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Abstract: The oil industry requires studies of the possible impacts and risks that exploration, exploita-
tion, and industrialization can cause to the environment and communities. The main objective of this
study was to assess the vulnerability caused by oil wells of the Salinas and La Libertad cantons in
Ecuador by proposing a multi-criteria spatial analysis methodology that would aid in land-use plan-
ning and management. The proposed methodology relates the variables of distance, identification of
gas emission from oil wells, permeability, and the state of oil wells (DIPS). The methodology consists
of: (i) the diagnosis of oilfield wells; (ii) environmental considerations of productive wells, wells in
temporary abandonment, and wells in permanent abandonment; (iii) the vulnerability assessment
of both intrinsic and extrinsic aspects of the wells; and (iv) the development of a vulnerability map
and recommendations for land management. The results showed 462 wells in the study area, of
which 92% were shown to be located in urban areas. Of the total, 114 wells were considered to be
productive wells, 89% of which are in urban areas. The vulnerability map identified the areas to be
addressed, which coincided with coastal and urban areas associated with oil production. Our main
recommendation is to elaborate land-use planning regulations and build safety infrastructure around
the wells to guarantee their distance from houses, beaches, and tourism-development sites. The
vulnerability map was shown to serve as an essential diagnostic for decision making in managing oil
territories, especially in coastal areas.

Keywords: vulnerability; oil wells; land-use planning; coastal area; sustainability

1. Introduction

The oil and gas industry searches for hydrocarbon reservoirs for exploitation world-
wide using prospecting techniques such as seismic exploration [1]. Once a reservoir has
been identified, wells and surface facilities are designed to exploit the oilfield [2]. Hydro-
carbons are transported through pipeline systems to refineries for conversion into fuels and
feedstock for other industries [3,4]. Oil and gas are exploited in the open sea or sedimentary
basins worldwide [5,6], but exploitation can also occur in and nearby urban areas [7,8].
Exploiting these energy resources is beneficial to humans’ economic development and
energy consumption [9,10]. However, exploitation can negatively impact society and the
environment [11]. A common example is offshore oilfields, which can potentially spill oil
into marine environments. Accordingly, researchers can use probability and simulation to
prevent and respond to these events [12].
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Vulnerability is defined as the susceptibility of a system to a specific hazard [13].
It can also be considered the risks a system faces when negatively affected by specific
disturbances [14]. The term also refers to potential loss or damage at either the individual
or societal level [15]. There are different vulnerability types: physical, social, economic,
and environmental [16]. Therefore, vulnerability studies are important for identifying
and assessing different levels of natural and industrial risks affecting people and the
environment [17].

There are different methods to determine the different types of vulnerabilities. For
example, the “Poverty Assessment Tools” method can be used to analyse poverty in
socioeconomics [18] and the analysis of macroeconomic risks using financial indicators has
been used in economics [19]. When it pertains to territories associated with industrial plants,
the vulnerability index helps assess the probability of risks [20]. Landslide vulnerability
assesses a potential damage index by relating physical and social vulnerability [21]. Other
methods include seismic vulnerability assessments, which relate variables such as building
materials, population, lithology, and faults to obtain a map of vulnerability to earthquakes
in a region [22]. In the case of floods, a vulnerability index can be obtained by relating the
variables of exposure, sensitivity and adaptive capacity [23]. In the case of fire, the authors
of previous studies have analysed vulnerability with the fire risk index, which considers
the ignition and evacuation phases [24]. In addition, vulnerability to noise can by assessed
by measuring the noise level and the effect of exposure to such noise on people [25].

Quantitative studies on environmental vulnerability have considered indicators such
as vegetation, soil, landscapes, and meteorological information and related them to the so-
cial economy to understand their socio-environmental impacts and aid decision making [26,27].
These studies have often used satellite images and mathematical models to generate en-
vironmental protection maps [28], e.g., mathematical vulnerability models allow for the
analysis of environmental impacts in cities and their relationship to the health of their
communities [29].

Urban areas are vulnerable to natural events and risks that are mainly generated by
anthropogenic activities [30]. As a result, vulnerability studies have been used to detect
hazards from natural events such as floods and earthquakes [22,31]. Climate change also
generates vulnerability in coastal areas due to sea-level rise, losses of territory, tourism, and
cyclones [32,33]. One example is the vulnerability of coastal aquifers’ caused by seawater
intrusion due to offshore oilfields’ hydrocarbon exploitation [34]. The metals present in
oil spills are toxic to the health of humans and animals alike because plants and humans
absorb them through the food chain [35]. In addition, oilfield workers can suffer from
fatigue, headaches, and high stress levels, among other symptoms [36].

The oil and gas industry can affect the environment and land use [37,38]. Of the
methodologies used to assess vulnerability in a territory due to oil activities, some are
focused on social, physical, environmental, and/or economic vulnerability; the coastal
or inland environment; and quantitative and/or qualitative measures. For example, the
authors of one study presented a model for assessing the economic vulnerability of oil-
importing countries to high oil prices per barrel due to different geopolitical and climatic
conditions [39]. Other models for assessing oil spill vulnerabilities consider environmental,
social, and economic aspects explicitly designed for coastal environments [40–44] and sen-
sitive areas such as forests [45]. Other models have been used to assess the vulnerability of
groundwater to oil activities [46–48] and watersheds to fracking in mountainous areas [49].
In addition, the authors of previous studies developed vulnerability models for cognitive
activity in children generated by the presence of petroleum products in the air [50]. There
have also been cases where the vulnerability of different vertebrate species and seabirds to
developing offshore platforms and oil spills was analysed [51–53].

Some models enable vulnerability assessments due to the presence of refineries in
coastal areas where physical, social, and environmental aspects are considered [54,55]. The
risk of gas pipelines to seismic events [56] and the vulnerability of these infrastructures
to abiotic and biotic factors that cause corrosion have been analysed using probabilistic
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methods [57]. Risk analysis has been used to evaluate the vulnerability of different oil
infrastructures to vandalism [58]. A more comprehensive comparison of methodologies
can be found in Supplementary Materials Table S1.

Researchers often seek to reduce the vulnerability generated by the oil and gas industry
to people and territories. For example, a study on the relationship between intensity and
sensitivity was conducted in Hassi R’Mel, Algeria [59]. Other studies have focused on
reducing vulnerability by reducing the area of operation of hydrocarbon activities in
protected areas such as the Yasuní National Park in Ecuador [60]. In the Czech Republic,
the Lbr-1 oilfield planned for CO2 storage was assessed for risk and vulnerability under
ISO 31000:2009 [61]. Other studies in Turkana, Kenya linked the interaction between
oil exploration/exploitation, conflict, water, and climate change vulnerability to their
communities. Small groups of people were surveyed, and these data were correlated with
temperature and precipitation data [62,63]. In Brazil, probability and numerical simulation
models were used to assess vulnerability to oil spills [45]. The authors of other studies on
vulnerability to oil spills have used probability to determine the environmental sensitivity
index [64]. Furthermore, socio-economic vulnerability due to extensive oil spills has been
studied by relating the number of establishments to high, medium, and low proximities to
oil spills and their levels of exposure [65].

In Santa Elena Province, Ecuador, the oil search and exploitation era began in 1911 with
the drilling of the Ancon 1 well [66]. The population grew near the oil infrastructure during
the time of peak hydrocarbon exploitation activities. In this context, our research question
was: how should one develop a methodology to help measure a territory’s vulnerability
due to oil wells in populated areas? This work was aimed to propose a methodology based
on the variables of distance (to populated areas and water bodies), identification of gas
emission from oil wells, permeability of soil around oil wells, and state of oil wells (DIPS)
to assess a territory’s vulnerability to oil wells using technical and environmental analysis
for area management. The proposed methodology was applied to a coastal area with oil
activity that coexists with urban areas.

The methodology was conducted in three phases: reviewing bibliographic information,
creating an inventory of wells, and assessing the conditions related to their geographical
environments. The DIPS methodology was used to consider the key criteria of the territory
associated with the influence of oil wells for subsequent application to the case study and
to obtain vulnerability maps.

Study Area

The study area is located at the centre of the coast of Ecuador (Figure 1). The Ancon
oilfield comprises a large part of the territory of Santa Elena Province (SEP). The terri-
torial extension of the province is 3665 km2 [67], of which 1200 km2 correspond to the
oilfield [68]. The cities of Santa Elena, La Libertad, and Salinas have a combined population
of 401,178 inhabitants [69]. The main economic activities in the SEP are tourism, mining,
oil production and refining, and fishing [70]. The parish of Ancon is a sector that belongs
to the Decentralised Autonomous Government of Santa Elena. The cultural heritage Santa
Elena in Ecuador is tied to its English architecture and the site of the country’s first oil
well [71].

The geological framework of SEP consists of soils and sedimentary rocks [72]. SEP is a
coastal region of Ecuador with significant geological complexity [73–75], with stratigraphic
successions and sequences ranging from the Upper Palaeocene to the subsidence of the
Progreso Basin [76]. Figure 2 shows the formations present in this area, listed according to
the following stratigraphic deposition: Ancon, Socorro, Passage Beds, Azúcar, Santa Elena,
Cayo, Calentura and Piñón. The Calentura Formation has potential as a hydrocarbon-
bearing rock, and the Socorro and Passage Bed formations are reservoir rocks [77]. The
Cayo Formation outcrops on the offshore front present clayey and calcareous shales with
secondary silicification. The Azúcar Formation has rocks of moderate tenacity, containing
alternating thin sandstone layers and black siliceous shales. The Ancon Group has clay
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Passage Bed, Socorro, and Seca formations. They have a sequence of greyish green clays,
thin sandstone layers with greenish-grey shales, and sandstones with shales in thick layers,
respectively [78]. The Tablazo Formation is the most outstanding in Santa Elena, and it
presents fine agglomerates, sandstones, and fossiliferous sands [74] used for construction
and handicraft materials. Finally, there are indications that the Ancon oilfield and the
Peru-Bank block belong to the same petroleum system, the Progreso Basin, which is part
of the Cretaceous–Paleogene [79]. Furthermore, the oil from the Ancon field has an API
gravity of 33.4◦ [80], so it is the highest quality oil in Ecuador.
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2. Materials and Methods

The methodology of this study consisted of three phases (Figure 3): Phase 1 focused on
reviewing scientific literature, determining vulnerability types, analysing the territory’s cur-
rent situation, and collecting available data (mainly regarding their geographical location)
from oil wells [81,82].

Phase 2 covered the characterisation of the oil wells. First was the classification of oil
wells into productive, temporarily abandoned, improperly abandoned, and permanently
abandoned wells. Then, this DIPS methodology identified the proposed variables; informa-
tion was collected in situ through focus groups and the Delphi method. The information
was provided by the community and experts on the environment, territory losses, risks,
and petroleum engineering [83,84].

Phase 3 was focused on applying the DIPS methodology, generating the vulnerability
maps of the study area, and proposing strategies for decision making in territorial management.
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2.1. DIPS Methodology Proposal

The DIPS methodology is qualitative (involving the people in a study area) [85] and
quantitative (because it measures and compares vulnerability) [86]. First, the DIPS variables
were integrated into a geographic information system (GIS) to obtain a vulnerability map
with discrete and continuous data using ArcGIS Pro 2.8.1 software, Environmental Systems
Research Institute, Inc. (ESRI), Redlands, CA, United States [87]. Then, a weight and rating
were assigned to each variable for the discrete data map.

2.2. DIPS Variables
2.2.1. Distance from Oil Wells to Populated Areas

This variable received the highest weighting, with a score of 5, because wells can
spill hydrocarbons and emit or concentrate gases that can affect the nearby populations
when exposed to certain pressure, temperature, and fluid volume [88,89]. In addition, to
determine the populated areas, the “populated area” class was selected from the current
land-cover and land-use data available in the governmental entity’s geoportals [90].

Subsequently, the proximity of oil wells to urban areas was determined using different
buffers in ArcGIS Pro. The methodology applied five buffer rings around the wells accord-
ing to the environmental laws of local entities [91,92], which define the radius of influence
of safety and affectation of the wells. The safety and buffer distances were defined by the
variables x1, x2, x3, x4 and x5 using the following expressions:

Equation (1): x1 corresponds to the minimum distance variable rmin, with a rating of 5.
It is suggested that this distance be greater than 10 m (m).

x1 = rmin, (1)
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Equation (2): x5 defines the largest buffer distance, rmax, which is considered safe and
feasible for land use, thus earning a rating of 1.

x5 = rmax to 2(rmax) (2)

Equation (3): d is the difference between the maximum and minimum distances
divided by the ranges used in DIPS.

d = (x1 − x5)/5 (3)

Equation (4): x2 corresponds to the second rank, with a rating of 4.

x2 = x1 to (x1 + d) (4)

Equation (5): x3 corresponds to the mid-range, with a rating of 3.

x3 = (x1 + d) to [(x1 + d) + 2d] (5)

Equation (6): x4 is the penultimate rank, with a rating of 2.

x4 = [(x1 + d) + 2d] to [(x1 + d) + 4d] (6)

2.2.2. Distance from Oil Wells to Water Bodies

Water bodies are in coastal and inland environments. In coastal environments, they are
linked with the sea and sea mouths [93]. On the other hand, in inland environments, water
is associated with lagoons and rivers [94]. The distance variable considers the distance of
oil wells to different surface water bodies that could be contaminated by hydrocarbons,
thus receiving a weight of 4. This distance was determined in ArcGIS Pro using three
buffer rings: the first ring corresponded to the first 10 m, with a rating of 3; the second
ring corresponded to a distance between 10 m and 30 m, with a rating of 2; the third ring
corresponded to a distance between 30 m and 100 m, with a rating of 1; and the final ring
corresponded to distances greater than 100 m, with a rating of 0.

2.2.3. Identification of Gas Emission from Oil Wells

Oil wells emit gas flows into the environment [95,96] that can be perceived by an area’s
inhabitants, causing health and environmental risks [97–99]. Accordingly, this variable
received a weighting of 3. In order to determine the presence of gases, focus groups in the
study area were asked to report the perception of gas odours in oil wells, assigning a rating
of 2 where they were perceived; otherwise, the rating was 0. The gas perception data were
georeferenced to nearby wells in ArcGIS Pro software.

2.2.4. Permeability of Soil around Oil Wells

Permeability is the ability of a medium to enable the flow of fluids from one point to
another [100]. As a result, hydrocarbons can infiltrate the ground during the exploitation
and permanent abandonment processes, affecting aquifers [101,102]. Therefore, this vari-
able was given a weighting of 2. In this variable, the “permeability” class was selected from
the hydrogeology data available in governmental entities’ geoportals [103]. As a result,
soils were classified as high permeability with a rating of 3, medium permeability with a
rating of 2, and low permeability with a rating of 1 [104].

2.2.5. State of the Oil Wells

The state of an oil well defines its productive condition, being classified as pro-
ductive, temporarily abandoned, improperly abandoned, and permanently abandoned
wells [105,106]. This variable was assigned a weight of 1. Productive wells can generate
some risk, so they received a rating of 3. Temporarily abandoned wells that can be produc-
tive were assigned a rating of 2. Improperly abandoned wells have no surrounding safety
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infrastructure and were thus assigned a rating of 1. Finally, permanently abandoned wells
comply with environmental requirements to ensure safety in their surroundings, so they
were assigned a rating of 0.

Table 1 shows the DIPS variables alongside their weight (ranging from 1 to 5, depend-
ing on the environmental impact) and rating.

Table 1. DIPS matrix for vulnerability generated by oil wells.

Variables Rank Rating Weight

Distance from oil wells to populated areas (Dp)

<x1 5

5
x2 4
x3 3
x4 2
x5 1

Distance from oil wells to water bodies (Dwb)

<10 3

4
10 to 30 2
30 to 100 1

>100 0

Identification of gas emission from oil wells (I) Sometimes 2
3No 0

Permeability of soil around oil wells (P)
High 3

2Medium 2
Low 1

State of the oil wells (S)

Producing wells 3

1
Temporarily abandoned wells 2
Improperly abandoned wells 1

Permanently abandoned wells 0

The ratings and weights of the variables were multiplied together to obtain the DIPS
variable score.

Equation (7) shows the product rating-weight score, where S is the score, R is the
rating, and W is the weight.

S = R × W (7)

The total score (St) was calculated with the sum of the score in each variable, as
indicated in Equation (8), adapted from the DRASTIC (depth–recharge rate–aquifer–soil–
topography–zone’s impact–hydraulic conductivity) method, and used to determine the
vulnerability of aquifers [84]. The maximum St value was 52, resulting from the multi-
plication of the highest value in rating in the variable by its weight. The minimum value
was 7, resulting from the multiplication of the value of the weight of each variable by the
minimum value of its rating.

St = DpR × DW + DwbR × DwbW + IR × IW + PR × PW + SR × SW (8)

The valorisation in this methodology was classified as high, medium, and low vulner-
ability, as shown in Table 2.

Table 2. Classifying vulnerability according to score.

Vulnerability Score Colour

High (H) 37–<52 Red
Medium (M) 22–<36 Yellow

Low (L) 7–<21 Green

Finally, all the data were integrated into ArcGIS Pro to generate the vulnerability map.
As part of this integration process, it was necessary to convert all data to raster to assign the
respective ratings and weights of the variables. In addition, a Kernel density analysis was
carried out to create a raster of continuous data based on an oil well’s status. Subsequently,
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the preliminary raster data were merged using the Raster Calculator tool, thus obtaining
the vulnerability map of the region.

3. Results
Application of the DIPS Methodology

Salinas, located in the most outstanding area of continental Ecuador, is one of the most
visited places in SEP due to its landscapes and beaches [107]. The local economy is based
on fishing activity, handicrafts, and tourism [108]. In La Libertad, there is infrastructure for
oil production, storage, and refinement. Salinas and La Libertad had estimated populations
in 2020 of 94,590 and 117,767, respectively [69]. The study area has 462 oil wells, with
425 in populated areas, 101 productive wells, 320 temporarily abandoned wells, and 4
permanently abandoned wells. Outside the urban areas, there are only 13 productive
wells, 17 temporarily abandoned wells, and 7 improperly abandoned wells. In Salinas and
La Libertad, the safety or buffer distance from wells to civil infrastructure must be 30 m
according to the law of ordinance that regulates land use and urban development in areas
of hydrocarbon activity [91]. However, in other cities with oil wells, such as Los Angeles,
USA, the safety radius defined in local regulations is 200 feet (60 m) [92]. Table 3 shows the
buffer distances of the wells to populated areas for Salinas and La Libertad according to
the equations of the DIPS methodology.

Table 3. The distances of oil wells to populated areas for Salinas and La Libertad based on the oil
exploitation law and DIPS equations.

Distance (m) Rating

General Buffers Salinas–La Libertad Buffers Rating

<x1 <10 5
x2 10–14 4
x3 14–18 3
x4 18–30 2
x5 30–60 1

The DIPS methodology was applied to 462 oil wells in the territory. The wells were
classified as productive, temporarily abandoned, improperly abandoned, and permanently
abandoned wells that were distributed in different areas, e.g., close to the sea, inside
populated areas, and outside populated areas, as shown in Figure 4.

Figure 5 shows the vulnerability map obtained using the DIPS methodology for the
cantons of Salinas and La Libertad. The map represents the incidence of oil wells in the
territory with discrete points. Four zones where the largest wells are concentrated on the
map were identified. Zone A was found to have 27 oil wells, 23 of which were highly
vulnerable and 4 of which were of medium vulnerability. Zone B was found to have
30 wells, 13 of which were highly vulnerable due to their proximity to urban areas and the
sea and 17 of which were of medium vulnerability. Zone C was found to have 270 wells,
78 of which had high vulnerability. Finally, zone D was found to comprise 39 wells, 14 of
which were found to have high vulnerability. The wells dispersed inside La Libertad were
found to be located on the outskirts of the urban areas. Figure 6 shows the vulnerability
generated by the concentration of oil wells in the study area, as processed using continuous
data. In this case, zones A and C showed a higher vulnerability than zones B and D, and
the other areas were found to be less vulnerable to the concentration of wells.
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well in a populated area of Salinas. (D) Improperly abandoned well near the sea.
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4. Discussion

The DIPS methodology was designed to determine the vulnerability of populated
areas within petroleum zones. In this methodology, the proximity of wells to populated
areas and water bodies is given a high weighting. DIPS uses recommended characteristics
of practical, quantitative, and qualitative methodologies [109,110], and it has been applied
to urban areas in coastal environments using land-use strategies [111–113]. In addition,
DIPS relates five variables: oil well status, soil permeability, gas perception, the distance of
oil wells from the water bodies, and the distance of oil wells from urban areas. The rating
of each variable depends on the exposure of the affected territory. In other words, DIPS



Resources 2022, 11, 70 12 of 18

focuses on large-scale multi-criteria evaluation that helps determine land use due to the
presence of oil wells from a social and environmental point of view. One of this study’s
limitations was that the population distribution in the studied cantons was not considered
due to the absence of this information, so resorted to using the class of “populated areas”
as a tool to determine whether an area was residential. In addition, it used focus groups to
assess the perception of gas emissions from oil wells.

The vulnerability map for the cantons of Salinas and La Libertad in SEP shows that
92% of the wells considered in this study are located within populated areas (Figure 5).
The constant urban growth associated with population increases has led to the presence of
oil wells in territories that have traditionally excluded oil activities. Moreover, the scarce
security infrastructure, an absence of territorial planning, and a lack of knowledge about
the risks to inhabitants have encouraged the development of these areas. Several wells are
located close to water bodies and are prone to spilling hydrocarbons into beaches or the
sea, so they were categorised as highly vulnerable wells. The DIPS methodology was used
to identify that the Salinas canton is more vulnerable than La Libertad due to the higher
concentration of wells in its urban areas and areas near the sea (Figure 6).

Vulnerability is important for land-use planning. The authors of some previous stud-
ies have analysed the potential impacts of oil spills in the vicinity of populated areas,
considering both social and environmental aspects [114,115]. However, most oil assess-
ment methods are focused on spills into marine and inland environments [12,116], as
well as risk assessments for oil well and pipeline failures [117–119]. Additional meth-
ods are used to determine vulnerability. For example, DRASTIC and GOD (groundwa-
ter confinement, overlying strata, and depth to groundwater) methods assess aquifer
contamination [120]. The vulnerability of aquifers to hydrocarbons can be studied via their
physical properties [121,122].

The DIPS methodology considers social, technical, and environmental aspects for
analysing vulnerability caused by oil wells in populated areas. This methodological
approach can be applied to coastal or inland environments using GIS to integrate variables,
calculate vulnerability, and process vulnerability maps. Some methodologies relating
vulnerability to the oil industry are focused on oil spills in near-shore areas and involve
mathematical models relating to social and environmental conditions [40–43]. Further
methodologies have been used for analysing vulnerability caused by energy infrastructure
and refineries in marine environments relating to social and physical conditions [54,55],
as well as the vulnerability caused by oil activities due to their potential for polluting
groundwater [46,47,49,123]. However, the methodology proposed in this study integrates
the proximity of wells to towns and bodies of water, gas emissions, soil permeability, and
well condition. Because the coastal marine zone of this research’s study area is a tourist
centre and in total demographic growth, it requires a territorial management strategy.

This study determined the vulnerability caused by oil wells located in coastal urban
areas. The authors of previous research measured this type of risk through numerical
simulations of effects generated by the explosion of a liquefied petroleum gas storage tank
on a studied infrastructure and population [59]. Studies on environmental impact tend to
consider citizen participation [124]. In the case of DIPS, the use of focus groups helped us
to identify environmental issues affecting the community.

Various methods can be used to generate different vulnerability indexes, e.g., for natural
disasters, toxicological hazards, explosions, fires, and groundwater contamination [20,24,30,125],
and it is important to determine vulnerability in various areas of knowledge [126] as a
mechanism for assessing the susceptibility of a system to potential risks and hazards [13,14].

The analysis of the DIPS map in this study revealed areas with a high vulnerability
that require strategies to promote the development and continuous improvement of the
territory [127]. The following requirements should be met: (i) oil wells must have a sur-
rounding security infrastructure; (ii) abandoned wells must have isolation and protection
infrastructure; (iii) territorial reordering that considers the critical zones detected in this
work should be proposed; (iv) the population must be made aware of the risks associ-
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ated with oil wells in the sector; and (v) new settlements in the vicinity of wells must
be prevented.

5. Conclusions

This study evaluated the vulnerability in a populated territory with oil well incidence
using the DIPS methodology, which integrates five variables (distance from oil wells to
populated areas and water bodies, identification of gas perception, permeability, and state
of the wells) in GIS software. DIPS enabled us to generate vulnerability maps (which are
essential for decision making in territorial planning) in the service of the protection and
conservation of the marine–coastal zone while favouring sustainable development. In
the study area were identified 462 wells, 156 of which (34%) were shown to have high
vulnerability. One hundred and fifteen of the wells with high vulnerability were found to
be in the Salinas canton, with scores between 32 and 47. Within these wells, six were shown
to have a higher score of between 41 and 47 due to their proximity to the coastline. In the
canton of La Libertad, 39 wells presented a high vulnerability. In addition, in both Salinas
and La Libertad were found 101 and 159 wells, respectively, with medium vulnerability.

The reported high vulnerability was due to the concentration of wells and gas emis-
sions observed in zones A, B, C, and D. Additionally, the proximity of wells to the coastline
influenced vulnerability, as observed in zones A and B. In urban areas, 102 wells were
found to be productive, leading to fire risks and affecting the inhabitants of these sectors.
Finally, it is recommended to implement: (i) protective infrastructure that prevents free
access to the wells and guarantees distance and/or buffering from homes; (ii) land-use
planning; (iii) protection of tourist and heritage areas; (iv) landscape management; (v) the
dissemination of an education plan; (vi) changes to protection perimeters; and (vii) the
monitoring of oil wells in urban areas.

Vulnerability analyses are useful because they consider variables regarding soil type,
gases, distance to populated areas, environment, and human health. The DIPS methodology
was developed to recommend land-use planning strategies. Our analysis enabled the
identification of vulnerable areas generated by the presence and concentration of oil wells
through discrete and continuous data, a process that could be applied to urban territories
located near industrial activities.

Finally, our application of DIPS was focused on urban or rural centres with the presence
of oil wells. Therefore, it is recommended to advise the relevant government entities
to (i) identify the location of oil wells, along with their status (productive, temporarily
abandoned, improperly abandoned, and permanently abandoned wells); (ii) use focus
groups to identify the perception of hydrocarbon gas emissions from wells; (iii) use geodata
available in different government geoportals to determine populated areas, water bodies,
and soil permeability; (iv) search for legislation that determines the safety radii around
wells and to use the equations described for buffers; and (v) use a geographic information
systems tool for visualisation and decision making.
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