, EV
performed worse than ICEV in MDP, but better in FDP. Even though EV showed higher MDP impacts
than ICEV (threefold for Hawkins et al. (2013) [37] and Helmers et al. (2017) [38]), this result might be
even higher, because ReCiPe does not include CFs for lithium (as noted by Hawkins et al. (2013) [37]),
and consequently underestimated the battery influence.

Further, the remaining studies applied the EDIP method 2003 [39], the Geopolitical Supply Risk
method [40–42], the Eco-Indicator 99 [43] and the ESSENZ method [44,45].

In summary, it could be noted that, especially when the use phase was estimated to be rather short
or recycling rates were low, EV performed worse than ICEV [46,47]. This can be explained by a higher
demand in metals for EV production [33–35,48]. When impact categories related to fossil resources use
were used, most of the publications evaluated EV better than ICEV, since EV have a negligible fossil
fuel consumption throughout their lifetime.

Most of the authors underlined that the worse results achieved by EV in the mineral or metal
related categories were due to battery manufacturing [33,35]. As shown in Helmers et al. (2017) [38],
the battery production of EVs has much larger impacts than the one from ICEV. However, considering
the overall impacts from EV, the component “printed wiring boards” in the power train was the
component with the highest burdens due to the microelectronics containing (rare) metals such as silver,
gold, tin, and lead.

Sensitivity analyses were performed in five of the 15 publications. The identified trend regarding
burdens due to resource use was emphasized in all performed sensitivity studies, highlighting the
robustness of the results.
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Table 1. Summary of the selected LCA that cover resource use assessment.

Author, Year Title Functional Unit
Impact Assessment Methods

for Resources/Impact
Categories

Conclusion of Resource Use Assessment Results of Sensitivity Analysis with
Regard to Resource Use

Notter et al. 2010
[29]

Contribution of Li-ion batteries
to the environmental impact of

electric vehicles

One average kilometer
driven by a vehicle with
electric drivetrain and
Li-ion batteries on the

European road network

CML-IA 2002/ADP EV have a 37% lower burden than ICEV
Sensitivity analysis only carried out related

to environmental impacts

Bartolozzi et al.
(2013) [30]

Comparison between hydrogen
and electric vehicles by life

cycle assessment: A case study
in Tuscany, Italy

200 km at nominal full
load within an urban area CML-IA 2002/ADP EV have an 80% lower burden than ICEV No sensitivity analysis was carried out

Hawkins et al.
(2013) [37]

Comparative environmental life
cycle assessment of
conventional and
electric vehicles

1 km driven under
European average

conditions ReCiPe/MDP and FDP

MDP: EV has a roughly three times higher
burden than ICEV

FDP: EV perform between 25% and 30% better
than ICEV (average EU mix)

MDP: increase of vehicle life reduces
burdens by EV more significantly as for

ICEV, but EV still has higher burdens even
with highest vehicle lifetime

FDP: decrease of energy use for EV and fuel
use for ICEV reduces burdens by EV more

significantly as for EV, therefore
emphasizing the better result of EV

Messagie et al.
(2014) [46]

A range-based vehicle life cycle
assessment incorporating

variability in the environmental
assessment of different vehicle

technologies and fuels

1 km driven under
European conditions

Eco-Indicator 99/mineral
resource depletion (MRD)

EV have slightly lower (5%–10%) burden
than ICEV No sensitivity analysis was carried out

Girardi et al.
(2015) [31]

A comparative LCA of an
electric vehicle and an internal

combustion engine vehicle
using the appropriate power

mix: the Italian case study

Lifetime of the vehicle
(150,000 km) CML-IA 2002/ADP EV have 40% lower burden than ICEV Sensitivity analysis only carried out related

to environmental impacts

Tagliaferri et al.
(2016) [35]

Life cycle assessment of future
electric and hybrid vehicles: A

cradle-to-grave systems
engineering approach

1 km driven by
one vehicle

CML-IA 2002/ADPfossil and
ADPelements

ADPfossil: EV has lower burden than ICEV (50%
less in one scenario and almost two times

in another)
ADPelements (assumption of “high recycling

rate”): EV has higher burden than ICEV (almost
nine times more in one scenario and three times

more than ICEV in another)

ADPfossil: change of electricity in 2030 and
2050 with less fossil and more renewable and
nuclear energy as well as more biodiesel fuel,

does not change the lower EV burden
ADPelements was not considered in the

sensitivity analysis

Henßler et al.
(2016) [34]

Resource efficiency
assessment—comparing a

plug-in hybrid with a
conventional

combustion engine

Life cycle of one car ESSENZ method/ADPfossil
and ADPelements

ADPfossil: EV (when using electricity from
hydropower) has lower burden (40%) than ICEV

ADPelements: EV has higher burden (170%)
than ICEV

No sensitivity analysis was carried out
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Table 1. Cont.

Author, Year Title Functional Unit
Impact Assessment Methods

for Resources/Impact
Categories

Conclusion of Resource Use Assessment Results of Sensitivity Analysis with
Regard to Resource Use

Cellura et al.
(2016) [49]

Electric mobility in Sicily: an
application to a historical

archaeological site

Transportation of one
person for 1 km (1 pkm)

ADP applied as
recommended by life cycle
data system (ILCD) 2011

ADP is on average 500% higher for BEVs than
for ICEVs; the highest impact for BEV when it is
powered by solar energy (PV) (ca. 1100% higher

impacts in comparison to ICEV average)

No sensitivity analysis was carried out

Choma et al.
(2017) [32]

Environmental impact
assessment of increasing electric

vehicles in the Brazilian fleet

Transportation of one
person for 1 km (1 pkm) CML-IA 2002/ADP EV have lower burden (between one-third and

80%) than ICEV

ADP: different electricity as well as fuel
sources are considered, not changing the

trend that EV has lower burdens than ICEV

Cimprich et al.
(2017) [40]

Extension of geopolitical supply
risk methodology:

characterization model applied
to conventional and

electric vehicles

Production of one vehicle GeoPolRisk EV has higher criticality compared to ICEV; EV
has higher ADP potential than ICEV No sensitivity analysis was carried out

Helmers et al.
(2017) [38]

Electric car life cycle assessment
based on real-world mileage

and the electric
conversion scenario

100,000 km driven under
European average

conditions
ReCiPe/MRD, FDP

MRD: EV has three times higher burden
than ICEV

FDP: ICEV has three times higher burden
than EV

Four different electricity and urban vs.
mixed driving conditions were considered,

emphasizing the results for MRD (ICEV has
lower burdens as EV) and FDP (EV has

lower burdens than ICEV)

Van Mierlo
(2017) [50]

Comparative environmental
assessment of alternative fueled

vehicles using a life cycle
assessment

1 km driving distance ReCiPe/MRD, Eco-Indicator
99—Metal depletion

Lower metal depletion scores for lithium iron
phosphate-based batteries No sensitivity analysis was carried out

Souza et al.
(2018) [51]

Comparative environmental life
cycle assessment of

conventional vehicles with
different fuel options, plug-in

hybrid and electric vehicles for
a sustainable transportation

system in Brazil

Vehicle with an
occupation of 1.6 persons
and a total life traveled

distance 160,000 km

CML-IA 2002/ADPfossil and
ADPelements

ADPelements: burdens of EV and ICEV are
similar; ADPfossil: EV has ca. 2.5 lower burden

than ICEV

Changes in energy supply use for fuels
and electricity

ADPfossil: emphasizes trend that EV has
lower burdens than ICEV, except for ethanol
based ICEV, which scores better than the EV

ADPelements: no changes, since the
assumptions for manufacturing phase

remained the same

Del Pero et al.
(2018) [48]

Life cycle assessment in the
automotive sector: a

comparative case study of
internal combustion engine

(ICE) and electric vehicle

Lifetime of the vehicle
150,000 km

ADP applied as
recommended by life cycle
data system (ILCD) 2011

EV has a higher burden (ca. 32%) than ICEV No sensitivity analysis was carried out

Yu et al. (2018) [33]

Life cycle environmental
impacts and carbon emissions:

a case study of electric and
gasoline vehicles in China

Life cycle vehicle
travelling

(250,000 km)
CML-IA 2002/ADP

ICEV has six times lower burden than both
analyzed types of EV (with lithium-iron and

nickel-based batteries)

Sensitivity analysis only carried out related
to environmental impacts
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3.3. Assessment of Resource Use in LCA Battery Studies

As the analyses in Section 3.2 showed, impacts due to resource use of electric vehicles were
higher compared to ICEV. Helmers et al. (2017) [38] found that mineral depletion is mainly dominated
by powertrain and battery production. Further, Messagie et al. (2013) [52] stated that the battery
production has a significant influence on the total impact of a battery electric vehicle. Both authors
found that the use of mineral resources is a key issue in battery manufacturing, especially for lithium.
Raw materials like copper, nickel, cobalt, and graphite were also relevant for electric and hybrid vehicles
with rechargeable batteries [53,54]. Further, rare earth elements like neodymium and dysprosium were
used in permanent magnets for electric motors. In order to reflect more on this issue, further LCA
studies that explicitly concentrate on electric vehicle batteries were analyzed in terms of their methods
and findings related to resource use.

Out of the 27 additionally identified studies, 13 considered the total life cycle of the battery,
i.e., battery production, use phase, and end-of-life treatment. Four studies focused on the end-of-life
phase. Ten of the 13 studies analyzing the whole life cycle addressed resource use. These studies
mainly evaluated lithium-ion batteries with different cathode materials. Figure 5 depicts the considered
impact categories in the reviewed battery studies. The clusters (i.e., climate change, energy, resources,
damages to air, water and land, and human health) and associated impact assessment methods are in
accordance with Figure 4.

Figure 5. Evaluated impact categories within the reviewed battery studies.

Table 2 gives an overview of the applied functional units, impact assessment methods, a short
summary of their findings regarding resource use, as well as information on findings from sensitivity
analysis for the 10 studies. Five of the studies use ReCiPe [55] and four apply CML-IA to assess impacts
of resource use. One of the studies compared the application of six different impact assessment methods
to assess resource use [56]. Besides CML-IA, ReCiPe, and Eco-Indicator 99, the anthropogenic stock
extended abiotic depletion potential (AADP) [57,58], Cumulative Exergy Demand (CExD) [59], and the
Ecological Scarcity Method (EcoSc) [60] were applied as well and besides ReCiPe and Eco-Indicator 99,
the other methods led to high results due to use of tantalum, cobalt, nickel, cadmium, and lithium.



Resources 2020, 9, 32 9 of 20

Table 2. Analysis of the selected battery LCA that cover resource use assessment.

Publication, Year Assessed Battery
Chemistries Functional Unit

Impact Assessment Methods
for Resources/Impact

Categories
Conclusion of Resource Use Assessment Results of Sensitivity Analysis with

regard to Resource Use

Majeau-Bettez et al.
(2011) [61]

Lithium-ion and nickel
metal hydride (NiMH);
NCM; iron phosphate

lithium-ion (LFP)

50 MJ accumulated by
the battery and
delivered to the

powertrain (roughly
driving 100 km)

ReCiPe 2008/FDP and MDP

Highest MDP of NiMH batteries because of electrode
materials nickel and lanthanum; NCM have higher

impacts than LFP due to use of nickel, cobalt, and partly
from copper; mining and metallurgy activities for nickel
production are responsible for 80% of MDP. Electricity
consumed (European electricity mix) during use phase
contributes to more than 40% of FDP; highest burdens

found for NiMH

Sensitivity analysis only carried out
related to environmental impacts

McManus et al.
(2012) [62]

Lead acid battery, nickel
cadmium; nickel metal
hydride; lithium-ion;

sodium sulphur battery

100 kg (of battery) ReCiPe 2008/FDP and MDP
Highest burdens of lithium-ion batteries in FDP and MDP
due to metal depletion from ferrite production; lead acid

batteries have the lowest impacts
No sensitivity analysis was carried out

Faria et al.
(2014) [63]

Lithium manganese oxide
battery (LMO)

200,000 vehicle km
(service life of

the vehicle)
CML-IA 2001/ADP elements Cathode of lithium-ion battery contributes by 28% to ADP

elements due to lithium or manganese use No sensitivity analysis was carried out

Ahmadi et al.
(2017) [64]

Iron phosphate
lithium-ion battery

Energy provided over
the total battery life

cycle in kWh
ReCiPe 2008/FDP and MDP

Trade-offs by extending the service life of battery pack:
MDP increases due to higher demand for virgin materials

but less fossil fuel use (FDP)

Sensitivity analysis considering battery
degradation: only minor effect on

metal depletion; greater influence on
fossil depletion. The higher the

degradation rate the lower the energy
efficiency, which increases energy use

Messagie et al.
(2015) [65]

LMO; lithium iron
phosphate (LFP)

1 kWh of energy
stored in the battery ReCiPe 2008/MDP Higher MDP impacts for LMO batteries due to manganese

and copper use; benefits due to material recycling No sensitivity analysis was carried out

Sanfelix et al.
(2015) [66]

Lithium manganese oxide
cells; hybrid systems from

lithium iron phosphate
cells prolong the lifetime

1 km driven under
European average

conditions
CML-IA 2002/ADP elements

The credit from recycling of a hybrid energy storage
system offsets ADP impacts from manufacturing and use
phase; metal use and the necessary mining operations for
a hybrid energy storage system cause most of the resource

depletion impacts

No sensitivity analysis was carried out

Peters et al.
(2016) [56]

Sodium ion; LFP;
LFP-with lithium-titanate
anode (LFP-LTO); LMO;

NCA; NCM

1 kg and 1 kWh

ReCiPe 2008, Eco-Indicator
99/minerals, CML-IA

2002/ADP (different reserve
bases); AADP, CexD, EcoSc

Worst results of NCM in CML-IA, AADP, EcoSC, and
CexD but not in Eco-Indicator 99 and ReCiPe (for

functional unit in kWh);
best results of LFP with almost all methods besides

CML-IA and sodium-ion batteries (for functional unit in
kg) if CML-IA is applied

Most of the methods show impacts from copper use; in
CML-IA, AADP, EcoSC, CexD, highest impacts from use
of tantalum, cobalt, nickel, cadmium, partly to lithium

No sensitivity analysis was carried out

Zackrison et al.
(2016) [67]

High-capacity lithium-
air batteries Vehicle kilometer CML-IA 2002/ADP Highest burdens due to production phase (89% copper,

5% lithium); recycling avoids burdens from depletion
Sensitivity analysis only carried out

related to environmental impacts
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Table 2. Cont.

Publication, Year Assessed Battery
Chemistries Functional Unit

Impact Assessment Methods
for Resources/Impact

Categories
Conclusion of Resource Use Assessment Results of Sensitivity Analysis with

regard to Resource Use

Van Mierlo et al.
(2017) [50]

LMO, LFP; sodium-nickel
chloride; lead acid nickel

cadmium; nickel
metal hybrid

1 kWh ReCiPe/MDP

Much higher MDP for LMO batteries than for LFP
batteries because of high manufacturing burdens. Which

materials are responsible was not analyzed. Separate
discussion of lithium availability. Materials recycling can

have significant benefits. proper material recycling is
needed to prevent lithium shortage in EV industry

No sensitivity analysis was carried out

Bobba et al.
(2018) [68]

LMO;
nickel-manganese-cobalt

(NMC)

Average yearly energy
balance of the system
in which the battery

stores energy

CML-IA 2002/ADP
The use of repurposed batteries from mobility application

reduce ADP impacts; no detailed analysis of the
contribution of certain materials

Changing the allocation factors (>0) for
the manufacturing/end of life (EoL) of
repurposed EV batteries, benefits from

battery reuse largely
diminish—especially for impact

categories dominated by
manufacturing/EoL (i.e., ADP); the

higher the residual capacity the higher
the level of benefit especially for ADP
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Studies applying ReCiPe found high impacts for nickel containing battery types and lithium-ion
batteries with iron electrodes [61,62,64]. However, results might be influenced by missing CFs
(see Section 4). Some authors therefore discussed lithium availability separately [62,65]. However,
not only lithium but also other metals like manganese, cobalt, nickel, and copper showed a high impact
in the resource use impact categories [56,65]. Generally, extraction and processing of metals had the
largest contributions.

The evaluated studies mostly used a functional unit based on the battery capacity, represented by
an energy unit (MJ or kWh) to reflect the energy that the vehicle receives from the battery [56,61,64,65].
Some studies used distance as a unit to assess the impacts over the entire life cycle of the battery or over
1 km of travel [63,66,67]. One study based the assessment on the battery weight [62], whereas another one
looked on an extended life cycle of batteries from mobility application as stationary storage systems [68].
Peters and Weil (2016) [56] pointed out that the definition of the functional unit indirectly influences the
impact assessment results. The authors showed that lithium-nickel-cobalt-manganese-oxide (NCM)
and lithium-nickel-cobalt-aluminum-oxide (NCA) batteries performed worse than other batteries
when a mass based functional unit was chosen. Since those battery types have higher energy densities,
the results would be different if an energy based functional unit was chosen. Using a mass based
functional unit, lithium-iron-phosphate (LFP) and sodium-ion batteries performed best [56]. Therefore,
recommendations for battery types should not be given when using a mass based functional unit.

Several studies concluded that battery recycling could improve resource use impacts. According
to Bobba et al. (2018) [68], a reduction of impacts would occur even if the battery capacity is lower in
the second life cycle. If the battery is reused, its service life is expanded and the impacts related to a
performance oriented functional unit decrease [50,67]. In addition to this general finding of positive
effects of service life expansion, other studies also discussed its negative effects [64,66]. When expanding
a battery’s service life, the resources were only available in an alternate point of time and primary
materials had to be used instead, which leads to higher impacts in the category resource depletion.

3.4. Criticality Assessment

As in this section criticality assessment will be discussed, the term criticality is explained in more
detail. As stated by Cimprich et al. (2019) [40], the concept of criticality was addressed in terms of
risks of supply disruptions (or supply risks). Potential impacts of supply disruption—referred to as
vulnerability—were also included in most criticality assessments [69,70]. For the analysis performed in
this work, the term criticality was applied to methods addressing only supply disruptions as well as to
methods addressing supply disruptions as well as vulnerability. Further, also qualitative approaches
discussing the availability of certain raw materials were considered.

3.4.1. Assessment of Criticality in Electric Vehicle LCA

The analyzed studies showed that the impacts of resource use shift from the use phase to the
production phase when comparing ICEV and BEV [35,38,46,51]. Three out of 14 studies (as shown in
Table 1) had some kind of criticality assessment [29,50,51]. Two approached the criticality of materials
for electric vehicles by applying new methods (ESSENZ and geopolitical supply risk methodology) to
assess criticality in product systems [34,40].

Amongst others, Nordelöf et al. (2014) [71] stated that electric vehicles will more likely face supply
risks due to the use of critical raw materials in the production. When investigating the Li2CO3 battery,
Notter et al. (2010) [29] analyzed the very low lithium criticality in comparison to other components,
such as aluminum and copper. According to the authors, these results were valid as long as Li2CO3

is produced from brines and not extracted from the Earth’s crust, where it is considered as being
geochemically scarce. Souza et al. (2018) [51] also pointed out that lithium has a low occurrence in the
Earth’s crust and the applied impact assessment methods are not adequate to reflect this fact.
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Further, Souza et al. (2018) [51] mentioned the possible limitations of cobalt reserves; however,
this issue was not further developed in the study. Criticality aspects due to copper in filament and cable
production required for electricity production were addressed, however, also not deeply discussed.

Tagliaferri et al. (2016) [35] addressed in more detail the end-of-life of electric vehicle batteries.
The authors identified the valuable outputs contained in the slag of batteries such as nickel, cobalt,
and manganese and their possible recovery rates. Increasing battery recycling rates could prevent
resource scarcity of certain materials and was also mentioned by other authors [33,46] as an essential
path to secure future resource supply. However, the benefit of metal recycling (and therefore reduced
scarcity of certain metals) was opposed by the high energy requirement for recovery. Nevertheless,
Souza et al. (2018) [51] noticed that due to rising raw material costs and legislations (e.g., EU Batteries
Directive—2006/66/EC [72]), the recycling of Li-ion batteries could become increasingly attractive also
from an economic point of view.

Van Mierlo et al. (2017) [50] highlighted data uncertainties in estimating future demand and supply
of lithium. Lithium reserves worldwide are very uncertain, ranging from 4.6 to 39.4 Mt. The authors
also noticed that even though lithium reserves and production occurred in several countries, its
long-term use for batteries would only be possible with recycling.

Henßler et al. (2016) [34] applied the ESSENZ method considering 11 socioeconomic categories
(for example, political stability and trade barriers of supplier countries, price fluctuation of resources)
to assess the criticality of resource use for electric cars. The categories “demand growth” and “primary
material use” were dominated by the use of lithium in the EV. Hotspots such as platinum, palladium
magnesium, lithium, rare earth elements, and tantalum were also identified. It should be noted,
however, that this socioeconomic assessment was conducted alongside the LCA and was not a part of
the LCA as such.

Cimprich et al. (2017) [40] applied the geopolitical supply risk methodology to compare ICEV
and EV. The authors stated that the resources required for EV production had a significantly higher
supply risk, showing a higher depletion potential than ICEV. This analysis was also an additional
investigation step beyond an LCA study.

The increasing resource demand (and the related consequences of it) as pointed out in Figure 1
for cobalt, nickel, copper, rare earth elements, and graphite was not explicitly covered by any of
the analyzed publications. For the end-of-life modelling, most of the authors recommended a high
recycling rate in order to achieve better environmental results [33,46], but without investigating the
possible scarcity of some of the resources. Finally, the eventually poor mining conditions and related
social aspects (e.g., such as child labor in mines) in the supplier countries were not approached in any
of the analyzed studies.

3.4.2. Material Availability and Criticality Assessment in Battery Studies

Future material use for energy storage devices will most likely rise due to increasing demand for
electric vehicles if current legislations are implemented and emission thresholds come into force [73,74].
If EV dominate the vehicle fleet, lithium demand will increase, since currently lithium-ion batteries are
considered to be the most suitable technology due to their energy-to-weight ratio [74].

Peters and Weil (2016) [56] concluded that higher energy densities of battery components reduces
battery mass and therefore resource depletion potential. Speirs (2014) [75] found that the future
demand cannot be met by current mining rates. As recycling can reduce resource depletion and
therefore criticality, it is essential that lithium batteries are recycled [76]. It was predicted that from 2050
onwards, recycled lithium will dominate most of the global lithium supply [50]. Mohr et al. (2012) [77]
estimated the ultimately recoverable resources of lithium within the currently known deposits as
approximately 23.6 Mt. Following their calculations, there will be a sufficient supply of lithium for
battery vehicles in the future. Based on the analysis of Olivetti et al. (2017) [76], the material demand
for lithium-ion batteries will likely be met. Rather, they saw potential availability risks for electrode
materials, such as cobalt, due to the geographical concentration of mining, which takes place in the
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Democratic Republic of Congo with most refining facilities located in China. A rapid adoption of
electric vehicles therefore might jeopardize a stable supply of materials for production facilities.

Blagoeva et al. (2016) [54] showed that mainly the demand for graphite and lithium will significantly
increase by 2030. Nevertheless, due to e.g., adoption of recycling and substitution, the EU might be
more resilient to supply bottlenecks. The biggest obstacles would be the timely establishment of lithium
production facilities demanded by the automotive industry [54]. Gruber et al. (2011) [78] analyzed 103
known lithium deposits worldwide considering their stocks, location, and geopolitical supply risk.
They investigated if the supply of lithium would cover the global demand for electrification of the
automobile sector by 2100. Contrary to Blagoeva et al. (2016) [54], they have not found any constraints
due to lithium availability even for a high demand scenario.

Next to lithium, also other materials relevant for battery manufacturing were identified as
critical. For example, Peters and Weil (2016) [56] identified hotspots in resource depletion for different
battery chemistries. Battery chemistries that do not rely on cobalt, nickel, or copper are considered as
advantageous because the reduction of these materials can minimize overall resource criticality.

Ziemann et al. (2013) [14] focused on the resource supply for vehicle batteries. Foremost cathode
materials like lithium, manganese, and cobalt were identified as essential for electric vehicle batteries.
The authors observed that there has been little attention on manganese availability so far, because
currently manganese consumption for batteries is marginal. In total 17 Mt of manganese have been
mined as manganese ore in 2017 [79]. About 94% of the mined ore is converted into alloys that are
used in steel production [14]. However, the demand for manganese could increase to 0.024 Mt for EV
batteries. Currently, no recycling or recovery paths exist for this metal. Eventually slag from steel
recycling might be used as manganese source, leading to a possible dependency of manganese supply
on steel processing.

Bailey et al. (2017) [80] showed that the criticality of rare earth elements for permanent magnets
in electric vehicles was higher than for batteries. A constant material supply largely depends on
improved recovery and recycling methods. Gemechu et al. (2017) [42] found higher depletion and
supply risks for other materials than lithium, showing that the geopolitical risk indicator is dominated
by neodymium and magnesium.

In the study of Grandell et al. (2016) [81] the potential future demand of 14 critical metals was
estimated (global reserves and resources) by modelling their need for clean energy technologies—
considering also batteries and electric vehicles. Especially, rare earth metals for permanent magnets
in electric motors and battery electrodes were analyzed. The results were presented for the entire
portfolio of future green technologies. For this reason, no precise results on the criticality of the metal
supply for the electric car production could be derived from the study. However, the authors pointed
out that silver supply might be a bottleneck, because it is required both for photovoltaic applications
and for electronic components in electric vehicles. Further, the authors highlighted indium as probably
problematic because it is also needed in EV electronics and in solar energy technologies.

Helbig et al. (2018) [11] evaluated the supply risk associated with element use in six different
lithium-ion battery types. The highest risk values were obtained for lithium and cobalt-based batteries,
since the main materials (lithium and cobalt) showed high supply risk values, while aluminum had
the lowest values. Lithium-iron-phosphate based batteries with titanium-based anodes have shown
the lowest supply risk scores. The authors advised focusing research on reducing Li-material intensity
and to avoid cobalt-dependent battery technologies.

4. General Findings and Discussion

The number of LCA studies addressing electric vehicles has been increasing over the years. In the
beginning, most of the authors focused on evaluating solely the impacts related to climate change.
However, over time, resource use has also been investigated more intensively.

It is not easy to summarize the findings of the evaluated studies. This is partly due to the different
objectives and scope of the studies, but also to the use of diverse impact assessment methods. The most
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common methods for resource use assessment were CML-IA [24,26] and ReCiPe [55] in its different
versions. Most of the authors that applied impact categories related to mineral or metal resources
depletion identified lower impacts for ICEV compared to EV. By applying aggregated impact categories
(which assess jointly fossil, metal, and mineral use), EV tend to perform better, but exceptions were
also found [48,49]. In general, the selection of the impact assessment method influenced the result and
decreased the comparability of results, since also the amount of considered CFs may differ between the
methods [82].

For example, Eco-Indicator 99 [43] and ReCiPe [55] cover a lower number of minerals than
CML-IA [26] and therefore do not provide CFs for lithium, cobalt (Eco-Indicator 99), and rare
earth elements, including lanthanum. Thus, it can be assumed that these methods significantly
underestimated resource depletion results, explaining the aforementioned lower differences in the
total impacts between ICEV and EV. Not all authors specified the baseline year of the applied
method, which also makes a comparison difficult because the CFs of certain methods, e.g., CML-IA,
are updated regularly [83]. However, it is challenging to elaborate on the real influence of the
respective methodological choice, given that the studies vary greatly in terms of functional unit, system
boundaries, or deployed databases.

A further weakness of most of the reviewed studies is the lack of original and current data.
Most of the studies relied on original data from 2007 [29,46], 2010 [37], and 2011 [33]. Only one of the
studies based its assessment on recently (2016/2017) collected data [48]. When evaluating the results of
vehicle comparisons based on data from the early 2000s, it should be kept in mind that the production
processes, especially for EV, have evolved since then. This may not be reflected in the used datasets.
More recent studies already provide updated inventory, including primary industry data [84].

For the battery LCA, the most applied assessment methods were ReCiPe and CML-IA. While for
the assessment of the entire vehicle the functional unit was usually the total travelling distance during
its lifetime, for the LCA on batteries diverse functional units have been chosen, e.g., battery service life,
battery mass, and energy units.

The impacts of mineral resource depletion of nickel-based batteries compared to lithium-ion
batteries were higher when ReCiPe was applied and a functional unit in MJ was chosen [61]. When
a mass-related functional unit was adopted, the opposite results occurred. This corroborates the
assumption from Peters and Weil (2016) [56], who tested different functional units using same data
and achieved contrary results. They showed that ADP values calculated by considering the economic
reserve and the technical exploitable resource produced similar results, but to a large extent differing
from the results calculated by using the ultimate reserve as a basis.

Only a few LCA case studies have explored criticality assessment. When reviewing studies in
terms of criticality, it is noticeable that most concerns focused on the future availability of lithium.
There is however no consensus if lithium is really a critical element, since there are uncertainties
about the extension of its reserves worldwide. In the studies focusing on batteries, cobalt, manganese,
graphite, nickel, and rare earth elements were examined in more detail. Especially cobalt was perceived
as being problematic due to the high concentration of its reserves and the strongly increasing demand.
Additionally, in a further study investigating the historical development of demand for various metals,
it was found that cobalt is a very critical factor for the future development of the supply with lithium-ion
batteries [85]. Interestingly, the criticality of cobalt was not addressed any deeper, even though it was a
hotspot in some of the LCA results and its global demand is expected to increase. Finally, most of the
authors agreed on the importance of promoting metal recycling.

Essentially, the applied methods for resource use assessment were more related to resource
depletion than to criticality. This is also closely related to the original purpose of LCA—to assess
environmental impacts related to a functional unit. On its turn, criticality assessment is a method to
assess social and economic impacts of resource availability on a broader scale. Within the framework
of the methods CML-IA 2002 (ADP) and EI99 (Mineral Resources), the assessment of resource use is
carried out based on geophysical reference values. ReCiPe (mineral depletion), using surplus costs of
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extraction as a basis of assessment, or ADP, that includes also the anthropogenic stock of resources
and Ecological Scarcity Method [60] that is using legislative thresholds as basis, are closer to criticality
assessment than the other methods.

Thus, the application of presently available resource use assessment methods for LCA of EV and
batteries can provide a first point of reference, but do not reflect the complex relationship between
resource availability and supply like criticality assessment does.

5. Conclusions

The use of metal and mineral resources due to the switch from ICEV to EV has not been explored
adequately in the current LCA studies. Out of 103 identified LCA studies focusing on EV, only 25
have assessed a resource-related impact category, whereas all of the studies took climate change into
account. Among the LCA studies focusing on batteries, only 10 out of 27 analyzed resource use.

The applied methods to determine resource use impacts were predominately CML-IA (ADPelements;
with its different versions regarding the CFs), ReCiPe (mineral depletion), and Eco-Indicator 99 (mineral
resources). Next to methodological variances, also different quantities of CFs for resource use assessment
are available in each of existing methods, leading to an incomplete assessment of key materials relevant
for electric vehicles and batteries. Criticality of resources was only addressed in 10 studies.

Future LCA studies should properly choose a suitable impact assessment method based on the
chosen problem statement (see guidance of Sonderegger et al. (2020) [23] and Berger et al. (2020) [22])
also bearing in mind that not all methods contain CFs for all assessed elements. Further, the importance
of criticality assessment into LCA studies to achieve additional results and identify further hotspots
is underlined.

Given the overall trend towards EV, it is important to further close the gap of more comprehensive
and consistent assessments of their associated resource needs. Without such assessments and proper
eco-design actions derived from them, EV might not be the ultimate solution for sustainable mobility.
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