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Abstract: Biological processes run by microalgae are prospective but still little known methods
of hydrogen production. A prerequisite for their increased advancement is the development of
economically viable and efficient technologies. The study presented in this manuscript focused on
determining the efficiency of biohydrogen production by P. subcordiformis using a culture medium
prepared based on natural waters. The rate of P. subcordiformis biomass growth reached 317.6 ± 42.3
mgODM/dm3·d and ensured a biomass concentration of 3493 ± 465 mgODM/dm3. The percentage
concentration of hydrogen in the biogas reached 63.2 ± 1.4%, and its production rate ranged from
0.53 ± 0.05 cm3/h to 0.70 ± 0.01 cm3/h.

Keywords: Platymonas subcoriformis; microalgae; biohydrogen; photobioreactor; biomass; culture
medium; natural waters

1. Introduction

The negative impact of the economy on the natural environment determines the need
to use low-emission production technologies, including the implementation of clean and
effective solutions for energy production [1,2]. Hydrogen represents one of the energy
carriers meeting the criteria of an environmentally friendly fuel [3]. Today, it is used in a
narrow and marginal range, mainly in the refining industry, space technologies and fuel
cells [4,5]. The lack of rational, technologically and economically viable methods for its
production and storage are the main hurdles for its large-scale deployment [6]. Conven-
tional hydrogen production technologies include mainly thermochemical methods, like
combustion, gasification, thermochemical liquefaction and pyrolysis, as well as methods
based on water electrolysis [7]. However, these solutions entail high investment costs, are
energy-consuming and cause environmental pollution [8,9]. It is estimated that currently
nearly 95% of the hydrogen used derives from the conversion of fossil fuels [10].

The increasingly prospective hydrogen production technologies include biomass-
harnessing solutions and methods based on biological processes conducted by microor-
ganisms [11]. These include primarily the fermentation of organic substrates carried out
by specialized groups of bacteria or biochemical processes taking place in cells of selected
microalgal species [12,13]. Due to the very high photosynthetic efficiency, fast biomass
growth rate, resistance to various types of pollutants, susceptibility to genetic modifications
and the possibility of developing land that cannot be used for other purposes, it is the use
of microalgae that becomes the most promising avenue of biohydrogen production [14,15].

One of the conditions necessary to achieve high hydrogen productivity by microalgae
is the use of efficient biomass production technologies [16]. The most perspective solutions
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for microalgae cultivation and proliferation include installations based on the use of sea
waters, which are not curbed on a global scale neither by their limited amount nor by costs
of their acquisition [17,18]. The use of waters from natural aquatic reservoirs has been
proved viable in the cultivation of microalgae species with high adaptive and competitive
abilities, resistant to diseases and parasites and not very sensitive to harsh and varying
environmental conditions. These include microalgae of the genus Chlorella sp., Scenedesmus
sp., and cyanobacteria [19,20]. In the case of taxa, the cultivation of which is focused on the
production of specific products, preference is given to cultures in fully monitored closed
photobioreactors, stable conditions and in appropriate culture media, usually composed of
distilled water, nutrients, microelements, and vitamins [21,22].

The species used to produce hydrogen include mainly unicellular algae with specific
metabolic and enzymatic traits allowing for its production [23], as for example, taxa
belonging to green algae and cyanobacteria, mainly Chlamydomonas reinhardtii, and algae of
the genus Chlorella sp. [24]. P. subcordiformis is also considered a very prospective species in
the context of hydrogen production in the process of direct biophotolysis [25].

The study presented in this manuscript focused on determining the efficiency of
biohydrogen production by P. subcordiformis species microalgae using a culture medium
prepared based on waters from the coastal zone of the Baltic Sea.

2. Materials and Methods
2.1. Experimental Design

Research works were divided into two stages (ST). Experiments conducted in STAGE
1 (ST1) aimed to assess the efficiency of P. subcordiformis microalgae biomass production
This stage included two series, differing in the culture medium applied. Deionized water
was used in SERIES 1 (SE1), whereas water from the Gdańsk Bay was used in SERIES
2 (SE2). STAGE 2 (ST2) aimed to analyze the impact of the culture conditions applied
on the hydrogen yield. It was analogously divided into two series (SE1 and SE2). In
addition, each of these series was divided into two experimental variants differing in the
initial concentration of algal cells in the bioreactor, that is, 3.0 gODM/dm3 in VARIANT 1
(V1) and 5.0 gODM/dm3 in VARIANT 2 (V2). Table 1 and Figure 1 present the scheme of
research works.
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Table 1. Experimental design.

ST1—cultivation
of P. subcordiformis

SE1—culture medium based on deionized water
and chemical reagents. ST2—H2 production by

P. subcordiformis

SE1
V1—3.0 gODM/dm3

V2—5.0 gODM/dm3

SE2—culture medium based on water from the
Gdańsk Bay supplemented with chemical reagents. SE2

V1—3.0 gODM/dm3

V2—5.0 gODM/dm3

2.2. Materials

The Platymonas subcordiformis species microalgae derived from own collection grown
based on the inoculum obtained from the UTEX algae culture collection UTEX (University
of Texas at Austin, Austin, TX, USA). The initial concentration of microalgal biomass
expressed as the concentration of organic dry matter reached 200 mgODM/dm3 in ST1,
whereas in ST2, it depended on the variant (Table 1).

In ST1SE1, the composition of the culture medium was as follows: 1.30 mg/dm3

FeCl3, 0.36 mg/dm3 MnCl2, 33.60 mg/dm3 H3BO3, 45.00 mg/dm3 EDTA, 20.00 mg/dm3

NaH2PO4, 100.00 mg/dm3 NaNO3, 0.21 mg/dm3 ZnCl2, 0.20 mg/dm3 CoCl2, 0.09 mg/dm3

(NH4)4Mo7O24, 0.20 mg/dm3 CuSO4, 0.10 µg/dm3 VB12, and 1.00 µg/dm3 VB1. Salin-
ity fell within the range of 30–33 ppt, whereas pH within the range of 8.00–8.20. In
ST1SE2, the composition of the culture medium was as follows: 59.97 ± 0.25 mg COC/dm3,
0.04 ± 0.01 mg NH4–N/dm3, 21.85 ± 1.05 mg Ntot/dm3, 2.95 ± 0.79 mg PO4

3−/dm3,
5.05 ± 0.31 mg Ptot/dm3, 538 ± 2.52 mg SO4

2−/dm3, 7411 ± 59.5 mg Cl−/dm3,
2380 ± 156 mg Cl−/dm3, 0.107 ± 0.01 mg Fe2+/dm3, 0.087 ± 0.01 mg Fe3+/dm3, whereas
pH was 8.04 ± 0.15 and salinity reached 30 ± 0.3 ppt. Water from the Gdańsk Bay was
sampled from May until October. It was filtered through filters for qualitative analyses
(medium size, Ø 12.5, Eurochem), and then sterilized in a Tuttnauer 2840 EL—D autoclave
at a temperature of 121 ◦C for 15 min.

In ST2, deionized water served as the culture medium for hydrogen production in SE1.
In SE2, hydrogen was produced using water from the Gdańsk Bay supplemented with the
following culture medium: 27.23 mg/dm3 NaCl, 5.079 mg/dm3 MgCl2, 1.123 mg/dm3

CaCl2, 0.667 mg/dm3 KCl, 0.196 mg/dm3 NaHCO3, 0.098 mg/dm3 H3BO3, 0.098 mg/dm3

KBr, 0.024 mg/dm3 SrCl2, 0.003 mg/dm3 NaF, and 0.002 mg/dm3 CuCl2, with pH ranging
from 7.90 to 8.00.

2.3. Experimental Station

In ST1, the microalgal biomass was grown in BioFlo 115 New Brunswick bioreactors
having an active volume of 2.0 dm3, at a temperature of 25 ± 1 ◦C, white light with the
intensity of 5 klux (14 h light/10 h dark cycle), aeration using a Mistral 200 pump with
the capacity of 200 dm3/h, and continuous stirring at 150 rpm. In all experimental series,
P. subcordiformis algae were cultured for 11 days. The biomass from the BioFlo 115 reactor
was concentrated deploying a kit for vacuum filtration consisting of a filter mounted in
the MBS 1 filtration kit (Whatman) that enables separating algal biomass from the culture
medium using a Mobile 20 vacuum pump.

In ST2, the concentrated biomass of P. subcordiformis was fed to respirometers having
an active volume of 0.5 dm3 (Wissenschaftlich-Technische Werkstätten (WTW), Weilheim in
Oberbayern, Deutschland). Oxygen was removed by purging the respirometers with pure
nitrogen for 3 min. The dark phase was ensured by tightly covering the bioreactors with
aluminum foil. The retention time of P. subcordiformis biomass in the dark phase was 30 h.
Afterwards, the reactors were illuminated with white light having the intensity of 5 klux,
for 5 days. The contents of the reactors were stirred at 100 rpm using VMS—C4 Advanced
magnetic agitators. The experiment was conducted at the temperature of 25 ± 1.0 ◦C.
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2.4. Analytical and Statistical Methods

Samples were collected every 48 h. Contents of dry matter, organic dry matter (ODM),
and mineral dry matter in the biomass were determined with the gravimetric method.
Chlorophyll was determined spectrophotometrically after extraction with 90% acetone.
Total nitrogen (EN ISO 11905-1), ammonia nitrogen (ISO 7150-1), total phosphorus (ISO
6878_2004), orthophosphates (ISO 6878_2004), sulphates (ISO 10304-1), chlorine compounds
(ISO 9297:1994), iron compounds (DIN 38406-E1), and COD (ISO 6060-1989) were deter-
mined using Hach Lange cuvette tests and an UV/VIS DR 5000 spectrophotometer. The
same methodology was applied to monitor the levels of essential nutrients in the culture,
that is, Ntot. and Ptot. The taxonomic analysis was performed using an MF 346 microscope
with an Optech 3MP camera. The culture medium composition was controlled using a
UV/VIS DR 5000 spectrophotometers (Hach Lange), salinity of the culture medium—using
Marine Control Digital (Aqua Medic), and light intensity—using an HI 97500 luxometer
(HANNA). The volume of the produced biogas was computed based on pressure changes
inside the measuring chamber. The respirometric analysis also allowed the determination
of the biogas production rate (r). Biogas quality was analyzed with the GC Agillent 7890 A
gas chromatograph, and the analysis included determinations of the percentage contents of
the following biogas fractions: carbon dioxide (CO2), oxygen (O2), and hydrogen(H2).

The research was carried out in four replications. The statistical analysis of experi-
mental results was carried using a STATISTICA 13.1 PL package. One-way analysis of
variance (ANOVA) was performed to determine the significance of differences between
groups. HSD Tukey test was deployed to find significant differences between the analyzed
variables. In the tests, results were considered significant at p = 0.05.

3. Results

In STSE1, the final biomass concentration reached 3203 ± 35 mgODM/dm3, whereas
chlorophyll a content in the biomass was at 3686 ± 320 µg/dm3 (Table 2). The rate (r) of
microalgal biomass growth reached 291.2 ± 3.2 mgODM/dm3·d. In addition, the P and N
compounds were almost completely depleted. At the end of the cultivation, their concen-
trations were at 0.61 ± 0.37 mg Ntot/dm3 and 0.04 ± 0.01 mg Ptot/dm3. In turn, the mean
consumption of these biogenes per biomass growth unit was at 7.0 ± 0.4 mg Ntot/gODM and
1.7 ± 0.1 mg Ptot/gODM (Table 2). In ST1SE2, the rate of P. subcordiformis biomass growth
reached 317.6 ± 42.3 mgODM/dm3·d, which allowed reaching biomass concentration of
3493 ± 465 mgODM/dm3. The concentration of chlorophyll a reached 3845 ± 696 µg/dm3

and was produced at r = 49.6 ± 63.3 µg/dm3·d (Table 2). The compounds of nitrogen and
phosphorus were effectively removed from the culture medium as their final concentrations
in the technological system reached 0.39 ± 0.13 mg Ntot/dm3 and 0.02 ± 0.01 mg Ptot/dm3.

Table 2. Results obtained in STAGE 1 of the study.

Series

Indicator

Final Biomass
Concentration
[mg ODM/dm3]

Biomass Growth
Rater

[mgODM/dm3·d]

Final
Concentration

of Chlorophyll a
[µg/dm3]

Effectiveness of
Ntot. Removal

[%]

Effectiveness of
Ptot. Removal

[%]

Ntot.
Consumption
for Biomass

Growth
[mg Ntot/gODM]

Ptot.
Consumption
for Biomass

Growth
[mg Ptot/gODM]

SE1 3203 ± 35 291.2 ± 3.2 3686 ± 320 98.1 ± 0.6 97.6 ± 1.1 7.0 ± 0.4 1.7 ± 0.1

SE2 3493 ± 465 317.6 ± 42.3 3845 ± 696 98.4 ± 0.9 99.1 ± 0.4 6.7 ± 0.6 1.5 ± 0.1

In ST2SE1, the total volume of biogas produced in V1 reached 108.57 ± 9.14 cm3 at
r = 0.91 ± 0.08 cm3/h, whereas in V2—the P. subcordiformis biomass produced
141.58 ± 6.31 cm3 of biogas with the rate of r = 1.81 ± 0.05 cm3/h (Figures 2 and 3). In
turn, hydrogen production reached 42.79 ± 3.60 cm3 in V1 and 57.44 ± 2.56 cm3 in V2
(Figures 2 and 3). The percentage content of hydrogen in biogas approximated 42% in
both variants (Table 3). Regardless of the experimental variant, the biogas production per
P. subcordiformis biomass growth unit was comparable, reaching 14.26 ± 1.20 cm3/gODM
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in V1 and 11.49 ± 0.51 cm3/gODM in V2 (Figure 4). The technological performance ob-
tained in ST2SE2 was comparable (p = 0.05) (Table 4). In V1, the biomass produced
106.32 ± 10.54 cm3 of the biogas with the rate of r = 0.89 ± 0.09 cm3/h, whereas the re-
spective values recorded in V2 were at 135.71 ± 2.17 cm3 and r = 1.13 ± 0.02 cm3/h
(Figures 3 and 5).
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Table 3. Qualitative composition of biogas.

Series Variant H2
[%]

CO2
[%]

O2
[%]

SE1
V1 41.0 ± 1.4 55.3 ± 1.8 3.7 ± 0.2
V2 40.2 ± 1.4 57.3 ± 1.7 2.5 ± 0.1

SE2
V1 59.9 ± 1.6 36.5 ± 1.3 3.6 ± 0.2
V2 63.2 ± 1.4 34.6 ± 1.2 2.2 ± 0.1
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Table 4. The results of a statistical comparative analysis of variables tested in ST2, conducted with
HSD Tukey test.

Variant
Total concentration of biogas produced

Variant
Total concentration of biogas produced per gODM

SE1V1 SE1V2 SE2V1 SE2V2 SE1V1 SE1V2 SE2V1 SE2V2

SE1V1 0.013492 1.000000 0.070077 SE1V1 0.050933 1.000000 0.015422

SE1V2 0.013492 0.006948 0.999733 SE1V2 0.050933 0.103722 0.999989

SE2V1 1.000000 0.006948 0.037985 SE2V1 1.000000 0.103722 0.033422

SE2V2 0.070077 0.999733 0.037985 SE2V2 0.015422 0.999989 0.033422

Variant
Total concentration of hydrogen produced

Variant
Total concentration of hydrogen produced per gODM

SE1V1 SE1V2 SE2V1 SE2V2 SE1V1 SE1V2 SE2V1 SE2V2

SE1V1 0.611181 0.000816 0.690782 SE1V1 0.153253 0.008029 0.000143

SE1V2 0.611181 0.000145 0.015779 SE1V2 0.153253 0.960106 0.000548

SE2V1 0.000816 0.000145 0.074735 SE2V1 0.008029 0.960106 0.011987

SE2V2 0.690782 0.015779 0.074735 SE2V2 0.000143 0.000548 0.011987

Variant
% content of hydrogen in biogas

Values in italics denote differences significant at p ≤ 0.05

SE1V1 SE1V2 SE2V1 SE2V2

SE1V1 0.999974 0.000143 0.000143

SE1V2 0.999974 0.000143 0.000143

SE2V1 0.000143 0.000143 0.523867

SE2V2 0.000143 0.000143 0.523867
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Figure 5. The course of biogas and hydrogen production by P. subcordiformis biomass in series 2.

The volumes of hydrogen produced were similar in both variants and reached
63.98 ± 6.35 cm3 at mean r = 0.53 ± 0.05 cm3/h in V1 as well as 64.74 ± 4.11 cm3 at
r = 0.70 ± 0.01 cm3/h in V2 (Figures 3 and 4). The percentage concentration of hydro-
gen in the biogas differed significantly (p = 0.05) between variants (Table 4) and reached
59.9 ± 1.6% in V1 and 63.2 ± 1.4% in V2 (Table 3). The technological parameters tested
caused statistically significant (p = 0.05) differences in the effectiveness of gaseous metabo-
lite production by microalgal biomass per biomass growth unit (Table 4), which reached
35.44 ± 3.52 cm3/gODM in V1 and 27.14 ± 0.43 cm3/gODM in V2 (Figure 5). Biohydro-
gen production effectiveness was analogous, amounting to 21.33 ± 2.12 cm3/gODM and
16.87 ± 0.27 cm3/gODM in V1 and V2, respectively (Figure 5).

4. Discussion

Hydrogen production in bio-processes run by microalgae is based on the direct bio-
photolysis, namely a reaction catalyzed by hydrogenase [26]. It proceeds in transmembrane
peptidic complexes, the so-called photosystems (PS) [27]. The exposure of these structures
to solar radiation results in the water molecule breakdown. One of the PS produces O2,
while the other uses the resulting electrons to reduce CO2 and build biomass (aerobic
conditions). Electrons can be transferred to hydrogenase via ferredoxin and take part in
the production of hydrogen (anaerobic conditions). The anaerobic conditions have been
proven to be the most favorable for hydrogen production, with O2 concentration in the
medium not exceeding 0.1% [28]. In the presented study, the culture medium in ST2 was
deoxidized by efficient nitrogen purging.

For H2 production conditions, the protocol of sulfur deprivation has been applied. By
reducing photosynthetic activity, this protocol enables the problem of the high sensitivity
of the Fe-hydrogenase to O2 to be get round. The transition to anoxic conditions is then
realized as the O2 consumption by respiration process becomes higher than the O2 released
during photosynthesis. H2 is then produced under light conditions. This biochemical
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mechanism of this process explains the low oxygen concentration in the gas produced [29].
Only few studies present the percentage composition of the gas mixture generated during
hydrogen production by microalgae. The results obtained by the authors also confirm the
investigations of H2 production using the green microalga Chlamydomonas reinhardtii
in a fully controlled photobioreactor fitted with on-line gas analysis [30]. The production
of bio-hydrogen by this species takes place under conditions analogous to those used for
Platymonas subcrodiformis. The studies showed that the progressive decline in O2 production
was directly correlated with the decline in PSII activity. This is a major feature and a well-
known outcome of the sulfur deprivation protocol [31]. Since mitochondrial respiration is
almost constant [32], a decrease in photosynthetic activity disrupts the balance between the
two processes, leading to a progressive decrease in O2 concentration. Ultimately, anaerobic
conditions are achieved that enable the synthesis of Fe-hydrogenase and the release of H2.

In the research carried out so far, the release of CO2 has also been observed, which
is explained by the biodegradation of the reserves of carbon compounds accumulated in
microalgae cells. It is accompanied by the appearance of formate in the medium, which
is a product of fermentation metabolism [33]. It has been proven that one spare material
remaining in the cells is starch, and easily digestible acetate is used [30]. A change in
the physiological state of cells is observed, as evidenced by the degradation of pigments,
proteins and total sugars [34]. A significant reduction in the value of TOC (total organic
carbon) in biomass has also been proven, a significant part of which was metabolized and
converted to CO2 [30].

The research presented above has demonstrated that PS is responsible for hydrogen
production in conditions where the medium lacks sulfur compounds. For this reason, in
the second stage of the present research, sulfur was replaced with chlorine compounds
in the culture medium. Usually, the culture medium is deprived of sulfur compounds
by using the algae culture centrifugation process, and then suspending the concentrated
and liquid phase-free biomass in the medium in which sulfur has been replaced with
chlorine compounds [35,36]. It has been proven that the technological treatment based
on centrifugation is expensive, time-consuming and leads to partial destruction of the
cellular material. An alternative solution in this case is to dilute the culture medium,
which directly reduces the sulfur concentration in the technological system. However, it
is a method that extends the time needed for sulfur exhaustion and creation of anaerobic
conditions [37]. Therefore, the membrane method was deployed in the presented research
to separate the microalgal biomass from the culture medium. This alternative method for P.
subcordiformis biomass dehydration was expected to be less expensive and to ensure higher
technological effects.

Some problems may also be encountered with defining cultivation duration and
selecting the moment of initiating the phase in which the hydrogen production will take
place. Some authors state that the biomass production process should be carried out to
the half of the exponential growth phase [38,39]. Others, in turn, argue that the higher
density of algal cells directly improves the efficiency and extends the time of hydrogen
production [40,41]. JI et al. proved that with a cell density of 0.5 g/dm3, they achieved
hydrogen production at 16 cm3/g biomass, while increasing cell concentration to 3.2 g/dm3

ultimately led to the production of over 49 cm3 H2/g biomass. Along with the density of the
substrate, the rate of gas production also increased almost 10 times [42]. Our study did not
confirm this phenomenon, regardless of the P. subcordiformis biomass concentration applied.

Chlamydomonas reinhardtii, which is common in soil and saline waters [43], is a species
frequently used for hydrogen production. Studies have reported that its H2 yield reaches
180 cm3/dm3 of the active volume of the bioreactor [15,44]. Faraloni et al. (2011) achieved
hydrogen production at 150 cm3/dm3 of the Chlamydomonas reinhardtii algae culture us-
ing wastewater from the processing of olives in the algae growth process [45]. In turn,
Skjanes et al. (2008) investigated the possibility of producing hydrogen from 21 species
of green algae. The highest hydrogen yield, approximating 140 cm3/dm3, was reported
for C. reinhardtii, followed by 80 cm3/dm3 for C. noctigama and 22 cm3/dm3 for C. eu-
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ryale [46]. The algae of the genus Chlorella sp. have also been shown to be highly potent
hydrogen producers [47]. The advantages of this species are due to its eurybiontic character,
high adaptability to changing environmental conditions, resistance to pollution and a fast
growth rate [48]. Zhang et al. (2014) investigated the effect of depleting the medium in
nutrients on the efficiency of hydrogen production by the Chlorella protothecoides species
algae. The results showed that with nitrogen deficiency, gas production was achieved at
110.8 cm3/dm3 of culture. Due to the limitation of the concentration of two culture medium
components, namely nitrogen and sulfur, the hydrogen production efficiency increased to
the value of 140.4 cm3/dm3 of the culture [49]. In the study by Song et al. (2011), hydrogen
production by Chlorella sp. ranged from 260 to 480 cm3/dm3, and the highest technological
effects were achieved at temperatures of 37–40 ◦C [50]. Other publications report on the
efficiency of biohydrogen production by P. subcordiformis [51,52]. Ji et al. (2011) investigated
P. subcordiformis productivity in nitrogen, sulfur and phosphorus depleted media. With
the same cell density used in different variants of the experiment (6 × 106 cells/cm3),
the hydrogen production efficiency peaked when P. subcordiformis cells were kept in the
nitrogen-free medium for 6 days, reaching 55.8 cm3 H2/dm3 of culture under carbonyl
cyanide m-chlorophenylhydrazone (CCCP) protocol [51]. In turn, Guo et al. (2016) obtained
the H2 production of 78 ± 5 cm3/dm3 in a photobioreactor with an integrated alkaline fuel
cell (AFC), after 40 h of continuous irradiation, which was 1.5 times higher than the value
achieved in the algae culture without integrated AFC (50 ± 3 cm3/dm3) [52].

5. Conclusions

Given the weaknesses of conventional methods for hydrogen production, biological
methods, including the process of direct biophotolysis taking place in microalgae cells,
are becoming a viable alternative in this respect. The broad range of suitable species and
process conditions speaks in favor of this technology. In the presented experiments, variable
environmental conditions were deployed to achieve a high algal biomass concentration
and hydrogen yield.

The research proved that the efficiency of P. subcordiformis biomass production was
similar regardless of the culture medium applied. Biomass grown in water from the Bay of
Gdańsk was characterized by a significantly higher concentration of hydrogen in the biogas
and the total efficiency of hydrogen production. The higher concentration of biomass
in the reactors was found to directly increase the total volumes of biogas and hydrogen
produced. However, there was no significant influence of the initial P. subcordiformis
biomass concentration on the hydrogen yield per biomass unit. Apart from hydrogen, the
biogas contained carbon dioxide and small amounts of oxygen.
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Dudek) and J.K.; writing—review and editing, M.D. (Marcin Dębowski), M.D. (Magda Dudek), A.N.,
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