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Abstract: To fulfill the national bioenergy goals of the United States, conversion of marginal 

lands to intensive biomass crop production and/or application of greater amounts of nutrients 

to existing cropland could be expected. Such change in agricultural practices could produce 

unintended environmental consequences such as water quality degradation. Select Best 

Management Practices (BMPs) are evaluated for water quality mitigation effectiveness as 

well as for their relative cost-effectiveness, issues that are often ignored in evaluation of 

biofuels as a sustainable solution for energy demand. The water quality impacts of 

converting pastureland to intensive biomass production for biofuel, evaluated using the Soil 

Water Assessment Tool (SWAT), indicate significant increases in erosion and nutrient 

loadings to water bodies. Hydrologic and economic evaluation of the BMPs indicate their 

implementation produced effective water pollution mitigation but at substantial costs, 

accentuating the sustainability issue related to the economics of renewable fuels. U.S. 

national energy policy designed around achieving energy independence should also  
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consider environmental and economic trade-offs for biofuels to be an economically and 

environmentally sustainable alternative to fossil fuels. 

Keywords: biomass; externality; mitigation; best management practices; renewable  

fuels; sustainability  

 

1. Introduction 

The current goals of U.S. biofuels production, (i.e., 36 billion gallons of renewable fuels by 2022, 

which includes 15 billion gallons derived from corn starch and the remaining 21 billion gallons derived 

from cellulosic plant material [1]) is expected to extend biomass crop production to marginal lands and 

lands with degraded production capabilities [2–4] and/or compete for land with traditional food crops. 

Driven by growing populations, increasing energy demand, and high energy costs, it is very likely that 

energy crop production would continue to expand and new ethanol processing plants would continue to 

emerge in various locales across the U.S., which in turn would provide agricultural producers with 

sufficient incentives to apply greater amounts of fertilizers and cultivate marginal lands with little 

regards to environmental and economic consequences. 

Bioenergy feedstock production on marginal and degraded lands could demand increased application 

of chemicals and fertilizers [5] and can have far-reaching economic consequences due to impacts on soil 

quality, water quality [6], and biodiversity. The economic costs of impaired water quality from U.S. 

cropland erosion were estimated to be in the range of $2 to $8 billion per year [7]. Similarly, [4] estimated 

that expansion of corn and soybean production primarily for biofuel to Conservation Reserve Program 

(CRP) lands would result in 145 million tons in increased erosion annually at an expense of $11.13 per 

ton of soil erosion. As a result, expansion of crop production to conservation land could not only have 

environmental impacts but also significant economic costs. Substantial literature also exists on other 

potential impacts of production of first and second-generation biofuels, such as change in carbon emissions 

from land use change [8], loss in forest cover [9], and increased competition for water resources [10], 

among others.  

Best Management Practices (BMPs) are management options that have been proven effective in 

reducing pollutant levels reaching the water bodies through various independent studies [11–15]. 

However, BMPs can be expected to vary by location in effectiveness and usefulness over time [12]. 

Establishment and operation costs of BMPs over their expected useful life (the expected useful life for 

a BMP is described as providing mitigation of pollutant loadings over a certain period before 

reestablishment of the BMP is required) make the decision to adopt these practices economic in nature. 

Agricultural producers making crop management decisions usually lack the economic information 

necessary to internalize any crop production related externality. In this context, it is imperative to note 

that there is a need for research to not only estimate the impacts of biomass crop production on water 

quality, but to evaluate the relative cost-effectiveness of the mitigation practices if biofuels are to become 

a sustainable energy solution for the U.S. Furthermore, the study would provide insight on the economics 

of environmental impacts of cellulosic biofuels, currently immature but projected to become competitive 

and significantly contribute to transportation fuel. 



Resources 2014, 3 723 

 

 

2. Materials and Methods 

2.1. Study Area  

The current research extends [16] research that was directed toward providing a comprehensive 

analysis of the estimated costs of producing and supplying biomass feedstock to a 30-million gallon per 

year ethanol-conversion facility in the Middle Gulf Coast, Edna-Ganado, Texas area. It is expected that 

there could be economic incentives in terms of lower transportation costs for producers in the region to 

respond to the emergence of a market for biofuel feedstock. As a result, the study area selected for the 

hydrologic and economic research is located within the 60-mile radius of the watershed housing the 

ethanol conversion facility.  

Figure 1. Sub-basins of the Tres-Palacios River Watershed, Middle-Gulf Coast, Texas 

where High-Energy Sorghum is assumed to replace pastureland to supply biomass for a 

hypothetical 30-million gallon ethanol plant. 

 

The study area covers parts of Colorado, Fayette, Jackson, Lavaca, and Wharton counties, which are 

part of the Tres-Palacios River watershed (Figure 1). The watershed comprises an area of 2300 square 

miles (nearly 1.5 million acres) that flows into Matagorda Bay. Much of the region in the watershed was 

once planted to rice, and it became mostly pasture during the 1980s. The revenues from pasture 

frequently involves very minimal revenues from grazing, often from $0 to $15 per acre. The region is 
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characterized by an annual average precipitation of 42 inches and an average slope of 0.8 percent. The 

predominant soil textures in the study area are clay loam, sandy loam, and sandy clay loam. For the 

purpose of this study, the watershed is divided into 17 sub-basins. The outlet of the entire watershed is 

located in sub-basin 17, where sediment and nutrient loadings represent the cumulative effect of the 

cropping patterns and management practices, both upstream and within the sub-basin. The light colored 

areas in Figure 1 represent the sub-basins in the watershed where the High Energy Sorghum (HES) 

production was assumed to replace pastureland. 

2.2. Biofuel Feedstock 

The prospects for ethanol energy from simple pasture crops remains to be demonstrated. HES and 

Switchgrass are regarded as preferred feedstock for biofuel production, mostly because of their ability 

to produce meaningful supplies of biomass [17]. High Energy Sorghum was selected for analysis in this 

study due to its ability to produce large amounts of dry weight biomass per acre, its relatively low input 

usage, and the climate found in the south-central and south-eastern United States is well suited for the 

production of the crop [18,19]. In addition, HES is also characterized as drought tolerant and requires 

one-half less water than corn [20]. Hence, HES was chosen to replace the pastureland as a potential 

biofuel crop in the current analysis.  

To generate the change in discharges from the land due to pasture conversion to cropland, the Soil 

Water Assessment Tool (SWAT) [21] is applied. The SWAT model is a physically-based, continuous 

simulation model that uses the concept of a Hydrological Response Unit (HRU) for watershed 

assessment. Biomass cropping patterns are developed. Cropping patterns are often defined as different 

ways to growing crops that maximize net crop benefits. BMPs are applied to address the sediment and 

nutrients runoffs from the watershed. Lastly, economic and financial principles are used to estimate 

associated costs of adoption of the BMPs. 

2.3. SWAT Model Calibration  

Application of the SWAT model provides estimates of sediment and nutrient loadings from the 

watersheds with varying soils, land cover, weather conditions, as well as agricultural activity such as 

tillage and other production practices. The watershed that is divided into 17 sub-basins is further divided 

into several unique land use and soil combinations, called as the Hydrological Response Units (HRU). 

To estimate the implications on water and land resources from HES production, the SWAT analyses in 

this study utilize past and current flow data. Flow calibration was performed for annual and monthly 

simulated flows using observed flows from U.S. Geological Survey gauge stations at Hallettsville, TX 

(08164300) and Speaks, TX (08164350) for the periods of 1975–2008 including two years of model 

warm-up period. The model calibration for flow was conducted by adjusting appropriate input 

parameters that affect surface runoff. The adjustment of input parameters was continued until the 

simulated flows matched the observed flow at the gauge stations. For soil data, National Land Cover 

Dataset 2001 from Land Use and Soil Survey Geographic Database is used. In this study, sediment and 

nutrient loadings from the watershed using SWAT default parameter settings were used as the baseline. 

Changes in sediment and nutrient loadings after HES scenarios were implemented were compared with 

the baseline.  
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2.4. Cropping Scenarios 

The cropping scenarios in the study include pre-HES (i.e., existing pasture conditions), HES without 

BMPs, and HES with BMPs. The pre-HES scenario reflects the baseline scenario, whereas the HES 

without and with BMPs reflect the biofuel crop scenarios where the existing pastureland is replaced with 

HES crop production.  

The HES production is implemented in randomly-selected pasture fields in sub-basins across the 

watershed and is based on a three-year rotation, consisting of 60,000 acres of HES crop production and 

120,000 acres of fallow land. Research has shown that a three-year rotation that includes a two-year 

fallow followed by the crop has produced higher yield responses than any other rotation pattern [22]. As 

a result, the three- year rotation pattern is adopted in the analysis to obtain maximum HES yields 

possible. Fertilizer nutrients are applied at the rate of 109 kg per acre of Nitrogen and 36 kg per acre of 

Phosphorous to realize a yield of 12 dry tons per acre [23]. Although 12.0 dry tons per acre yield is 

considered possible for HES, only an average of 8.5 dry tons per acre is realized due to varied planting 

and harvesting dates to minimize costs of production ($/dry ton). In addition, HES production for this 

analysis is based on requiring two irrigations of 8.3 ac-in each for stand establishment [16] compared to 

no irrigation for pasture, partly influencing the loadings. The biofuel crop scenario is implemented over 

a modeling period of 33 years, 1975–2008, including two model warming-up years.  

Two BMPs, filter strip and cover crop are selected for evaluating mitigating sediment and nutrient 

runoff potential. It is shown through research that filter strips can intercept as much as 50 percent of 

sediment and nutrient runoff [11, 24]. Similarly, cover crop when planted and grown after the harvest of 

a main crop is able to capture nitrates in soil and reduce nitrate-leaching and runoff [25]. Based on the 

cited prior research studies, filter strips and cover crops are both selected for this study. 

Filter Strips in this study are modeled as edge-of-field vegetation to trap the loadings from the 

sub-basins. A filter strip is considered as a typical BMP to reduce sediments and nutrients in an 

agricultural field where the slope of field is less than five percent [26]; the average slope of the entire 

watershed in this study is 0.8 percent. Based on peer reviewed literature [11,12], the unit of analysis for 

the filter strip is assumed to be 21 acres, i.e., one acre of filter strip for 20 acres of cropland, represented 

a 20:1 ratio. Any additional land required to establish filter strips is assumed rented so that biomass 

output is obtained from all 60,000 acres. In addition, the life of the filter strips is assumed to be nine 

years, i.e., once the filter strips are established in year one, proper maintenance would allow them to 

provide loadings mitigation for eight additional years prior to reestablishment being required.  

A cover crop BMP involves establishment of native or introduced vegetation, usually sown after the 

harvest of the main crop to provide a protective cover for the soil. In this study, rye grass is planted as a 

cover crop during the first year of the two-year fallow period on each of the 60,000 acres used to produce 

HES during the previous year. No fertilizers are applied for the cover crop. At the end of the first fallow 

year, the crop is left on the field as green manure. During the second year, rye grass is planted again as 

the cover crop on that same 60,000 acres. Following two years of fallow, HES is planted on the 60,000 

acres to continue the three-year cycle. This rotation pattern is repeated throughout the modeling period 

of 33 years.  

Additional BMP scenarios are considered in which both a cover crop and filter strips (referred as 

combination BMPs in the remainder of the paper) are simultaneously implemented in the watershed. 
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These BMPs represent a two-tier level of mitigation, reducing loadings immediately within the field area 

by the cover crop and on the perimeter of the field by filter strips. Combinations of BMPs produced 

considerably higher water quality improvements in cases where implementation of only  

one-type of BMP did not achieve target water quality pollution mitigation [27]. Therefore, the 

application of combinations of BMPs in the current analysis was considered as another option to evaluate 

pollution mitigation levels.  

2.5. Economic and Financial Analyses of BMPs 

Following estimation of sediment and nutrient loadings and potential mitigation achieved using the 

BMPs being considered, economic and financial information is identified, organized, and evaluated to 

facilitate recognition of the most cost-efficient solutions for mitigation of the water quality externality. 

The information required to identify all relevant costs of individual BMPs include mitigation level 

achieved by each BMP; number of acres affected by the BMP; expected life of the BMP; initial 

investment (i.e., construction and establishment costs); annual operating and maintenance costs; 

revenues associated with the BMP, e.g., grazing income; level of current adoption and maximum 

adoption allowed; and appropriate discount rate that accounts for inflation and time value.  

To compare the cost-effectiveness of the BMPs, common units of expression are needed, such as Net 

Present Value (NPV) and Annuity Equivalent Value (AEV). NPV estimates represent the present value 

of funds needed to implement and maintain the BMPs for the entire life of the project; whereas, the AEV 

of the costs correspond to the calculated fixed annual payments during the project period necessary to 

pay for the establishment and operation of the BMPs. In other words, AEV represent the fixed annual 

payments in each of the 33 years of the project period that are necessary to finance the implementation 

and operation of the BMP practice/project. But, AEV is used to compare BMPs with unequal lives. 

Hence, AEV is estimated for the BMPs.  

Once the requisite information is secured and validated, a modified version of BMPEconomics© 

(Texas A&M AgriLife Research, College Station, TX, USA) a Microsoft Excel spreadsheet [11], is 

applied to calculate the NPV of all costs and returns of both individual and combination BMPs. 

Subsequently, the NPV is transformed into an AEV accounting for the expected useful life of BMPs. In 

estimating the annual cost per unit of reduction, sediment, TN, and TP are evaluated independently, i.e., 

assuming all costs are associated with reducing that particular pollutant and ignoring any costs toward 

reducing the others. An annual inflation rate of 1.9 percent and a time preference rate of 4.1 percent [28] 

are used, resulting in an aggregate discount rate of 6.0 percent and facilitating calculations of NPV and 

AEV. The financial formulas that are incorporated into the BMPEconomics© to estimate NPV and AEV 

are provided as Appendix. 

3. Results and Discussion 

For reporting of results, the first phase is presenting the effectiveness of BMPs in offsetting the 

negative externalities (contamination of water bodies). These results are followed with a discussion of 

economic implications on cost to producers (or society) of implementing BMPs in conjunction with 

production of a biomass feedstock for energy. 
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The results are reported as percentage reduction achieved due to adoption of BMPs. The results 

indicate that conversion of 180,000 acres from pasture to a three-year rotation of HES-fallow-fallow 

results in increased soil and nutrient loadings compared to the pre-HES loadings. All of the loadings 

reported in Table 1 are estimated at the watershed outlet, i.e., at sub-basin 17 outlet. The estimates, 

reported in English Tons (ET), under the desired mitigation levels (Table 1) indicate increases in 

loadings from conversion to HES from pasture. The magnitude of increased loadings is influenced by 

nutrient application levels to cropland and any rainfall events that occurred in the watershed region. 

Refer to [16] to identify the average and range of Wharton County monthly rainfall for years  

1984–2009. Wharton County harbors the Tres-Palacios River watershed.  

Table 1. Summary of financial annuity equivalent value of costs per unit for Total 

Phosphorus, Total Nitrogen, and Sediments associated with each selected Best Management 

Practices, desired mitigation levels, and effectiveness of individual and combination Best 

Management Practices measured at the watershed outlet (sub-basin 17), Tres-Palacios River 

Watershed, Texas, 1975–2008. 

BMP 

Description 

Desired Mitigation Levels a 

Mitigation (% of Desired) Achieved 

Through BMP Adoption 

Annuity 

Equivalent Value 

of all Costs 

($/year) 

Annuity Equivalent Cost per English 

Ton of Reduction ($/Ton/year) c 

TP (ET b) TN (ET) Sediment (ET) 

216 410 8,762 TP TN Sediment 

FS (20:1) d 69.3% 70.8% 73.5% 563,862 3,763 1,942 83 

FS(15:1) 71.5% 73.7% 77.1% 751,816 4,863 2,487 111 

FS(10:1) 74.1% 77.1% 81.9% 1,127,723 7,040 3,563 157 

FS(5:1) 77.3% 81.7% 87.4% 2,255,447 13,493 6,732 295 

CC e 48.3% 55.7% 66.7% 13,185,077 126,188 57,728 2,255 

CC+FS(20:1) 88.2% 97.0% 102.6% 13,748,938 72,059 34,554 1,529 

CC+FS(15:1) 89.3% 98.4% 104.1% 13,939,893 72,196 34,530 1,528 

CC+FS(10:1) 90.4% 100.1% 106.1% 14,312,800 73,166 34,867 1,539 

CC+FS(5:1) 91.7% 102.0% 108.3% 15,440,524 77,853 36,895 1,627 

Notes: a The “Desired Mitigation Levels” are the difference in sediment and nutrient loadings between the pre-HES (pasture) 

levels and the post-biofuel levels. These desired levels indicate the amount of reduction in sediment and nutrient loadings 

that needs to be achieved to attain pre-HES loadings; b English Ton; One English Ton = 2,000 lbs; c Estimated as AEV of 

all costs divided by the product of marginal reduction achieved and desired mitigation levels; for TP and FS (20:1): 

563,862/(69.3 x 216) = $3,763 per ET; d FS refers to filter strip BMP and (20:1) refers to the ratio of crop acres to filter 

strip acres; e CC refers to cover crop BMP acres, which is assumed to be planted on all land in the rotation that is not planted 

to HES. 

The two BMPs, filter strips and cover crop, are implemented independently in varying degrees of 

intensity and as combination BMPs for application in the SWAT model analyses. Their effectiveness in 

mitigation is reported as percent mitigation achieved (Table 1). Comparison of effectiveness produced 

by filter strips to a cover crop indicate that filter strips produced higher mitigation, which is primarily 

attributed to the strategic placement of filter strips between a field and a water body [29]. Three 

alternative levels of filter strips of higher intensity (15:1; 10:1; 5:1) are also implemented to identify any 

increase in mitigation achieved. The results indicate that filter strips of higher intensity produced slight 
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increases in sediment and nutrient mitigation. Combination BMPs produced increased effectiveness in 

controlling of sediment and nutrient loadings (Table 1), which is due to the two-tier protection, i.e., 

onsite and edge of field by cover crop and filter strips, respectively.  

The economic analyses focused on comparing BMP costs relative to the level of mitigation achieved 

for the entire watershed, as measured at sub-basin 17. The results indicate that the AEV, measured as 

$/year, is substantially lower for filter strip BMPs compared to the AEV for a cover crop BMP as well 

as for the AEV of combination BMPs (Table 1). The substantial difference in AEV when a cover crop 

is used as a BMP independently or in combination with a filter strip is primarily due to the cost associated 

with implementing a cover crop BMP on 120,000 acres each year compared to only 9000 acres for the 

FS (20:1). The land requirements for the implementation of the filter strip BMPs is calculated as 180,000 

acres of HES divided by the total area occupied by the filter strips; 180,000/20 = 9000 acres. Hence, a 

more valid comparison is through AEV per ton mitigation of soil erosion, TN, and TP produced by each 

BMP, reported as $/Ton/year in Table 1. The AEVs per ton per year estimates show that filter strip 

BMPs are the most cost-efficient, followed by the combination BMPs, followed by the cover crop BMP. 

[12] estimated the AEV of cost per ET (English Ton) of TP for the Cedar Creek Watershed at $4,752, 

which is relatively higher than the $3,763 estimated in the current study. This difference in the AEV of 

BMPs are attributed to the differences in mitigation levels achieved that are dependent on topography of 

the land, rainfall events during the project period, nature of the crop used for the BMPs, and history of 

fertilizer application. 

Typically, social priorities determine the levels of mitigation, which perhaps can be expected to be 

less than 100 percent. The norm in much of the environmental quality mitigation literature is based on 

partial mitigation. The current analysis identifies the process of mitigation of an externality and the 

associated costs of mitigation and leaves the choice to the decision makers (i.e., policy designers and 

agricultural producers) to determine the desired level of mitigation depending on individual and social 

and financial limitations/challenges. As water quality deterioration has wide societal impacts, it is crucial 

to carefully select the level of water quality reduction that society might accept when considering 

management costs. But, moving forward, it seems reasonable to attempt to preclude any new 

externalities as opposed to allowing any level of detrimental externalities. 

BMPs involve upfront annual and periodic costs. So as to appropriately analyze the impact of actions 

involving such costs, i.e., adopting BMPs as part of a collective effort in addressing water quality, an 

assessment of the payments involved in the use of BMPs on the final economic product across BMPs is 

necessary. The price of the economic product, ethanol, usually reflects the cost of energy expended in 

the production of the biofuel crop. The estimates identified in this study, which are the costs of 

management practices to mitigate the water quality damages, are therefore interpreted as additions (i.e., 

marginal) to the estimates identified by [16]. As estimated by [16], farm production costs of HES were 

$1,126.61 per acre, $159.20 per dry ton of biomass and $2.12 per gallon of ethanol, not accounting for 

the ethanol processing costs. The per acre revenues from HES, a biomass crop, will depend on the 

supply-demand system of the biomass-biofuel market. Hence, it is difficult to estimate the per acre 

revenues. But, the revenues associated with a similar production system such as Bermuda grass grown 

in the region are in the range of $1,200–$1,500 per acre. Incorporating the cost of management practices 

to mitigate the water quality externality into the ethanol price, the increase in the ethanol price was in 
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the range of $0.02 to $0.51 per gallon (Table 2). The cost per acre for attaining corresponding mitigation 

of sediment, TN, and TP loadings using various BMPs are also presented in Table 2. 

Table 2. Supply chain costs of producing High Energy Sorghum (HES) per unit and 

mitigation costs per unit associated with each Best Management Practice, Tres-Palacios 

River Watershed, Texas, 1975–2008. 

BMP 

Description 

Mitigation (% of Desired) Achieved 

Through BMP Adoption 
Annuity 

Equivalent Value 

of Mitigation 

Costs ($/year) 

Annuity Equivalent Value  

(AEV) of Mitigation Cost a 

TP TN Sediment 
Costs per Acre 

(60,000 acres b) 

Costs per Dry 

Ton of HES c 

Costs per 

Gallon of 

Ethanol d 

FS (20:1) e 69.3% 70.8% 73.5% $ 563,862 $ 9.40 $ 1.11 $ 0.02 

FS (15:1) 71.5% 73.7% 77.1% 751,816 12.53 1.47 0.03 

FS (10:1) 74.1% 77.1% 81.9% 1,127,723 18.80 2.21 0.04 

FS (5:1) 77.3% 81.7% 87.4% 2,255,447 37.59 4.42 0.08 

CCf 48.3% 55.7% 66.7% 13,185,077 219.75 25.85 0.44 

CC+FS (20:1) 88.2% 97.0% 102.6% 13,748,938 229.15 26.96 0.46 

CC+FS (15:1) 89.3% 98.4% 104.1% 13,939,893 232.33 27.33 0.46 

CC+FS (10:1) 90.4% 100.1% 106.1% 14,312,800 238.55 28.06 0.48 

CC+FS (5:1) 91.7% 102.0% 108.3% 15,440,524 257.34 30.28 0.51 

Notes: a These cost reflect the AEV of corresponding mitigation of sediments and nutrient loadings achieved by each 

selected BMP, these costs are interpreted as costs additional to the supply chain costs of producing biomass to supply 

feedstock to a 30-million gallon ethanol facility; b Annual HES acreage, farm production cost per acre of HES is $1,126.61; 
c 8.5 dry tons per acre yield of HES assumed in this analysis [16], farm production cost per dry ton of HES biomass is 

$159.20; d 30 million gallons of total annual ethanol production assumed in this analysis, farm production cost per gallon 

of ethanol from HES is $2.12; e FS refers to filter strip BMP and (20:1) refers to the ratio of crop acres to filter strip acres; 
f CC refers to cover crop BMP, which is assumed to be planted on all land in the rotation that is not planted to HES. 

4. Conclusions  

If commitment to biofuels production continues and processing plants are constructed in various 

locales, numerous agricultural producers may have sufficient incentives to apply greater amounts of 

fertilizers and cultivate marginal lands, with little regards to environmental consequences. The impacts 

on water quality with respect to sediment and nutrient loadings from converting a pasture land to a 

biomass energy crop, High Energy Sorghum (HES), in the Texas Middle-Gulf Coast are estimated using 

the SWAT model. The SWAT analysis also includes evaluation of select potential BMPs to mitigate the 

water quality damages in the watershed. The management options are then evaluated to identify the 

relative cost-effectiveness with the goal to mitigate sediment and nutrient loadings, i.e., to get the most 

“Bang for the Buck.” The results from the analysis are suggestive that nutrient loading increase from 

such intensively-managed agricultural systems and result in offsite water quality deterioration. The 

BMPs evaluated indicate substantial investment, operation, and maintenance costs. However, the most 

effective policies in terms of mitigation could mean the use of more economically efficient BMPs, which 

necessitates further investigation of other potential BMPs. In addition, the novel ex ante nature of the 

externality source preludes there is adequate information on which to base the supposed impacts of 

alternative levels of offsite sediment and nutrient loadings. That is, this is a preliminary investigation of 
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this issue, with obvious needs for additional, subsequent investigations to enhance the value of the results 

noted herein. 

Biofuels crop production has environmental and economic effects, both positive and negative [30]. 

The current analysis shows that mitigation of potential environmental effects as a consequence of 

biomass crop production are expensive. The United States government spent approximately $145 million 

in year 2006 in dredging expenditures for their federal and non-federal channels [31]. The mitigation 

costs reported in this paper, which are the costs to adopt BMPs to reduce any sediment and nutrient 

runoff from biofuel crop production systems to water bodies, would mean costs in addition to the current 

water clearing costs. Evaluation of overall aggregate economic effects is outside the scope of this paper. 

But, for biofuels to be a sustainable alternative to fossil fuels, their cultivation related any negative 

environmental impacts must be avoided. Policies that either encourage and/or mandate BMPs adoption 

could reduce some of the potential negative environmental impacts, but could involve substantial costs 

and can quickly erode the profits of the producers or warrant funding from external sources. Research 

analyzing financial incentives such as fertilizer tax and subsidy to no-tillage production systems have 

indicated little or no effect to change in crop production practices for biofuel crops, consequently having 

no impact on mitigating environmental impacts [32]. 

Currently, the price of ethanol and the associated subsidies continue to provide incentives to expand 

biofuel production without consideration of externalities and unintended consequences. While some 

federal tax credits for ethanol such as Volumetric Ethanol Excise Tax Credit, Cellulosic Biofuel Producer 

Tax Credit, and Biodiesel Excise Tax Credit, to name a few, expired at the end of 2013, other incentives 

such as biofuel infrastructure tax credit and biomass feedstock production credits are extended through 

2018. Furthermore, several state tax exemptions that apply to ethanol-blended fuels are extended through 

2018 [33]. 

The evaluation of the BMPs to identify a cost-efficient watershed protection strategy highlights 

important issues that warrant further analysis. For example, some existing level of BMPs adoption suited 

to the current operations is expected in any production enterprise. However, due to lack of sufficient 

information to corroborate any such adoption levels in the Tres-Palacios River watershed, a zero-level 

existing adoption of the BMPs is assumed. Such an assumption combined with the modeling approach 

of this research suggest annuity equivalent value of mitigation costs reported through this research could 

be higher than if fewer acres of BMPs could be deployed to achieve the desired mitigation levels. 

Similarly, financial incentives such as subsidies and tax breaks (e.g., farm equipment purchase tax break 

and farm input subsidies) often contribute to a key role in decision-making process of BMPs adoption, 

no such incentives are considered in conducting the current economic analysis. Such incentive payments 

could impact the estimates of the costs of water quality mitigation reported in this paper.  
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 spreadsheet to calculate 

NPV and AEV estimates. 

= − + (1 + )  (1)

= ( )1 − (1 + )  (2)
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