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Abstract: Spatial information can be integrated into almost all fields of industrial ecology. Many
researchers have shown that spatial proximity affects a variety of behaviors and interactions,
and thus matters for materials stocks and flows analysis. However, normal tools or models in
industrial ecology based on temporal dependence cannot be simply applied to the case of spatial
dependence. This paper proposes a framework integrating material stocks and flows analysis
with spatial analysis. We argue that spatial analysis can help data management and visualization,
determine spatio-temporal patterns-processes-drivers, and finally develop dynamic and spatially
explicit models, to improve the performance of simulating and assessing stocks and flows of materials.
Scaling in spatial, temporal, and organizational dimensions and other current limitations are also
discussed. Combined with spatial analysis, industrial ecology can really be more powerful in
achieving its origin and destination—sustainability.

Keywords: industrial ecology; spatial analysis; geography information system; material flow
analysis; sustainability

1. The Importance of Space in the Industrial Ecology

Most data in industry ecology are spatial data. Almost all kinds of trades, stocks, flows, processes,
events, and phenomena we seek to explain in industrial ecology studies must occur at specific
geographic locations. For example, research on metal trades involves multiple countries in global
networks, such as a specific product’s production in China, sell and use in the USA, and final disposal
in Brazil. These geographic locations are often central to our understanding of these phenomena.
Many researchers have shown that spatial proximity affects a variety of trade behaviors, promotes
interactions, and thus matters for material flows in the whole life cycle [1–7]. These are a few examples
that reflect a growing interest in spatial concerns within industry ecology. It is easy to think of a myriad
of additional examples that highlight the importance of geography in our lives. From good production
to transportation to consumption, from metal mining through to manufacturing to use to wasting,
geography has become a key conceptual and empirical concern in industrial ecology [8].

Many industrial ecologists are familiar with time-series analyses, for example, estimating in-use
stocks of historical physical products in the USA from a hundred years ago [9]. However, time-series
methods for modeling temporal dependence cannot simply be applied to the case of spatial dependence
because the influence of temporal dependence only flows in one direction, which is from the past to the
present [10]. In contrast, the diffusion of spatial dependence could affect the behavior of their neighbors
and vice versa. Additionally, normal tools or models in industrial ecology usually do not take space
seriously. We may collect city, regional, or country nominal variables capturing the uniqueness in
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particular geographic units, but rarely think of these dummy variables as spatial variables. These
dummy variables merely tell us that behaviors differ for geographic units and cannot explain that the
spatial dependence is consistent with diffusion or with the clustering of behaviors.

Fortunately, recent advances in spatial analysis allow us to analyze, diagnose, and model spatial
dependence easily in industrial ecology. Previous reviews integrating spatial analysis into industrial
ecology studies focused on specific topics in industrial symbiosis [8] and urban mining [11]. Here
we further introduce the assumptions and methodologies of spatial analysis into typical tools in
industrial ecology and propose a framework integrating them in detail. We provide an introduction of
spatial analysis first (Section 2.1), and then try to identify the relationship between spatial information
and industrial ecology tools (Section 2.2) and explain how to analyze industrial ecology topics (i.e.,
material stocks and flows) with spatial perspectives (Section 2.3). Three contributions were found to
improve the performance of material stocks and flows analyses, they are data structure improvement
(Section 2.3.1), spatial demonstration and analysis (Section 2.3.2), and finally building dynamic and
spatially explicit models (Section 2.3.3) (Figure 1). In Section 3 and 4, we discuss limitations in current
methods, and explore future directions (Figure 1).
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2. What can Spatial Analysis Offer to Industrial Ecology?

2.1. What Is Spatial Analysis?

Spatial analysis covers any of the techniques that study entities using their topological, geometric,
and geographic properties, including spatial measurement (e.g., computing length, area, or distance),
overlay analysis, buffer analysis, network analysis, geostatistics (e.g., spatial autocorrelation analysis),
spatial interpolation (e.g., kriging), spatial metrics (e.g., landscape metrics), and spatial simulation
and modeling. Computer science, especially the geographic information system (GIS), has contributed
extensively to the development of spatial analysis. There are two principal structures of spatial data
that GIS works with: the raster and the vector (Figure 1). The structure of raster data is based on
usually rectangular, square, or hexagon tessellation on a two dimension plane into cells (Figure 1). The
size of each cell calls resolution, and the value recorded in each cell can be used to represent elements
(or variables) in reality. In contrast, the structure of vector data commonly uses points, lines, and
polygons to represent the shape of elements in reality (Figure 1), and the attributes of these elements
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can be recorded in complementary tables. Both of these data structures can encode geographical
information into computer files (e.g., tiff format vs. shape format), and thus are helpful for spatializing
data in industrial ecology.

2.2. What Are the Relations Between Spatial Analysis and Typical Tools Used in Industrial Ecology?

Concepts of space and geography play prominent roles in many methods and tools in industrial
ecology. Meanwhile, the importance of spatial information varies among typical industrial ecology
tools including input-output analysis (IOA), life cycle assessment (LCA), and material flow analysis
(MFA) (Figure 1). These tools are usually used to simulate stocks and flows of materials/energy/money
and to assess their environmental, social, and economic effects. IOA, as a quantitative economic model,
is widely used in industrial ecology and provides material or monetary data on the intersectional flows
of goods and money within an anthropogenic system [12,13]. This sectional information is highly
aggregated from multi-sections and locations, unless using at very specific region (e.g., industrial
park) [14]. LCA is a technique used to valuate environmental impacts associated with all stages of a
product’s life cycle from raw material extraction and processing through to manufacturing, use, and
finally disposal or recycling. Thus, the environmental impacts could be partially spatialized in a certain
spatial scope (e.g., air pollutant emissions from a factory or waste water emits into the river nearby).
MFA is an analytical method developed to quantify stocks and flows of materials or substances within
an anthropogenic system on different temporal and spatial scales (e.g., city, country). On one hand,
it can analyze material flows in the whole life cycle of a product. On the other hand, it can estimate
material stocks and flows within a spatial context during certain life stages. For example, studying
construction materials stocks and flows in the form of buildings and transportation networks in a
city merely focus on the using and disposal stages of these materials. In that context, a large amount
of construction materials (e.g., steel, cement) and products (e.g., air condition, television) are stored
in buildings. The spatio-temporal patterns of stocks and flows can be quantified by spatial analysis
according to the unique geographic location of each building. It is also an important issue in terms of
understanding and managing the metabolism of socioeconomic systems. Thus, we illustrate how to
combine material flow analysis with spatial analysis as an example.

2.3. Combining Material Flow Analysis with Spatial Analysis

2.3.1. Improving Data Structure

The first step before spatial analysis is changing data structure from non-spatial data to data with
an explicit association relative to the location on the earth. For example, we can record buildings
as polygons, roads as polylines, and manholes as points in the vector dataset with their geographic
locations (Table 1). For each building or road, its attributes can be recorded in a complementary table,
including area, height, structure, usage, etc. Afterwards, a city can be represented by these vectors
from a bottom-up approach. All of this construction information can also be recorded into an inventory
of a pixel, which is the smallest addressable element in the raster dataset (Table 1). Existing table data
within an administrative entity should be identified by the locations of occurrences, such as countries,
regions, cities, or administrative divisions (Table 1).

Table 1. The different roles of data structures in material flow analysis.

Data Structures Table (e.g., for Each
Administrative Entity) Grid Vector References

Analysis
Processes

Data sources *** ** ** [15–17]
Data/results demonstration ** *** *** [11,18]
Spatial analyzing/modelling * *** *** [8,11,15,19–22]

* rare; ** common; *** popular.
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2.3.2. Spatializing Material Data

(1) Data Extrapolation and Visualization in Space

After data are matched with their geographic locations, they can be demonstrated in maps
by GIS software (e.g., ArcGIS version 10.2 in Table 1). For example, data could be many points
indicating pollution concentration which are collected or monitored from manufactories nearby,
or many pixels representing the total stocks of metals in a city. For the first case, using a buffer
analysis creates a zone around each of these points according to the distance in space (it may be
helpful for evaluating the spatial influence scope), or using spatial interpolation constructs new data
points and produces estimates within these known observations in space (Figure 1). The second case
needs a scaling down approach to disaggregate coarse-grained information of metal stocks to spatial
heterogeneity. The scaling down approach includes two complementary general approaches, including
the similarity-based scaling approach and the dynamic model-based approach [23]. Similarity-based
scaling methods seek scaling relations of metal stocks, for example, between city and district levels
with statistical (or empirical) regressions. Dynamic model-based scaling proceed deductively with
mechanism analysis and emphasize processes. For example, the total stocks of metal come from the
sum of all metal products (e.g., buildings, cars, cables, electrical appliances) within a city. If we collect
total numbers of these metal products and know the metal use intensity per product within each
district, then the city level metal stocks can be downscaled to the district level.

(2) What Can We Do with Spatial Materials Data?

Any methods in spatial analysis can be used in material stocks and flows analysis and we
demonstrate some potential pathways here. The first example is if we have several kinds of metal
stocks in space and want to know where the most metal storage has. Overlay analysis can help us
to answer this question by intersecting all of them (Figure 1). It also is helpful for urban mining
assessment through identifying the areas with large reserves of metals and excluding the marginal
areas [11]. Next, a lot of spatial metrics can be used to quantify spatial patterns of metal stocks,
including spatial difference (e.g., density, similarity index, evenness index), extent (e.g., size, fractal
dimension, shape complexity), fragmentation (e.g., splitting index), aggregation (e.g., aggregation
index, clumpiness), diversity (e.g., Shannon’s diversity index, Simpson’s diversity index), and other
composition and configuration information. Beyond describing and summarizing spatial patterns,
geostatistics is helpful for determining why a specific spatial pattern exists and what processes affect
this pattern. Actually, the origin of geostatistics involved trying to predict probability distributions
of ore grades for mining operations [24]. Finally, we want to know why such processes operate.
Analyzing and simulating direction and volume of flows and connectivity between nodes in space can
be achieved by network analysis.

Based on these spatial materials data and related information on spatial patterns, processes, and
feedbacks, a lot of scientific questions and practice-based queries can be answered. For example in
the field of urban mining, spatial analysis helps understand dynamic character of value in recycling
metals [5], trace their spatial transfer [2], and design the loop closing among recycling, remanufacturing,
and waste treatment firms [25]. Environmental impacts in space can be further evaluated through
carbon emissions [3,4], ecological footprint [7], teleconnecting consumption [26], or the comprehensive
performance [1]. All these spatial patterns and impacts are the foundation for regional mining
infrastructure planning [6] or urban diseases [27] and sustainability assessment [28].

2.3.3. Building A Dynamic and Spatially Explicit Model to Simulate Material Stocks and Flows

A dynamic and spatially explicit model finally can be established and used to represent and
simulate stocks and flows of materials or substances in a city, region, country, even globe (Figure 1). The
state-of-the-art models simulate and predict material stocks and flows. They can be divided into three
categories based on the degree of spatial detail, including non-spatial models, quasi-spatial models, and
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spatially explicit models. Non-spatial models are widely used in analyzing time-series material stocks
and flows [16,18,29–38]. For example, they can simulate resource demand and waste generation from
a single year to a century through socioeconomic changes (e.g., economy, population, lifestyle), which
is manifested in the stocks and flows of buildings and materials for their construction, demolition,
and maintenance [15,36]. After establishing these components of models and their relationships
in temporal perspective, another important factor in material stocks and flows is space. Spatial
dynamics for many stocks and flows problems are important, because different spatial environments
leading to very different patterns of stocks and contents of flows. Thus, combining MFA with GIS is
proven to be an effective approach. For example, the basic function of GIS is to help visualize spatial
heterogeneity of construction materials [18]. Moreover, GIS can be used to further assist construction
material accounting through estimating related building parameters from remotely sensing images
and georeferenced digital maps (a loose coupling approach) [20]. For a close coupling approach, GIS
is treated as the data container and processor and participates whole processes in material stocks
and flows analysis [21,22]. However, these state-of-the-art models coupling MFA and GIS are still
quasi-spatial models due to lacks of one or more variables that are a function of space, or can be related
to other spatial variables (e.g., materials exchanges between their neighbors), and we will discuss the
reasons for this in the next section.

3. Limitations

3.1. Scaling

Materials and substances dynamics are generally considered complex systems because they
are characterized by a large number of diverse components, nonlinear interactions, and spatial
heterogeneity among multiple spatial, temporal, and organizational scales. For the first characteristic,
studies in industrial ecology and other related sciences have shown that diverse components and
processes tend to dominate in different dimensions of scale in time, space, and organization [1,39,40].
Traditionally, most empirical and theoretical studies in industrial ecology have been conducted over
large areas and long time periods [16,41,42]. Thus, scaling down is an effective approach to extrapolate
information from large areas and long time periods to small areas and short time periods. Second,
nonlinear relationships and feedbacks among components exist at different scales [39,43]. For example,
estimating the demolition of an individual building is difficult, because this process depends on urban
planning, building’s condition, cost-benefit in economy, and residents’ willing in that building. Its
demolition rate cannot be described as a logistic curve with building’s age as independence, which
is usually used in evaluating demolition of buildings at urban or regional level. As Kohler and
Hassler [43] said: “There is no relation between the age or condition of an individual building and the
probability that it will be demolished”. Third, spatial heterogeneity varies at different scales [1,26]. For
example, while metal stocks in a city can be perceived as hierarchical mosaics of patches, those patches
at each spatial or temporal level may form different patterns due to variations of composition and
configuration of these metals. Thus, a successful scaling strategy in industrial ecology must be able to
effectively tackle these key components and complex relationships of industrial or urban systems.

3.2. Hidden Flows in Spatio-Temporal Perspectives

Even we successfully complete a scaling down approach and spatialize stocks or flows in each cell
in space, it is still hard to estimate several kinds of spatial flows among cells to evolve from the quasi-
to spatially explicit model. Ideally, a flow-driven and spatially explicit MFA model should describe
flows among neighbors or from a place to another one (e.g., construction waste is transported from
a demolishing building to a landfill). However, these flows or processes occur at daily or monthly
scale and mismatch with the estimation of demolition rate at annual or decadal scales. In stock-driven
models, it is easy to estimate net flows during a specific period, but usually underestimate total input
and output flows because parts of flows are ignored (e.g., building replacement, repair, and maintain).
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All of the previously noted ineligible spatio-temporal flows and related processes finally affect accuracy
in material flow analysis.

4. Conclusions and Outlooks

Many phenomena in industrial ecology studies uniquely predispose data toward spatial
dependence. It is time for industrial ecologist to model the spatial dependence of material/energy
stocks and flows through their whole life cycles. Here, we propose a framework integrating typical tools
in industrial ecology with spatial analysis to improve the performance of materials stocks and flows
analyses in both space and time (Figure 1). The simplest and most basic contribution of integrating
MFA with spatial analysis is to help spatial visualization of data or results through improving their
structure from non-spatial information to georeferenced maps (Table 1). Based on these spatial data,
we can further quantify spatio-temporal patterns, trace processes, identify sources/sinks and hotspots,
and determine drivers of material stocks and flows (Table 1). Finally, dynamic and spatially explicit
models can be established and used to simulate stocks and flows of materials/energy/money in a city,
country, region, even globe (Table 1).

There are still some limitations in the state-of-the-art models coupling MFA and GIS. We recognize
and summarize them into three characteristics, including diverse components, nonlinear interactions,
and spatial heterogeneity. Diverse components in a complex system generate hierarchical sub-systems,
lead to nonlinear relationships and feedbacks, and induce various spatio-temporal patterns and
processes among them.

Some detailed concerns are important for breaking above limitations and future developments of
combining normal tools in industrial ecology with spatial analysis. First, the explosion of available
and open data, for example business transactions, metal trades, trajectories of goods, and other big
data, are geo-coded and easy to store and transmission. That advance is of great help for us to know
how many materials are used or how much energy is transmitted in whole system and to understand
relationships among them [17]. Second, the advances in computers and free GIS software are keeping
pace with the increasing available data. Big data create considerable computational burdens for many
analyzing procedures, and the burden is often greater in the spatial analysis than in the non-spatial
analysis. Beyond computational capacity of computer, the challenge going forward is to develop
theories and methods for using, even coupling spatial analysis into typical methods used in industrial
ecology studies under the “big data” era. We all know that the origin of industrial ecology is to seek
how to design sustainable industrial systems. Combining with space, industrial ecology can be much
more powerful and stronger in thinking globally and acting locally.
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7. Świąder, M.; Szewrański, S.; Kazak, K.J.; van Hoof, J.; Lin, D.; Wackernagel, M.; Alves, A. Application of
Ecological Footprint Accounting as a Part of an Integrated Assessment of Environmental Carrying Capacity:
A Case Study of the Footprint of Food of a Large City. Resources 2018, 7, 52. [CrossRef]

8. Schiller, F.; Penn, A.; Druckman, A.; Basson, L.; Royston, K. Exploring Space, Exploiting Opportunities. J. Ind.
Ecol. 2014, 18, 792–798. [CrossRef]

9. Chen, W.Q.; Graedel, T.E. In-use product stocks link manufactured capital to natural capital. Proc. Natl. Acad.
Sci. USA 2015, 112, 6265–6270. [CrossRef] [PubMed]

10. Darmofal, D. Spatial Analysis for the Social Sciences; Cambridge University Press: Cambridge, UK; New York,
NY, USA, 2015.

11. Zhu, X. GIS and Urban Mining. Resources 2014, 3, 235–247. [CrossRef]
12. Chen, W.Q.; Graedel, T.E.; Nuss, P.; Ohno, H. Building the Material Flow Networks of Aluminum in the 2007

U.S. Economy. Environ. Sci. Technol. 2016, 50, 3905–3912. [CrossRef] [PubMed]
13. Nakamura, S.; Kondo, Y.; Kagawa, S.; Matsubae, K.; Nakajima, K.; Nagasaka, T. MaTrace: Tracing the Fate of

Materials over Time and Across Products in Open-Loop Recycling. Environ. Sci. Technol. 2014, 48, 7207–7214.
[CrossRef] [PubMed]

14. Yang, Z.; Song, T.; Chahine, T. Spatial representations and policy implications of industrial co-agglomerations,
a case study of Beijing. Habitat Int. 2016, 55, 32–45. [CrossRef]

15. Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl.
2017, 123, 153–164. [CrossRef]

16. Canning, D. A Database of World Stocks of Infrastructure, 1950–95. World Bank Econo. Rev. 1998, 12, 529–547.
[CrossRef]

17. Xu, M.; Cai, H.; Liang, S. Big Data and Industrial Ecology. J. Ind. Ecol. 2015, 19, 205–210. [CrossRef]
18. Han, J.; Xiang, W.-N. Analysis of material stock accumulation in China’s infrastructure and its regional

disparity. Sustain. Sci. 2013, 8, 553–564. [CrossRef]
19. Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based Analysis of Vienna’s Material Stock in

Buildings. J. Ind. Ecol. 2017, 21, 368–380. [CrossRef]
20. Meinel, G.; Hecht, R.; Herold, H. Analyzing building stock using topographic maps and GIS. Build. Res. Inf.

2009, 37, 468–482. [CrossRef]
21. Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The Weight of Society Over Time and Space: A

Comprehensive Account of the Construction Material Stock of Japan, 1945–2010. J. Ind. Ecol. 2015, 19,
778–791. [CrossRef]

22. Tanikawa, H.; Hashimoto, S. Urban stock over time: spatial material stock analysis using 4d-GIS. Build. Res.
Inf. 2009, 37, 483–502. [CrossRef]

23. Wu, J. Hierarchy and scaling: Extrapolating information along a scaling ladder. Can. J. Remote Sens. 1999, 25,
367–380. [CrossRef]

24. Armstrong, M.; Champigny, N. A study on kriging small blocks. Cim. Bulletin 1989, 82, 128–133.
25. Lyons, D.I. A Spatial Analysis of Loop Closing Among Recycling, Remanufacturing, and Waste Treatment

Firms in Texas. J. Ind. Ecol. 2007, 11, 43–54. [CrossRef]
26. Hubacek, K.; Feng, K.; Minx, J.C.; Pfister, S.; Zhou, N. Teleconnecting Consumption to Environmental

Impacts at Multiple Spatial Scales. J. Ind. Ecol. 2014, 18, 7–9. [CrossRef]
27. Saravanan, V.S.; Mavalankar, D.; Kulkarni, S.P.; Nussbaum, S.; Weigelt, M. Metabolized-Water Breeding

Diseases in Urban India: Sociospatiality of Water Problems and Health Burden in Ahmedabad City. J. Ind.
Ecol. 2015, 19, 93–103. [CrossRef]

http://dx.doi.org/10.1162/jie.2007.1220
http://dx.doi.org/10.1111/jiec.12480
http://dx.doi.org/10.3390/resources3020416
http://dx.doi.org/10.3390/resources6010007
http://dx.doi.org/10.3390/resources7030052
http://dx.doi.org/10.1111/jiec.12140
http://dx.doi.org/10.1073/pnas.1406866112
http://www.ncbi.nlm.nih.gov/pubmed/25733904
http://dx.doi.org/10.3390/resources3010235
http://dx.doi.org/10.1021/acs.est.5b05095
http://www.ncbi.nlm.nih.gov/pubmed/26926828
http://dx.doi.org/10.1021/es500820h
http://www.ncbi.nlm.nih.gov/pubmed/24872019
http://dx.doi.org/10.1016/j.habitatint.2016.02.007
http://dx.doi.org/10.1016/j.resconrec.2016.09.002
http://dx.doi.org/10.1093/wber/12.3.529
http://dx.doi.org/10.1111/jiec.12241
http://dx.doi.org/10.1007/s11625-012-0196-y
http://dx.doi.org/10.1111/jiec.12446
http://dx.doi.org/10.1080/09613210903159833
http://dx.doi.org/10.1111/jiec.12284
http://dx.doi.org/10.1080/09613210903169394
http://dx.doi.org/10.1080/07038992.1999.10874736
http://dx.doi.org/10.1162/jiec.2007.1029
http://dx.doi.org/10.1111/jiec.12082
http://dx.doi.org/10.1111/jiec.12172


Resources 2019, 8, 46 8 of 8

28. Wu, S.R.; Li, X.; Apul, D.; Breeze, V.; Tang, Y.; Fan, Y.; Chen, J. Agent-Based Modeling of Temporal and
Spatial Dynamics in Life Cycle Sustainability Assessment. J. Ind. Ecol. 2017, 21, 1507–1521. [CrossRef]

29. Bergsdal, H.; Brattebø, H.; Bohne, R.A.; Müller, D.B. Dynamic material flow analysis for Norway’s dwelling
stock. Build. Res. Inf. 2007, 35, 557–570. [CrossRef]

30. Hu, D.; You, F.; Zhao, Y.; Yuan, Y.; Liu, T.; Cao, A.; Wang, Z.; Zhang, J. Input, stocks and output flows of
urban residential building system in Beijing city, China from 1949 to 2008. Resour. Conserv. Recycl. 2010, 54,
1177–1188. [CrossRef]

31. Hu, M.; Bergsdal, H.; van der Voet, E.; Huppes, G.; Müller, D.B. Dynamics of urban and rural housing stocks
in China. Build. Res. Inf. 2010, 38, 301–317. [CrossRef]

32. Hu, M.; Voet, E.V.D.; Huppes, G. Dynamic Material Flow Analysis for Strategic Construction and Demolition
Waste Management in Beijing. J. Ind. Ecol. 2010, 14, 440–456. [CrossRef]

33. Huang, C.; Han, J.; Chen, W.-Q. Changing patterns and determinants of infrastructures’ material stocks in
Chinese cities. Resour. Conserv. Recycl. 2017, 123, 47–53. [CrossRef]

34. Huang, T.; Shi, F.; Tanikawa, H.; Fei, J.; Han, J. Materials demand and environmental impact of buildings
construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 2013,
72, 91–101. [CrossRef]

35. Miatto, A.; Schandl, H.; Wiedenhofer, D.; Krausmann, F.; Tanikawa, H. Modeling material flows and stocks
of the road network in the United States 1905–2015. Resour. Conserv. Recycl. 2017, 127, 168–178. [CrossRef]

36. Müller, D. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecolo.
Econ. 2006, 59, 142–156. [CrossRef]

37. Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling
Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol.
2015, 19, 538–551. [CrossRef] [PubMed]

38. Yang, W.; Kohler, N. Simulation of the evolution of the Chinese building and infrastructure stock. Build. Res.
Inf. 2008, 36, 1–19. [CrossRef]

39. Caduff, M.; Huijbregts, M.A.J.; Koehler, A.; Althaus, H.-J.; Hellweg, S. Scaling Relationships in Life Cycle
Assessment. J. Ind. Ecol. 2014, 18, 393–406. [CrossRef]

40. Patrício, J.; Kalmykova, Y.; Rosado, L.; Lisovskaja, V. Uncertainty in Material Flow Analysis Indicators at
Different Spatial Levels. J. Ind. Ecol. 2015, 19, 837–852. [CrossRef]

41. Rauch, J.N. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proc. Natl. Acad.
Sci. USA 2009, 106, 18920–18925. [CrossRef] [PubMed]

42. Van Ewijk, S.; Stegemann, J.A.; Ekins, P. Global Life Cycle Paper Flows, Recycling Metrics, and Material
Efficiency. J. Ind. Ecol. 2017, 22, 686–693. [CrossRef]

43. Kohler, N.; Hassler, U. The building stock as a research object. Build. Res. Inf. 2002, 30, 226–236. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/jiec.12666
http://dx.doi.org/10.1080/09613210701287588
http://dx.doi.org/10.1016/j.resconrec.2010.03.011
http://dx.doi.org/10.1080/09613211003729988
http://dx.doi.org/10.1111/j.1530-9290.2010.00245.x
http://dx.doi.org/10.1016/j.resconrec.2016.06.014
http://dx.doi.org/10.1016/j.resconrec.2012.12.013
http://dx.doi.org/10.1016/j.resconrec.2017.08.024
http://dx.doi.org/10.1016/j.ecolecon.2005.09.025
http://dx.doi.org/10.1111/jiec.12216
http://www.ncbi.nlm.nih.gov/pubmed/27524878
http://dx.doi.org/10.1080/09613210701702883
http://dx.doi.org/10.1111/jiec.12122
http://dx.doi.org/10.1111/jiec.12336
http://dx.doi.org/10.1073/pnas.0900658106
http://www.ncbi.nlm.nih.gov/pubmed/19858486
http://dx.doi.org/10.1111/jiec.12613
http://dx.doi.org/10.1080/09613210110102238
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	The Importance of Space in the Industrial Ecology 
	What can Spatial Analysis Offer to Industrial Ecology? 
	What Is Spatial Analysis? 
	What Are the Relations Between Spatial Analysis and Typical Tools Used in Industrial Ecology? 
	Combining Material Flow Analysis with Spatial Analysis 
	Improving Data Structure 
	Spatializing Material Data 
	Building A Dynamic and Spatially Explicit Model to Simulate Material Stocks and Flows 


	Limitations 
	Scaling 
	Hidden Flows in Spatio-Temporal Perspectives 

	Conclusions and Outlooks 
	References

