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Abstract: The global impact of water and soil contamination has become a serious issue that affects
the world and all living beings. In this sense, multiple treatment alternatives have been developed
at different scales to improve quality. Among them, biochar has become a suitable alternative for
environmental remediation due to its high efficiency and low cost, and the raw material used for
its production comes from residual biomass. A biochar is a carbonaceous material with interesting
physicochemical properties (e.g., high surface area, porosity, and functional surface groups), which
can be prepared by different synthesis methods using agricultural wastes (branches of banana rachis,
cocoa shells, cane bagasse, among others) as feedstock. This state-of-the-art review is based on
a general description of biochar for environmental remediation. Biochar’s production, synthesis,
and multiple uses have also been analyzed. In addition, this work shows some alternatives used
to improve the biochar properties and thus its efficiency for several applications, like removing
heavy metals, oil, dyes, and other toxic pollutants. Physical and chemical modifications, precursors,
dopants, and promoting agents (e.g., Fe and N species) have been discussed. Finally, the primary
uses of biochar and the corresponding mechanism to improve water and soil quality (via adsorption,
heterogeneous photocatalysis, and advanced oxidation processes) have been described, both at
laboratory and medium and large scales. Considering all the advantages, synthesis methods, and
applications, biochar is a promising alternative with a high potential to mitigate environmental
problems by improving water and soil quality, reducing greenhouse gas emissions, and promoting
the circular economy through residual biomass, generating value-added products for several uses.

Keywords: biochar-based materials; wastewater treatment; soil amendment; biochar synthesis
methods; biochar modification; biochar activation

1. Introduction

Biochar is an important, interesting, low-cost material with various agricultural, in-
dustrial, and scientific applications. Biochar is a name given to vegetable-derived charcoal,
which can be used as an agent to improve soil and water quality [1–3]. This carbon-rich
substance can be produced by the carbonization of biomass residues (e.g., wood, dung,
manure, or leaves) in thermal conversion processes, such as pyrolysis, torrefaction, and
hydrothermal carbonization (HTC) [4–6]. Among them, pyrolysis is the most common pro-
cess to obtain biochar under anaerobic conditions and high temperatures [7–9]. In addition,
heat, syngas, liquid fuels, and pyroligneous acid (wood vinegar) are also generated during
this process [10–12].
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The HTC is a novel technology that produces carbonaceous materials, e.g., biochar.
This process has received much attention due to its eco-friendly, cost-effective, and straight-
forward approach [8,13,14]. During the HTC, the raw material is treated at high pressures
and temperatures to produce various biochar-based materials with a high calorific value,
low humidity, and high combustion performance [15,16], known as hydrochar [17]. In turn,
the hydrochar can be used to generate energy in fuel cells [15], for gas storage [18], as a soil
amendment [19], as a catalyst [20], and as an adsorbent to retain pollutants in water, such
as heavy metals [14,21] and dyes [14,22].

The term biochar has been used in recent times; however, the origins of its concept are
ancient. The Amazon basin has zones up to 2 m deep of terra Preta, a mixture of very fertile
dark-colored soil with high carbon content, ceramic fragments, and organic debris, that
has supported the agricultural needs of the Amazonian people for centuries [23–25]. The
name biochar is related to a carbonaceous material used for environmental rehabilitation,
especially for soil improvement and water treatment. In addition, biochar has potentially
significant implications for climate change mitigation, for example, in capturing CO2 from
air and industrial sources [26,27]. Likewise, using the gases generated during the pyrolysis
process, biochar production may be integrated with other processes, such as bioenergy
generation [6,28].

The use of biochar for agricultural and environmental purposes has been thoroughly
researched and evaluated. This substance benefits agriculture and the environment in
various ways, and its soil persistence and nutrient retention capabilities make it an ex-
cellent soil additive for enhancing crop yields. Biochar can be applied to mitigate soil
contamination by immobilizing heavy metals and organic pollutants [29–32]. Heavy met-
als in soils are extremely damaging contaminants that hinder soil qualities necessary for
successful crop performance [25,33,34]. Heavy metals are not biodegradable and remain
in polluted soil and water for long periods [35,36]. Soil contamination by heavy metals
(e.g., Cd, Cr, Hg, Pb, Cu, Zn, As, Co, Ni, and Se) and persistent organic pollutants (POPs,
such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), poly-
chlorinated dibenzo-dioxin (PCDD), and polychlorinated dibenzofurans) is a global issue
that threatens human life and health [37]. Removing heavy metals from polluted soils can
be expensive and time-consuming for agriculture [33,38]. However, biochar can stabilize
Cd, Cu, Ni, Pb, and Zn in soil and reduce their bioavailability through enhanced sorption
(based on electrostatic attraction, ion exchange, and surface complexation) and chemical
precipitation (incurred by raising the soil pH and adding of carbonate and phosphate
ash) [29,39–41]. Thus, the physicochemical properties of biochar can be considered to aid in
the adsorption of heavy metals and organic contaminants in soils, which is highly beneficial
for environmental mitigation [34,42–44].

On the other hand, biochar can be used as a cleaning agent for polluted water, whether
in any industrial or agricultural field [41,45–47]. Due to the importance of hydrogeological
resources, it is critical to care for and protect them, along with technical and scientific efforts
to mitigate the negative environmental impact of the world. The number of contaminating
compounds introduced into aquatic ecosystems is rising because of the varied uses of
water to fulfill various human activities [48,49]. Various components, such as pesticides,
pathogens, heavy metals, detergents, dyes, medications, and personal care and hygiene
products, alter the water quality [33,48,50,51]. One of the major water pollutants is oil
activity, which, due to the release of oil into the environment, involves operations related
to the exploitation and transport of hydrocarbons, resulting in the gradual deterioration of
the environment [52–55], directly affecting the water and, as a result, the affectation of the
ground. When hydrocarbons combine with water, they form an impenetrable barrier that
limits the growth of biological activity, causing direct harm to fauna and soils that rely on
this already polluted water [56,57].

Biomass conversion favors the production of a carbonaceous material (i.e., biochar)
with interesting physicochemical properties, which allow it to be used as an adsorbent for
both organic and inorganic compounds present in water [49,58,59]. Among these properties
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are a high porosity, surface area, and various surface functional groups, such as carboxyls
(–COOH), phenols, and hydroxyls (–OH) [21,36,59,60]. All the properties have allowed the
use of biochar for wastewater treatment to be increased, considering that the adsorption
process with biochar has significant advantages compared to other treatment methods, like
the low cost, easy operation, and easy maintenance [61–64]. Thus, biochar has become a
substance that meets the requirement of improving the quality of wastewater generated
in industries or any other field, taking advantage of its obtaining from agricultural waste
resources.

There is a high amount of organic and inorganic waste in the world. The most common
organic wastes are categorized as plastic wastes (e.g., bottles, plastics) or residual biomass
according to their origin. In many countries, especially in South America, a considerable
amount of agricultural residues (e.g., banana husk, cocoa, coffee, rice husk, corn, or oil
palm) is generated daily, which have not been used for any application. Furthermore, most
of them, when discarded, generate environmental damage, such as the emission of toxic
gases into the atmosphere and water pollution [65,66]. In this sense, using a substance
produced by residual biomass (i.e., biochar) that helps reduce environmental pollution is
highly beneficial. Considering this fact, agricultural waste might be used as raw materials
to mitigate the damage caused by contaminants worldwide at different scales. Thus, using
carbonaceous materials produced by agricultural wastes would be an economical and
low-cost alternative, which can also generate an added value to the residual biomass that is
rejected or wasted.

Unlike other works, this review article focuses on several lines of interest, starting with
an overview of biochar synthesis methods, e.g., pyrolysis and hydrothermal carbonization.
Likewise, several types of biomass used as raw material to obtain this carbonaceous
material have been listed and analyzed. In addition to these topics, an exhaustive review
has been conducted on some methods to modify the properties of biochar, considering both
the physical and chemical methods. Moreover, several applications of the use of biochar
have been widely studied, and how their efficiency can be correlated to physicochemical
properties, along with different contaminant removal mechanisms (e.g., adsorption and
advanced oxidation processes). Finally, a summary of the pros and cons of the use and
applications of biochar for environmental remediation has been made, identifying that this
carbonaceous material can still be improved, but the results are promising so that it can
continue to be used and thus encourage the circular economy in the world.

2. Biochar: Feedstock, Synthesis Methods, and Properties

Biochar mainly comprises carbon (~60–90%), although it may also contain oxygen,
hydrogen, and inorganic ash depending on the source biomass [67]. Biochar conversion
is considered more environmentally benign than coal combustion, as biomass is carbon
neutral [68]. Generally, biochar has a high surface area (above 100 m2/g), which depends
on the raw material and the synthesis conditions [69]. As a result, biochar can be used in a
variety of nonfuel applications, such as chemical adsorption (e.g., water treatment [21,70])
and carbon storage [68]. In addition, this carbonaceous material has also been used as a
soil fertilizer [71,72].

2.1. Differences between Biochar, Activated Carbon and Charcoal

The carbon family involves interesting materials, such as biochar, charcoal, and acti-
vated carbon. These carbonaceous materials share the essence and origin, which is carbon.
The most significant distinction is their synthesis methods, conditions, and applications.
On the one hand, coal results from coalification, i.e., a geological process involving biomass
conversion with water and sediments. Peat and lignite are intermediate stages of this
process [73].

On the other hand, charcoal, biochar, and activated carbon are products of thermo-
chemical processes, and they are defined as pyrogenic carbonaceous materials (PCM) [24].
Biochar and activated carbon are frequently used in agriculture for environmental reme-
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diation, such as filtering and purification. Meanwhile, charcoal is used for heating and
cooking [74,75]. These materials’ physical and chemical properties are similar since they
share the same carbonaceous origin. However, they have singular properties that distin-
guish them. Table 1 describes the marked difference between these carbonaceous materials
and the main characteristics that define them and differ from each other.

Biochar is a member of the carbon family that, when mixed with other species, pro-
duces new hybridized nanomaterial biochar-based materials [76]. They have novel physic-
ochemical properties and are highly effective for degrading water pollutants through
adsorption, heterogeneous photocatalysis, and advanced oxidation processes. Braghiroli
et al. [77] have reported a high sorption capacity of phenols and chemical intermediates
with the use of activated biochar and other biochar-based materials for treating phenolic
compounds, such as phenol, bisphenol A, p-nitrophenol, and pentachlorophenol, are toxic
to health and the environment [78].

Table 1. Description of the most influential carbonaceous materials.

Biochar Charcoal Activated Carbon Ref.

Definition

Carbonaceous material
produced from organic matter,
such as residual biomass, and
it has environmental and
energetic applications.

It is a porous black solid
material made up of carbon
in its amorphous state.

Carbonaceous material with a
high surface area produced by
the thermochemical conversion
of organic matter, followed by an
activation process to boost its
adsorption capacity.

[73]

Feedstock

Agricultural residues: rice
hulls, manure.
Trees, shrubs, grasses, and
wood.

Hardwood Petroleum residues, agricultural
residues, and biomass in general. [6]

Characteristics High adsorption and porosity High burnability High adsorption [73]

Production Pyrolysis, gasification,
torrefaction, HTC.

Kiln-calcined
Slow pyrolysis

There are two main processes:
carbonization (pyrolysis,
gasification, torrefaction, and
HTC), followed by an activation
process.

[6,73]

Cost Low cost Low cost Expensive: high-temperature
costs. [6]

Illustrative
image
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Compared to pure nano-photocatalysts, biochar-supported catalysts have larger sur-
face areas, are more porous, have higher catalytic capacities, and are more stable [82].
Biochar may support hosting different catalytic nanoparticles because of its unique surface
features, readily modifiable functional groups, chemical stability, and electrical conductiv-
ity [83,84].

2.2. Feedstock for Biochar Production

Biomass is living or once-living organic matter that can serve as a versatile renewable
source for environmental and energy applications (e.g., electricity generation, heat provi-
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sion) and for the production of many types of biofuels, compost, pharmaceutical products,
other chemicals, and biomaterials, like biochar. Almost all organic materials (such as tree
bark, nut shells, crop residues, and manure) can be used as feedstock for biochar using
appropriate equipment [85–87]. Biomass as an initial resource can come from animal, veg-
etable, or human-generated waste, such as industrial or municipal waste (sewage) [66,88].
Biochar-based materials can have different characteristics and properties depending on
the biomass used as feedstock, which, in turn, will allow the carbonaceous material to be
used in specific applications. Table 2 shows the most common feedstock used to produce
biochar, which can be any organic matter, from plant materials to industrial waste.

Table 2. Commonly used feedstock for biochar production [89–92].

Biochar Feedstock Examples

Food wastes
Leftovers from a meal (eggshells), expired, stale, and blemished fruits and
vegetables (banana peels, pineapple peels, cauliflower leaves, peanut
shells, avocado shells, etc.).

Sewage sludge Sewage sludge from the municipal wastewater treatment process.

Animal waste Manures from cows, pigs, and chickens.

Industrial waste Plastics as binders, Bioenergy residues

Wood chips

Forest chips produced from logs, whole trees, logging residues, stumps,
pinecones, hardwood, etc.
Wood residue chips produced from untreated wood residues, recycled
wood, and offcuts (rose stems, bambu, guadua, etc.).

Agricultural waste Manure and other wastes from farms, poultry houses, and slaughterhouses.
Harvest waste (herbs, grass, etc.); fertilizer run-off from fields.

Forestry waste Bark, sawdust, timber slash, and mill scrap.

Biochar is commonly produced from vegetal residues called cellulosic biomass, such
as firewood or rice residues. In recent years, other raw materials have been studied to
produce biochar, such as algae, food waste, manure, and animal tissue [63,90,91], obtaining
interesting results regarding its physical-chemical properties and applications. On the other
hand, raw materials with a high biomass content, such as sewage and municipal solid
waste (MSW), cannot be considered a suitable feedstock for biochar production since they
may include contaminating components that can affect the biochar performance for soil or
water treatments [93].

2.3. Synthesis Methods Used to Prepare Biochar

Biomass can be transformed using thermochemical conversion processes, like pyrolysis
or HTC treatment, to produce biogas, liquid fuels (e.g., bio-oil), and solid materials, such
as biochar [8,63]. Biomass valorization can be conducted through basic processes (e.g.,
pyrolysis, gasification, torrefaction, anaerobic digestion, or combustion), in which the
organic matter can be transformed into heat, electricity, or by-products, like biochar-based
materials [94]. Thermochemical conversion encompasses the degradation of biomass
structure in either an oxygenic or anoxygenic atmosphere at high temperatures [95]. Biochar
production begins from the initial conversion of biomass through thermochemical processes
until a carbonaceous material with desired physicochemical properties is obtained. The
operating principles, synthesis conditions, and their effect on biochar production for the
most common thermochemical conversion processes are detailed below:

2.3.1. Pyrolysis

In the pyrolysis process, the biomass source, which was previously mentioned, is
subjected to a thermal treatment to produce biochar and other by-products. Depending on
the operating conditions, biogas, liquid bio-oil, and biochar can be generated during this
process [96]. It is essential to note that biomass must be previously dried and ground to
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obtain a carbonaceous material of high quality and yield. The heating process is conducted
at high temperatures (400–800 ◦C) without oxygen and allows biomass conversion into
by-products for several applications, such as energy and environmental remediation. The
by-products can be used as energy or residual heat to contribute to the pyrolysis or thermal
treatment of the raw material. This thermal process releases the lowest percentage of
carbon back into the atmosphere [58,71,97]. According to the literature, there are two types
of pyrolysis: slow and fast pyrolysis, which depend on the temperature conditions and
the heating rate [98]. The slow pyrolysis is conducted at temperatures ranging from 250
to 600 ◦C using heating rates of 1–10 ◦C/min [90,99]. While fast pyrolysis is based on
the thermal conversion of biomass at temperatures above 600 ◦C, using heating rates
higher than 50 ◦C/min [100]. The concentration and the physicochemical properties of
the products formed (e.g., biogas, bio-oil, and biochar) can vary depending on the type of
pyrolysis. Thus, during the slow pyrolysis of biomass, a large amount of biochar can be
produced, generating low concentrations of gases and liquids with a high content of highly
contaminant volatile organic compounds (VOCs) [101].

On the other hand, fast pyrolysis is mainly used to produce a high concentration of
liquids (e.g., biofuel) with better physicochemical quality than those produced by slow
pyrolysis, achieving a lower VOC content and a higher concentration of log-chain hydrocar-
bons [102]. Both types of pyrolysis can be used to produce biochar. However, the properties
(e.g., carbon content, density, water retention capacity, functional groups, surface area) and
applications of the carbonaceous materials will be different. Slow pyrolysis can be the best
way to obtain water and soil remediation biochar. Meanwhile, fast pyrolysis can be the best
route to produce biochar as fuel or precursor to other materials [101,103].

The pyrolysis of biomass modifies the size and arrangement of the carbonaceous
structures, enhancing the physicochemical properties of the products obtained during the
process [104]. In general, this impact becomes more robust at higher treatment temperatures.
To obtain a higher biochar production yield, the temperature interval for pyrolysis should
be around 400–800 ◦C [105,106]. Lua et al. [81] reported that by raising the pyrolysis
temperature from 250 to 500 ◦C, the specific surface area can increase from 170 to 480 m2/g,
which has been related to the increased evolution of volatile matter in pistachio nut shells,
resulting in an improved pore growth at the biochar surface, reaching total pore volume
values of 0.47 cm3/g (at 500 ◦C), which were much higher than those obtained at a pyrolysis
temperature of 250 ◦C (0.193 cm3/g). This has been related to elevated temperatures
supplying activation energy, which can favor conversion reactions, resulting in higher
degrees of order in the carbonaceous structures [107].

2.3.2. Torrefaction

Similarly to pyrolysis, torrefaction is a thermochemical process based on biomass con-
version into value-added products, e.g., biochar, biogas, and bio-oil [108]. However, this
process differs from pyrolysis in operating conditions and formed product types. Torrefac-
tion is a thermal process based on biomass dehydration, carbonization, and caramelization
at relatively low temperatures (i.e., 200 to 300 ◦C) without oxygen [58]. Biochar is the only
product generated during this process. However, the physicochemical properties (e.g.,
structural characteristics) of the carbonaceous material produced are inferior to those of
pyrolysis [62,91].

2.3.3. Hydrothermal Carbonization

Hydrothermal carbonization (HTC) is a thermochemical technology for processing
biomass with high moisture content in a hot compressed water system [14]. The main
product of HTC is hydrochar, a type of biochar produced in this way. Apart from this car-
bonaceous material, aqueous (nutrient-rich) and gas phases (mainly CO2) can be produced
depending on the operating conditions [109]. The carbon-rich hydrochar can be employed
as fuel, coal substitute, gasification feedstock, soil additive for nutrient enrichment, or as
an adsorbent or precursor of activated carbon [110]. The advantage of the HTC process is
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that biomass may be transformed into carbonaceous solids without an energy-intensive
drying procedure or an anoxygenic atmosphere. Likewise, toxic chemical compounds and
residual micropollutants are also avoided during HTC [111].

As mentioned below, HTC is a thermochemical process that uses heat to transform
wet biomass feedstock into hydrochar. HTC is performed in a reactor at temperatures
ranging from 120 to 300 ◦C under autogenous (self-generated) pressure or under pressure
(2–6 MPa) with feedstock residence periods ranging from 0.5 to 8 h [112–114]. HTC offers
a key advantage over other high-temperature thermochemical conversion processes (e.g.,
pyrolysis) because it is possible to use wet waste without a pre-drying process [19,115].
HTC may use a variety of feedstock, including aquatic biomass, agricultural waste, and
industrial and animal waste [11]. Water is a favorable medium for heat transfer in HTC.
However, there may be some mass transfer restrictions if the particle size variability in the
feedstock is too large (above 2 cm) and the reaction time is too short (less than 30 min) [19].
As a result, particle size should be constant to provide uniform heat and mass transfer.
On the other hand, the aqueous slurry needs to be centrifuged or filtered to separate the
process water and particulates (wet cake). Biomass conversion processes mainly depend
on the feedstock, the desired final product, and its corresponding use. Table 3 shows a
summary of the typical thermochemical conversion processes, temperature conditions, and
the products obtained in each of them.

Table 3. Thermochemical conversion processes to obtain biochar used in different fields [9,116,117].

Process Temperature
Interval (◦C) Feedstock Final Product Uses

Torrefaction 200–300 Rice husk, cocoa
husk Biochar Soil conditioner

Pyrolysis 300–800 Wood, agricultural
waste

Syngas,
biochar

Fuel (cooking,
heat),

soil amendment

Slow
pyrolysis 350–700

Compost (green
waste) woody

prunings, grass
clippings

Activated
biochar

Water filtration and
adsorption of
contaminants
(gasses, solids,

liquids)

Fast
pyrolysis 450–550 Agricultural waste

and crops Biochar Soil conditioner,
plant growth

HTC 150–400
(High pressure)

Rice husk, manure,
algae, corn stover,

biosolids, food
waste

Hydrochar
Solid fuel, soil
amendment,

adsorbent

Gasification >800

Agricultural waste,
manure, food

residues, sewage
sludge

Combustible,
ethane,

methane

Biochemicals, fuel
(low yield, high

reactivity)

2.4. Methods of Biochar Activation and Modification

Physical and chemical activation methods can enhance biochar properties, such as
impregnation or adding dopants or additives in the carbonaceous structure. Physical
activation is accomplished by processing biochar with oxidizing agents, mostly steam or
carbon dioxide, at temperatures ranging from 500 to 1000 ◦C. Water is a smaller molecule
than carbon dioxide, which favors its penetration into the biochar pores [19,118], enhancing
its morphological properties, like surface area and porosity [119]. Figure 1 shows some
routes of physical and chemical activation of biochar, as well as the chemical compounds
and thermal conditions used to enhance its physicochemical properties. Notably, the
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porosity, surface chemistry, and yields of carbon-based adsorbents produced significantly
depend on the biomass composition of feedstock and the synthesis conditions [120].
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Many modification methods (e.g., chemical, physical, and biological routes) have
been studied to improve the properties of biochar used for environmental purposes [63].
The widely used method has been the chemical alteration. Acid modification, alkalinity
modification, oxidizing agent modification, metal salts, or oxidizing agent modification are
the most common. In contrast, steam and gas purging have been the most common types of
physical modification [19]. Figure 2 describes a categorization scheme of the modification
methods most often reported in the literature [121]. The modification method that has
attracted scientific attention for producing sorbents for water treatment involves embedding
different elements into the biochar framework before, during, or after the thermochemical
conversion. Physical activation of biochar using steam and chemical activation with acidic
and alkaline solutions is usually performed after pyrolysis. However, remarkable results
have been seen when chemical activation is performed before pyrolysis [122].



Resources 2024, 13, 8 9 of 33

Resources 2024, 13, x FOR PEER REVIEW 9 of 33 
 

 

bedding different elements into the biochar framework before, during, or after the ther-
mochemical conversion. Physical activation of biochar using steam and chemical activa-
tion with acidic and alkaline solutions is usually performed after pyrolysis. However, re-
markable results have been seen when chemical activation is performed before pyrolysis 
[122]. 

 
Figure 2. Biochar modification methods to enhance properties. (Reprinted from [121], with permis-
sion from Elsevier). © 2017 Elsevier Ltd. 

Interesting and novel physicochemical activation methods of biochar seek to improve 
functional stability, and these can be based on its modification with other species. In this 
sense, biochar-based composites can be prepared by impregnating or coating their surface 
with metal oxides, clays, carbonaceous structures (e.g., graphene oxide or carbon nano-
tubes), complex organic compounds, such as chitosan, among others [32,123,124]. 

2.4.1. Physical Activation 
Physical activation enhances the surface pores of biochar and can also modify its 

chemical properties (e.g., surface functional groups, hydrophobicity, and polarity) [125]. 
Steam activation enhances the surface area and porosity of biochar [126]. Zhang et al. [127] 
have reported sludge-based pyrolysis to produce biochar, which was activated using a 
physical activator (CO2) to enhance its adsorption capacity of Pb2+ from an aqueous solu-
tion. The results revealed that the physical activation with CO2 enhanced the specific sur-
face area by more than ten times, and its Pb2+ adsorption capacity increased from 7.6 mg/g 
to 22.4 mg/g [127]. The biochar activation with CO2 aided in the introduction of oxygen-
containing functional groups. On the other hand, biochar activation with CH3COOK also 
enhanced the pore structure of sludge-based biochar, increasing its surface area more than 
ten times, from 81 m2/g to 908 m2/g, reaching a Pb2+ adsorption capacity of 47.6 mg/g [127]. 

During physical activation, biochar is exposed to a required amount of oxidizing 
agents, such as steam, ozone, carbon dioxide, or air, at temperatures typically above 500 
°C [128]. These oxidizing chemicals enter the biochar structure and gasify the carbon at-
oms, opening and expanding previously inaccessible pores [129]. This type of activation 
can produce a biochar with larger surface areas and generate a large amount of surface 

Figure 2. Biochar modification methods to enhance properties. (Reprinted from [121], with permission
from Elsevier). © 2017 Elsevier Ltd.

Interesting and novel physicochemical activation methods of biochar seek to improve
functional stability, and these can be based on its modification with other species. In
this sense, biochar-based composites can be prepared by impregnating or coating their
surface with metal oxides, clays, carbonaceous structures (e.g., graphene oxide or carbon
nanotubes), complex organic compounds, such as chitosan, among others [32,123,124].

2.4.1. Physical Activation

Physical activation enhances the surface pores of biochar and can also modify its
chemical properties (e.g., surface functional groups, hydrophobicity, and polarity) [125].
Steam activation enhances the surface area and porosity of biochar [126]. Zhang et al. [127]
have reported sludge-based pyrolysis to produce biochar, which was activated using a
physical activator (CO2) to enhance its adsorption capacity of Pb2+ from an aqueous so-
lution. The results revealed that the physical activation with CO2 enhanced the specific
surface area by more than ten times, and its Pb2+ adsorption capacity increased from
7.6 mg/g to 22.4 mg/g [127]. The biochar activation with CO2 aided in the introduc-
tion of oxygen-containing functional groups. On the other hand, biochar activation with
CH3COOK also enhanced the pore structure of sludge-based biochar, increasing its surface
area more than ten times, from 81 m2/g to 908 m2/g, reaching a Pb2+ adsorption capacity
of 47.6 mg/g [127].

During physical activation, biochar is exposed to a required amount of oxidizing
agents, such as steam, ozone, carbon dioxide, or air, at temperatures typically above
500 ◦C [128]. These oxidizing chemicals enter the biochar structure and gasify the carbon
atoms, opening and expanding previously inaccessible pores [129]. This type of activation
can produce a biochar with larger surface areas and generate a large amount of surface
oxygen functional groups, which frequently serve as active adsorption sites for pollutant
removal [129].
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Another physical process, like steam activation, is gas purging, in which gases (such
as carbon dioxide) are mixed with the accessible amorphous carbon at the biochar surface
in a restricted oxygen environment to produce carbon monoxide [130]. Moreover, carbon
monoxide formation can increase the biochar surface area, improving its microporous
structure and pore volume [27].

2.4.2. Chemical Activation

The most typical route for modifying the type and number of functional groups at
the biochar surface is chemical activation, which involves doping a chemical agent into its
structure. In this process, the raw material (i.e., biomass) is impregnated with a chemical
agent, and the combination is subsequently thermally treated to obtain a biochar-doped
material [129]. During the process, the chemical agent can act as an activator, which
favors sample dehydration and prevents the generation of tar and volatile chemicals, thus
increasing the yield of the carbonization process [131]. In addition, these activators can
be used to increase the biochar-specific surface and pore volume and generate functional
groups in its structure.

Depending on the final purpose of the carbonaceous material, acid or alkali activation
can be employed. When soil amendment or water purification (heavy metal or colorant
adsorption) is performed, acidic activation is preferred over alkali activation [132]. Alkali
activation is more related to producing materials for energy storage [133,134] or electro-
chemical processes because of their high capacitances [132,133]. The impregnation of
specific elements or promoters to increase biochar adsorption capacity has been widely
reported for water purification. Figure 3 describes some biochar modification routes.
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As previously mentioned, the most common activators are alkalis (KOH, NaOH, and
ZnCl2) [130] and acids (citric, nitric, sulfuric, and phosphoric) [119,135,136]. H3PO4 is
commonly used as an activator because it can promote the bond breakage processes while
maintaining the internal pore structure [137]. The distribution of chemical agents in the
precursor before carbonization plays a vital role in the final product’s porosity improvement
and functionality [138]. According to Fierro et al. [139], the effect of the added quantity of
phosphoric acid for the activation of carbon derived from rice straw is essential to increase
its yield until a certain quantity. When they used a H3PO4: biomass ratio equal to 1 (ranging
from 0 to 1.6), the carbon yield increased by up to 10%.

Moreover, when the ratio was more significant than 1, an increase in the percentage
of the carbonization yield was not observed. However, the specific surface area of the
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carbonaceous material increased from 520 to 786 m2/g. In this work, the volume of the
pores was highly variable, and no tendency to deformation was observed. Likewise,
Zakaria et al. [140] have reported that the effect of phosphoric acid to obtain mangrove-
based activated carbon (with the H3PO4: precursor ratios of 3, 4, and 5) on its production
yield and surface characteristics are also notable. They observed a gradual decrease in the
yield of activated carbon (45–41%) as the ratio increased from 3 to 5. Other authors have
also reported this fact [141–144]. Thus, it is noticeable that this trend is independent of the
raw material. However, the carbon production yield depends on the raw material, as seen
in Table 4.

Table 4. Enhanced carbon production yield by activation with H3PO4.

Raw Material H3PO4: Biomass
Impregnation Ratio

Yield
(%) Ref.

Rice straw 1.0 51.9 [139]

Mangrove pile 3.0 44.7 [140]

Paulownia wood 1.0 42.0 [143]

Olive stone 1.5 36.8 [141]

Apricot shell 1.0 26.2 [144]

Jackfruit peel waste 1.0 56.3 [142]

Rubber wood sawdust 1.5 63.0 [145]

According to the activated biochar definition [1,5–7,10], only rice straw, jackfruit
peel waste, and rubber wood sawdust are considered activated biochar. The activation
mechanism is related to the H3PO4:biomass ratio, temperature, and time [140,143,145,146].
Textural and morphology features are affected depending on time contact and temperature.
Low activation time and temperature result in incomplete carbonization and a higher
yield [146,147]. An appropriate H3PO4:biomass ratio, temperature, and activation time
lead to improvement of the surface area and pore volume. However, beyond that, those
properties can decrease, and it is because the increase in pore size leads to the collapse of
the tiny pores [146].

H2SO4 and HNO3 have also been employed as activating agents of biochar. In general,
the presence of H2SO4 during the biochar synthesis does not alter its structural properties
(e.g., specific surface area and pore volume). However, this acid promotes the sulfonation
reaction, generating polar functional groups (e.g., sulphonic groups –SO3H) at its sur-
face [119,148,149], which, in turn, enhances its performance for several applications like ion
and pollutant adsorption [148,150,151], biodiesel production [152,153] and other catalytic
processes [119,154]. Likewise, HNO3-based species can modify the physicochemical prop-
erties of biochar-based materials and, thus, their performance in a specific application. Its
presence promotes the generation of many types of surface functional groups through the
oxidation and nitration of aromatic rings on the surface of biochar-based materials [132].

Moreover, HNO3 can remove partially combusted volatiles and impurities from the
surface of biochar, enhancing its surface area and pore volume [155]. Güzel et al. [156] and
Hadjittofi et al. [157] have demonstrated that nitric acid-activated biochar-adsorbents can
effectively remove methylene blue and Cu2+ from aqueous solutions, respectively. In both
cases, the activated carbonaceous materials exhibited higher adsorption capacities than
non-activated biochar, attributed to the larger surface area, the lower point of zero charges,
and more oxygen functional groups, like carboxylic, phenolic, and lactonic moieties.

On the other hand, using bases during the biochar activation can generate positive
electrostatic charges on their surface, which generates a solid affinity for adsorbed neg-
atively charged pollutants [119]. Among the bases used as biochar activators, KOH has
been widely used because of the special features that it gives to biochar. Biochar properties
(e.g., textural and morphological) can be improved using this chemical. The activation
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properties depend on the KOH: biochar ratio, temperature, and time [158–160]. Porosity de-
velopment is associated with gasification (CO2 production) [161]. Different authors report
different values of reached specific surface areas: 621 m2/g [161], 912.73 m2/g [159], and
2201 m2/g [160]. Their results differ due to the previously mentioned parameters and the
synthesis process. Higher surfaces are obtained when the first raw material is converted to
biochar followed by a post-chemical activation (KOH) [158,160] rather than direct one-pot
pyrolysis and chemical activation [159,161]. Likewise, Trakal et al. [162] studied the effect
of chemical activation on the removal efficiency of Cu from an aqueous solution using
pure amorphous biochar and activated biochar (BCact). In this work, chemical activation
with 2 M KOH substantially raised the total pore volume of biochar, obtaining values of
0.01 and 8.74 mL/g for amorphous biochar (surface area = 9.80 m2/g) and BCact (surface
area = 11.6 m2/g), respectively. These results correlated with the Cu adsorption capacity,
which was more significant for BCact (10.3 mg/g) than that obtained with amorphous
biochar (8.77 mg/g).

2.5. Properties That Biochar Modification Processes Can Improve

Biochar modifications can enhance its structure and physicochemical properties (e.g.,
an increase in the surface area, the generation of oxygen-containing functional groups, and
the increase in aromaticity, among others [163]), favoring its ability to adsorb contaminants,
such as heavy metals [164]. It is due to generating active sites for specific uses, like in
catalysis, water treatment, anaerobic digestion, soil remediation [93], supercapacitors, and
fuel cell applications [118].

The pore size and surface functional groups of biochar are significant features that
influence its efficiency as a pollutant adsorbent [165,166]. The surface functional groups in
biochar are responsible for their strong metal adsorption ability [164]. Metal adsorption by
biosorbents can occur via complexation between metals and different functional groups
on the biosorbent surface or through electrostatic attractions between metal cations with
negative charges and the functional groups at its surface [163]. According to Choudhary
et al. [167], functional groups can act as adsorption sites for metal attraction and are located
throughout the biochar matrix. In this sense, it is necessary to smash the biochar structure
to expose a higher amount of functional groups and, therefore, to promote its efficiency for
pollutant removal [167]. Considering this fact, heavy metal adsorption by biochar can occur
at its surface (outer pores) as well as within the pore structure of the carbonaceous mate-
rial (inner pores), depending on the type and amount of surface functional groups [164].
Likewise, the removal of other types of pollutants, like dyes [140,168,169], oil [170], pes-
ticides [171], and pharmaceuticals [93,172], using biochar can occur through monolayer
adsorption. During these treatment processes, the chemisorption predominates through
the complexation, coordination, ion exchange, and chelation between pollutants and the
carbonaceous materials surface, depending on the functional groups and the structural and
other physicochemical properties of the biosorbents. These biochar properties depend on
the raw material, synthesis method, activation routes, and the use of dopants, composites,
and additives described below.

2.6. Dopants, Composites, and Additives Used to Improve Biochar Properties

Many attempts have been made to activate biochar without external doping agents,
such as gas, steam, microwaves, acids, alkalis, and oxidants [118,129]. On the other hand,
adding other materials to the biochar structure has been a novel strategy to produce
composites with interesting properties, which can be used in several applications. Some of
these strategies and applications of the carbonaceous materials are described in Table 5:
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Table 5. Some chemicals used to modify the properties and applications of biochar samples prepared
by pyrolysis.

Raw Materials Improvement Properties
Method Applications Ref.

Sludge-based
Physical activation with CO2

Chemical activation with
CH3COOK

Adsorption of Pb2+

from an aqueous
solution

[127]

Corn cobs, stalks, and reeds Acidic activation (H2SO4) Sodium ions removal [148]

Giant reed stalks H2SO4
(post-combustion) Removal of ammonium [150]

Peanut shells H2SO4
(post-combustion) Toxic organic pollutants [151]

Weeds HNO3
(post-combustion)

Methylene blue
adsorption [156]

Cactus fibers HNO3
(post-combustion) Cu2+ adsorption [157]

Pomegranate residue;
grapefruit peel

KOH (post-combustion);
KOH + Toluene

(post-combustion)
Battery performance [149]

2.6.1. Dopants for Biochar

Adding a precursor or dopants can improve the physicochemical properties of biochar-
based materials. Dopants promote the carbonaceous material’s reactivity, making it an
interesting material for catalytic applications. Metallic and non-metallic dopants have been
widely used. For example, the modification of biochar with transition metals, like iron,
can enhance its specific surface area and the adsorption affinity. In contrast, modifications
with non-metals and alkali/alkaline earth metals can decrease the property above [173].
Mašek et al. [44] have reported that potassium doping can increase the carbon-sequestration
potential of biochar by 45%, making it an important strategy to prevent global warming.

When dopants modify biochar, its functionality can be altered and could improve its
performance for several environmental and energetic applications. Minerals, inorganic
species, metals, and metal oxides have been the most common dopants to functionalize the
biochar structure. Their presence in the carbonaceous matrix displays a significant improve-
ment in adsorption performance, as well as in the selectivity of certain pollutants [174].
Jha [175] studied the effect of three chemical dopants on pollutant absorption using biochar-
based adsorbents. These dopants were zinc oxide (ZnO), thiol (–SH), and manganese oxide
(MnO2), which exhibited the highest pollutant removal. Other types of dopants have been
used to promote the physicochemical properties of biochar and, therefore, its performance
in a specific application. Figure 4 shows some dopants and precursors used to enhance the
biochar surface.

Doping techniques and procedures, such as impregnation, are the most common
methods used for generating changes in the structure of biochar. Di Stasi et al. [176]
produced activated biochar by wet impregnation using cerium nitrate hexahydrate or urea
as dopant agents. The aqueous solutions were stirred at 80 ◦C until the water evaporated
entirely. Subsequently, the samples were dried at 110 ◦C and then calcined in a reactor at
550 ◦C for 3 h in an inert environment (N2 atmosphere).
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For water purification, well-developed porosity and hydrophobic surfaces are required
to effectively enhance the adsorption capacity of organic or inorganic pollutants on biochar-
based sorbents. The adsorption of inorganic or polar organic contaminants requires the
presence of surface oxygen functional groups to improve the electrostatic attraction [60].
Unfortunately, sometimes biochar has a moderate to low surface area and a limited number
of surface functional groups, which limits their performance [129]. For this reason, it
is necessary to functionalize the biochar surface to improve its properties and, thus, its
performance in a specific application. The surface chemistry of biochar can also be altered
by doping heteroatoms such as N, P, S, and metal oxide from various sources [120]. Some
modifications have been proposed to improve the adsorption capability of biochar-based
materials, which are described below.

2.6.2. Iron-Doped Biochar

Among the dopants used during biochar synthesis, one of the most common and
effective has been iron and its species, like iron oxide (Fe2O3) [177–179].

The presence of iron species in biochar can promote several properties and enhance its
effectiveness in various applications. Iron species on the biochar are crucial in immobiliza-
tion mechanisms and redox reactions [180–182]. They can enhance the biochar’s ability to
retain essential plant nutrients, such as nitrogen and phosphorus, by forming complexes
with nutrient ions, such as nitrates and phosphates [183]. In addition, iron can help buffer
the pH of soils. It acts as a pH stabilizer, preventing extreme fluctuations in soil acidity or
alkalinity [184]. Iron can reduce or oxidize various metals and organics. In the presence of
iron, contaminants like arsenic or nitrate can undergo redox reactions that enhance their
removal.

Table 6 presents diverse Fe-doped biochar samples from various feedstocks, detailing
synthesis conditions and contaminant removal efficiencies. Remarkable examples include
peanut hulls, which achieve 98% removal of Cr6+ through hydrothermal carbonization
(HTC), and oak wood/bark biochar, which exhibits high removal rates (>98%) for Pb and
Cd via pyrolysis and impregnation processes.
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Table 6. Fe-doped biochar samples and their synthesis conditions and removal efficiencies.

Feedstock Fe Precursor Synthesis Conditions Contaminant
(Removal, %)

Adsorption Mechanism
Proposal Ref.

Pomelo peel FeCl3
HTC
T = 200 ◦C; t = 5 h

Rhodamine B
(>95%) Physical adsorption [185]

Wheat straw FeSO4

Pyrolysis
T = 800 ◦C; t = 1 h
Heating rate: 10 ◦C/min

Acid orange
(98%)

Complexation
Magnetic interactions [186]

Rice straw bio-
mass

FeSO4 and
FeCl3

Pyrolysis
T = 500 ◦C; t = 1 h
Heating rate: 10 ◦C/min

As3+

(94%)
Electrostatic interactions [181]

Peanut hulls FeCl3
HTC
T = 220 ◦C; t = 12 h

Cr6+

(98%)
Chemisorption

Electrostatic interactions [187]

Rice and wheat
husks FeCl3

Pyrolysis
T = 600 ◦C; t = 1 h

As3+

(>90%)
Complexation [188]

Oak wood and oak
bark FeSO4

Pyrolysis and impregnation
T = 450 ◦C; t = 5 h

Cd (90%)
Pb (>98%) Electrostatic interactions [189]

Walnut shells FeCl3
Pyrolysis
T = 800 ◦C; t = 1 h

Hg0

(15%)
Physical and chemical

adsorption [190]

Corncob Fe(NO3)3
Pyrolysis
T = 600 ◦C; t = 2 h

Cr6+

(27–100%)
Ion exchange

Electrostatic interactions [178]

Wood wastes FeCl3
Pyrolysis
T = 600 ◦C; t = 2 h
Heating rate: 5 ◦C/min

p-nitrophenol
(85%) Complexation [179]

Maize straw FeCl3
Pyrolysis
T = 500, 700, 900 ◦C; t = 2 h
Heating rate: 5 ◦C/min

long-chain per-
/polyfluoroalkyl

substances
(95–100%)

Electrostatic interactions
Complexation [182]

Date palm fronds FeSO4
HTC:
T = 200 ◦C; t = 3 h

Methylene blue
(45%)

π–π interactions
Ion exchange

Hydrogen bond
interactions

[191]

2.6.3. Nitrogen-Doped Biochar

Nitrogen (N) doping has attracted much attention as it can enhance the characteristics
of carbon-based materials [192]. Because of the significant electronegativity of N, electron
modulation can improve the surface polarity of biochar and generate unique electronega-
tivities [193]. Moreover, N-doping into the biochar matrix can alter its electronic structure,
enhancing its interaction with pollutants [194]. In addition, introducing N heteroatoms
into the ordered sp2-hybridized graphite structure can modify the electrical charges of
the original electron network due to the difference in electronegativity. Thus, unbalanced
charged areas throughout the carbon structure can result in an electroactive state that may
be used for various practical purposes. Likewise, it has been found that N-doping can
improve the catalytic activity of nanocarbons, favor nanomaterial dispersion, and increase
the detection limit of sensors [195].

The most common synthesis method for N-doped carbonaceous materials is the
thermal decomposition of an inherent N-rich precursor [192]. It involves chemically pre- or
post-treating biochar with ammonia, urea, melamine, or an N-containing organic polymer
to add exogenous nitrogen into the carbon structure [196].

2.6.4. Phosphorus-Doped Biochar

Another way to enhance the biochar properties and performance in a specific ap-
plication is by doping phosphorus species into the biochar structure. Including these
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phosphorous-based dopants aims to improve the pollutant removal capacity of biochar.
Phosphoric acid (H3PO4) is a typical dopant that enhances biochar properties. Fan
et al. [197], have prepared a series of novel N- and phosphorus-enriched biochar nanocom-
posites via co-pyrolysis with different ammonium polyphosphate (APP) weight ratios.
They used the mixture of phosphorus and N dopants to improve the Pb2+ adsorption on
the APP-doped biochar, observing that the Pb2+ removal efficiency of this last sorbent
(723.6 mg/g) was significantly enhanced compared to that of the unmodified biochar
(264.2 mg/g).

2.6.5. Composites for Biochar

Adding a composite material to the biochar structure can be an interesting enhance-
ment strategy to improve its environmental remediation efficiency. Metal composites (e.g.,
Fe2O3 and iron sulfide), minerals (e.g., kaolinite), and layered double hydroxides (LDH)
have been the typical composites used to promote the performance of the carbonaceous
material during soil remediation (resulting in fertility improvements) and wastewater
treatments [198]. LDHs are anionic clay minerals made up of positively charged metal
hydroxide layers and anions in the interlayer gap to neutralize charge [199]. In pollutant
adsorption, various LDH-biochar composites with divalent and trivalent metal cations (e.g.,
Mg-Al, Mg-Fe, Zn-Al, Ca-Al, and Ni-Fe) have been frequently used [200].

2.6.6. Other Additives for Biochar Modification

Other additives, such as phosphorus, zinc, and calcium species, can be added to
biochar during its synthesis to improve its properties and broaden its applicability [201].
For example, adding calcium oxide to biochar followed by a heating process at 450 ◦C can
generate a more stable carbonaceous material with fewer oxygen functional groups [202].
According to Li et al. [203], adding mineral additives to biochar promotes carbon retention
and the stability of the solid in terms of carbon sequestration. They studied the use of
kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca-(H2PO4)2] as additives
in biochar obtained from rice straw biomass. These three minerals are frequently used to
enhance soil quality and remediate soil and water pollution [204]. Likewise, adding these
chemicals to biochar can improve the stability of the biochar-based material and, thus, its
efficiency in removing pollutants [8].

3. Main Uses of Biochar
3.1. Biochar for Soil Remediation (Crop Improvement)

The presence of biochar can enhance soil characteristics and, at the same time, increase
crop biomass and improve disease resistance. Biochar may improve soil fertility [205], soil
quality (e.g., pH [40], cation exchange capacity (CEC), and water holding capacity [206]),
and plant development [207,208]. Recently, biochar has been used to treat soil contaminated
with heavy metals and organic contaminants [43]. Figure 5 shows the primary mechanisms
for the remediation of contaminated soils containing heavy metals and organic pollutants
using biochar. As seen here, precipitation, electrostatic interaction, and ion exchange are
the most common mechanisms that describe soil remediation using biochar.

3.2. Biochar to Remove Pollutants in Water and Wastewater

Sources of water pollution can be classified in different ways. The most important
sectors that generate wastewater or contribute to its pollution are domestic, agricultural,
and industrial [209,210]. The word “contaminant,” according to the Safe Drinking Water
Act, is defined as any physical (sediment or organic material suspended in the water),
chemical (nitrogen, bleach, salts, pesticides, metals), biological (bacteria, viruses, protozoa,
and parasites), or radiological (cesium, plutonium, and uranium) substance or species
in water [211]. Some pollutants in drinking water may be dangerous or toxic at specific
concentrations in drinking water, while others can be innocuous. The presence of pollutants
does not always imply that the water is unsafe to drink. However, it is necessary to
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consider how to remove them. Table 7 shows the sub-classifications and various sources of
water pollution.
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Table 7. Sources of wastewater generation [143].

Agricultural Source Domestic Source Industrial Source

Poultry waste Washing/laundry Fertilizer
Piggery waste Shower Pulp and paper
Silage liquor Kitchen Textile, tanneries

Dairy farming waste Toilet Dye processing
Vegetable waste Septic tank Food processing

Firewater School Petrochemical/oil industry
Sediment run-off Hospitals Crude oil extraction/refinery
Nutrient run-off Hotels/restaurant Metallurgical industry

Commercial fertilizer Small business activities Plastics/polymer industries

Biochar’s physical and chemical properties are influenced by the feedstock, synthesis
method, and activation procedures, and its adsorption capacities are also influenced.
This carbonaceous material can be used to remove a wide range of organic (agricultural),
inorganic (toxic gases in the oil industry), and microbiological (pathogen) pollutants [213].
Table 8 describes some examples of types of contaminants in water that can be removed
using biochar-based materials.

Table 8. Frequent pollutants of water generated in industrial areas [145].

Type of Pollutant

Organic Inorganic Microbial

Dye, humid substances Heavy metals Bacteria
Phenolic compounds Inorganic ions Mushrooms
Petroleum surfactants Pb2+ Salmonella

Pesticides, pharmaceuticals Zn2+ Enterococcus faecalis
Compounds Cd2+

In addition to classifying the origin of wastewater, it is necessary to subdivide the types
of contaminating agents in water and their effects on the hydric fluid. Table 9 describes the
main contaminating agents, such as organic and inorganic agents, and their environmental
effects.

Table 9. Polluted water and its environmental effects [146–149].

Water Pollution
Type Source of Pollution Polluting Agent Effects on Humans and

Environment Damage

Municipal Human and animal
wastes

Infectious agents
(pathogens)

Can cause waterborne
diseases

Agricultural Sewage, animal
feedstocks

Oxygen-demanding
waste

Deplete oxygen needed
by aquatic species

Industrial Oil, gasoline, plastics Organic chemicals Add toxins to aquatic
systems

Industrial Acids, salts, metal
compounds Inorganic chemicals Add toxins to aquatic

systems

Agricultural Nitrates and
phosphates fertilizers.

Plant nutrients,
agricultural run-off

Cause excessive growth
of algae

Agricultural Soil, silt Sediments,
suspended solids

Disrupt photosynthesis,
food webs

Thermal
Discharge heated water

Nuclear power plant
discharges

Radioactive
pollutants, heat

Make species vulnerable
to diseases
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Biochar treatment has a high potential for wastewater treatment [47,214]. Compared
to conventional low-cost technologies (such as sand filtration, boiling, sun disinfection,
and chlorination), water treatment using biochar has numerous potential advantages:
(1) biochar is a low-cost and renewable adsorbent made from readily available bioma-
terials and skills, making it suitable for low-income communities; (2) existing methods
primarily remove pathogens, whereas biochar removes chemical, biological, and physical
contaminants; and (3) biochar preserves the organoleptic properties of water, whereas exist-
ing methods generate carcinogenic by-products (e.g., chlorination) and increase chemical
contaminant concentrations (e.g., boiling) [213].

Biochar has been widely explored as an adsorbent for removing contaminants from
wastewater due to its unique features, such as a large surface area, well-distributed pores,
and a high abundance of surface functional groups [215]. The oxygenated functional groups
(OFGs) in biochar are essential active sites for removing contaminants from the water via
interfacial adsorption/redox reaction [214,216].

3.2.1. Mechanisms to Remove Pollutants from Water with Carbonaceous Materials

Low-cost biochar has emerged as the substitute for activated carbon for the removal
of organic pollutants such as volatile organic compounds, aromatic dyes, hydrocarbons,
agrochemicals, and others. Regarding inorganic contaminants, biochar has been success-
fully used for the removal of sulfides, ammonia, nitrates, phosphate, and heavy metals [92].
The application of biochar as an efficient contaminant remover depends on its remarkable
characteristics, e.g., high specific surface area, cation exchange capacity, active functional
groups, microporosity, and electrostatic interactions, among others. These properties gov-
ern the binding of polar compounds on the surface of biochar, which immobilizes the
contaminants. Because of all this, biochar has been proposed in many reports as an efficient
adsorbent to remove different types of organic and inorganic contaminants from water
and soil in the near future. The adsorption of inorganic pollutants on biochar results
from stoichiometric ionic exchange, electrostatic attraction, surface precipitation, surface
sorption, and complexation [217]. In this sense, the adsorptive capabilities of biochar are
influenced by various factors, including hydrophobicity, alkalinity, ion exchange capacity,
and elemental compositions [218]. Surface functionality can also alter the biochar sorp-
tion capacity [219]. Rajapaksha et al. [220] have reported a mechanism of contaminant
removal in water through the strong interaction between organic compounds and carbon
membranes. A recent report [92] has summarized these processes to remove inorganic
contaminants as a combined effect of several types of interactions, such as electrostatic
interactions due to a high dependency on the point of zero charge, surface sorption because
of the diffusion of the metal ions onto the pores of the sorbent, and chemical bonds with
active functional groups. Also, via cation exchange as a result of the replacement of positive
charges on the surface of biochar by metal ions, complexation takes place because of the
oxygen functional group (for example, carboxyl and phenolic) with high efficiency of
binding heavy metal ions. On the other hand, the removal of organic contaminants can also
be connected with the combination of different interactions. These interactions are mainly
hydrophobic interactions, pore filling, partitioning, electron donor and acceptor, and elec-
trostatic interactions. The contaminants can be attracted to the carbonaceous membranes
(e.g., graphene and biochar) through intermolecular forces, such as non-covalent bonds,
hydrogen bonds, van der Waals forces, π–π stacking, and hydrophobic interactions. The
mechanism of removal of contaminants by carbonaceous materials is illustrated in Figure 6.
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3.2.2. Biochar Used at Medium and Large-Scale in Water Filtering Process

The global demand for safe and quality drinking water has become increasingly im-
portant due to the growing world population and anthropogenic activities. Water pollution
by synthetic organic compounds, such as pesticides, medicines, and fuel components, is an
increasing concern worldwide because these chemicals can bioaccumulate in the human
body, causing cancer and other disorders. In recent years, many researchers have focused
on the applications of biochar as a potential and efficient adsorbent to remove contaminants
from aqueous solution. Due to its remarkable properties, numerous reports have been
published confirming the many advantages of biochar for environmental uses, and it has
been widely studied in removing both organic and inorganic contaminants [64]. As an
efficient adsorbent, it has been used to immobilize heavy metal ions, even as a catalyst for
the degradation of complex organic compounds. Nevertheless, the industrial application
of these carbonaceous materials requires significant infrastructure expenditures [222,223].
Considering this fact, creating filters with carbonaceous materials at different scales be-
comes an excellent option to mitigate or reduce aquatic pollution at different scales. The use
of biochar filters has been suggested as an option to replace both treatments of drinking wa-
ter: the conventional treatment (e.g., coagulation-flocculation, filtration, and chlorination)
and the advanced treatment (e.g., membrane filtration, ozonation, and biofiltration) [3].

Some authors have also compared the advantages of using biochar for water treat-
ment to low-cost methods [213]. They consider that biochar treatment has several merits
compared to methods such as sand filtration, boiling, solar disinfection, or chlorination
because, although some methods remove pathogens, biochar removes chemical, biological,
and physical contaminants. Moreover, it maintains the organoleptic properties of water,
while other treatments, such as chlorination, might produce carcinogenic by-products [213].
Recent work has focused on using engineering biologically enhanced biochar (BEB) for
biological water treatment [210], focusing on the scope, potential benefits, and challenges
of sustainable water treatment using BEB. The work examines BEB’s dynamic and complex
biofilm–biochar interactions in water treatment. The authors also suggest the use of BEB
instead of biological activated carbon (BAC) in the tertiary treatment of drinking water
due to the immobilization of microbes on the surface facilitating contaminants removal
via a combined adsorption and biodegradation process, on the basis that the biofilms
can degrade and remove a wide range of organic, inorganic, and biological waterborne
contaminants.

Inexpensive and available biochar and woodchips were used for anaerobic wastewater
filtration, and their suitability was evaluated compared to gravel as a standard reference
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material [224]. Filters were fed with raw sewage from a municipal full-scale wastewater
treatment plant in Germany at room temperature. The performance of the biochar filters
was much better over the experiment compared to woodchip and gravel filters concerning
chemical oxygen demand, total organic carbon, turbidity, and fecal indicator bacteria
removal efficiency, showing the superior properties of biochar for wastewater treatment.
Advanced oxidation processes are proven to be efficient in water treatment (reduction of
toxic, organic pollutants) and elimination of emerging concerns like pollutants (toxins,
pesticides, dyes, etc.) and include UV/O3, UV/H2O2, Fenton, photo-Fenton, nonthermal
plasmas, sonolysis, photocatalysis, radiolysis, supercritical water oxidation processes,
etc. [225]. In this point, it is very important to mention that advanced oxidation can be
achieved using biochar because of the radical groups, mainly hydroxyl radical, introduced
by chemical treatments such as acid or alkali hydrolysis. Biochar functionalized with
hydroxyl groups enhances soil structure and reduces soil erosion, facilitates water and
nutrient retention, etc.

4. Potential Drawbacks and Future Perspectives of the Use of Biochar-Based Materials

In recent years, biochar has gained significant attention as a promising alternative
to mitigate environmental and climate change issues through efficient and inexpensive
water treatment and soil amendment methods. However, despite its advantages, using this
carbonaceous material can generate long-term drawbacks, especially for soil health and
ecosystems [25,226]. One of the potential drawbacks of biochar is related to the synthesis
conditions and the use of chemicals to improve its physicochemical properties [115]. For
example, for the pyrolysis process, it is necessary to reach high temperatures (above 400 ◦C)
under anoxic atmospheres [58,79,90,221]. To avoid these conditions, biochar-based materi-
als can be prepared using HTC. However, it is necessary to use a large amount of water
to carry out the washing cycles of the carbonaceous material. In addition, hydrothermal
reactors may be used by HTC to obtain biochar, which, until now, has only been used at a
laboratory scale. Due to this, the HTC of biomass has not been able to be used on a large
scale. Another potential drawback related to biochar synthesis is the available feedstock.
Although biochar can be produced from any biomass, the process yield is generally less
than 60% [119,133]. For this reason, a more significant amount of biochar would be needed
to obtain a considerable amount of biomass, which, in many cases, can be used directly as
fertilizer or organic fertilizer.

On the other hand, some drawbacks are related directly to the biochar application. One
of them is the generation of sludge containing biochar with contaminants after adsorption
processes, which, sometimes, must be treated or incinerated, generating a large amount of
gases that can harm the environment [2]. Likewise, the efficiency of biochar is sometimes
lower than that of other types of adsorbents, like zeolites [227–230], clays [32,50,231,232],
and hydrogels [233–235], which can be even cheaper than the carbonaceous materials.

When biochar is used as a soil amendment, its application can affect the soil biota
because the carbonaceous material can potentially alter essential biogeochemical processes,
like nutrient cycling and decomposition [34,104]. According to Han et al. [41], high biochar
concentrations can inhibit the growth of specific microbial communities and favor others,
generating considerable changes in microbial diversity and function in soils. In addition,
biochar can influence nutrient dynamics and their interactions in soils. Its presence provides
a porous surface for nutrient adsorption and immobilization, making it less accessible to
plants [39,226]. Moreover, biochar may interact with pesticides and fertilizers, altering their
bioavailability and potential environmental effects [34,236]. Furthermore, the presence
of biochar in soils could modify their water-holding capacity, aeration, root penetration,
and aggregate stability [39,104]. For all these reasons, it is necessary to pay attention to
the type and amount of biochar used for soil remediation and not to considerably alter its
physicochemical properties.

Even though biochar is obtained from residual biomass, it can be produced from con-
taminated raw materials. In this sense, when this type of biochar is used in soil remediation,
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contaminants from the carbonaceous materials may lead to the introduction of pollutants
into the soil, generating potential environmental and human health risks [237,238]. There-
fore, careful selection of raw materials and monitoring pollutant levels are significant to
ensure the environmental safety of biochar application.

There is scarce information about long-term data on the biochar effects on soil health,
water, and ecosystems [239,240]. Hence, conducting long-term field research studies may
be crucial to evaluate the cumulative effects of biochar application and identify potential
unintended consequences. Considering the drawbacks of the synthesis and applications of
biochar, it is necessary to develop alternatives to improve its use, considering the principles
of sustainable development. Among them, one can consider:

• Optimizing biochar synthesis methods and their physicochemical properties: Research
studies are necessary to optimize the production processes for a carbonaceous material
with tailored properties for specific applications, avoiding the use of complicated
synthesis conditions and hazardous chemicals, as well as the generation of residues.
This includes understanding the effects of the type of raw materials, temperature
conditions, and post-synthesis treatments on the biochar properties and their efficiency
in the corresponding application.

• Understanding the complex interactions between biochar and water bodies and soil
biota is essential for predicting and mitigating potential negative impacts. This in-
cludes identifying microbial communities sensitive to biochar and developing alterna-
tives to minimize disruptions to soil biodiversity and water bodies [63,104].

• To quantify and analyze the effects of biochar on the availability, retention, and interac-
tions of soil nutrients with fertilizers and pesticides [60,69]. It enables the development
of biochar-nutrient management strategies to optimize nutrient use efficiency and
minimize environmental risks.

• To evaluate the long-term effects of using biochar on soil health, crop productivity,
and ecosystem services. This fact may provide enough data for sustainable biochar
management practices [239,240].

• Developing novel standardized biochar characterization and assessment protocols to
compare biochar-based materials produced from different raw materials with specific
synthesis methods and conditions [241,242]. This, in turn, could facilitate the devel-
opment of evidence-based recommendations for using different types of biochar in
specific applications.

• To address social, economic, and policy considerations necessary to ensure the sustain-
able application of biochar-based technologies [243]. It includes identifying potential
socioeconomic implications, assessing the costs and benefits of biochar use, and devel-
oping supportive policies that promote the sustainable production and utilization of
this carbonaceous material [226].

Therefore, although biochar has potential applications in improving soil and water
properties, mitigating climate change, and remediating contaminated environments, its
potential drawbacks must be identified and addressed. Future research efforts should opti-
mize industrial biochar production conditions and methods, understand its interactions
with water and soil biota and nutrient dynamics, evaluate its long-term effects on ecosys-
tems, develop standardized characterization protocols, and address social, economic, and
political considerations. By considering these challenges and understanding the long-term
effects of using biochar, it will be possible to ensure its use as a sustainable and responsible
application to mitigate environmental problems, maximizing its benefits and minimizing
its potential drawbacks.

5. Conclusions and Final Remarks

Biochar emerges as a product with high environmental value, which has a low cost and
is suitable for wastewater purification and soil amendment. This carbonaceous material has
a significant adsorption capacity for heavy metals and other industrial pollutants in polluted
water bodies. Biochar’s synthesis, activation, modification, and thermochemical treatment
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processes are crucial in obtaining the desired physicochemical properties. All these changes
can alter the material’s structure and, thus, the pollutant removal performance obtained
during the treatment. Biochar is typically used as an adsorbent. However, it can be used in
other wastewater treatment technologies, like advanced oxidation processes. Combining
primary and secondary treatment processes with biochar makes it possible to achieve high
removal percentages of any pollutants, toxins, or impurities in industrial wastewater. On
the other hand, current research has shown that adding dopants, additives, or composites
to biochar can improve its physicochemical, molecular, and structural properties. Likewise,
physicochemical or biological modifications of biochar can change its structural properties
(e.g., specific surface area and pore structure) or modify the type and concentration of the
surface oxygen functional group content, enhancing its performance in pollutant removal.

The type of raw material is essential to produce biochar-based materials with particular
physicochemical properties and characteristics and, therefore, with a specific use. Among
the raw materials used to obtain biochar, wood materials have been widely studied because
their high content of lignin, cellulose, and hemicellulose has allowed the production of
carbonaceous materials with high carbon content and high adsorption character. The
widely used technique to produce biochar has been the pyrolysis process since this method
favors high yields in biochar production. This process converts biomass into biochar with a
high fixed carbon content and stability, where 500–800 ◦C is the ideal range for pyrolysis
temperature in biochar production. On the other hand, HTC is also an interesting synthesis
method of biochar because it has many advantages compared to others. Among them,
the operating temperature is lower than pyrolysis, it is not necessary to control the inert
atmosphere during the carbonization, and the generation of functional groups at the biochar
surface can be controlled by varying the operating conditions.

Biochar can be used to treat agricultural and industrial wastewater. However, strate-
gies to maximize its adsorption capability and stability must be developed. Thus, in
recent years, the use of precursors, dopants, or additives during biochar synthesis has been
widely studied to improve the capture of chemical molecules that are difficult to treat using
conventional methods. Furthermore, modification and activation processes have been
considered promising alternatives to enhance biochar’s physicochemical and structural
properties and, therefore, its performance in removing pollutants in soils and water bodies.
Most current scientific investigations on biochar and its applications have been performed
at a laboratory scale because small-scale trials and studies should be conducted before
carrying out biochar applications on an industrial scale. Biochar is a promising alternative
to mitigate environmental issues since it improves the quality of water and soil, allows the
use of biomass waste, and adds value to it, meeting the aim of the circular economy.
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