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Abstract: The estimation and quantification of external environmental costs (hidden costs) are
crucial to sustainability assessments of treated wastewater reuse projects. These costs, however,
are rarely considered in economic analysis studies. In this work, monetized life cycle assessment
(LCA) and life cycle costing (LCC) were combined into a hybrid model to calculate cradle-to-farm
gate external environmental costs (EEC) and internal costs (IC) of producing 1 t of plant-based
product irrigated with reclaimed water in a Mediterranean context. The total cost was calculated
by combining monetized LCA and LCC results. The results for the crops under consideration were
119.4 €/t for tomatoes, 344.4 €/t for table grapes, and 557 €/t for artichokes. Our findings show
that there are significant hidden costs at the farm level, with EEC accounting for 57%, 23%, and
38% of the total cost of tomatoes, table grapes, and artichokes, respectively. Electricity use for water
treatment and fertilization generated most of the EEC driven by the global warming, particulate
matter, acidification, and fossil resource scarcity impact categories. When compared to groundwater,
the higher internal costs of reclaimed water were offset by lower external costs, particularly when
supported by low-energy wastewater treatment. This demonstrates that incorporating EEC into
economic analyses might generate a better understanding of the profitability of treated wastewater
reuse in crop production. In Italy and the Mediterranean region, research on the sustainability of
water reuse in irrigation through life cycle thinking is still limited. Using a multi-metric approach, our
analysis brought new insights into both economic and environmental performance – and their tradeoff
relationships in wastewater reuse for irrigation of agricultural crops. In future research, it would
be of interest to use different monetization methods as well as to investigate social externalities to
explore their size and role in the total external costs.

Keywords: life cycle assessment (LCA); total cost; monetization; cost accounting; agricultural
irrigation; reclaimed wastewater; water reuse

1. Introduction

Irrigated agriculture in the Mediterranean is under considerable pressure to produce
more with less water [1]. Over the years, conventional groundwater and surface water
resources have been over-extracted, resulting in a multi-faceted crisis with ecological,
economic, and social dimensions. In this context, a mix of supply-enhancing and demand-
managing options becomes essential for the economic viability of farming systems. On
the supply side, the European Commission has advocated the use of reclaimed water for
agricultural irrigation (water reuse) as a relevant solution to address water scarcity [2] and
has recently approved regulation 2020/741 [3] to harmonize and improve water reuse in
the European Union.
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It has been argued that the safe use of reclaimed water in irrigated agriculture provides
numerous environmental and socio-economic benefits [4]. On the contrary, the debate
over the significant reclamation and health costs has prompted the need for a holistic
assessment of the sustainability impacts of the technological chain for water reclamation
and reuse. Economic and environmental impacts are evaluated by using both life cycle
costing (LCC) and life cycle assessment (LCA) methodologies. Life cycle costing (LCC)
is well developed [2,5] in terms of the real financial burdens (direct monetary costs) for
the construction and operation of treatment plants. On the other hand, LCA studies of
agricultural products irrigated with treated wastewater have been developed, focusing on
physical (or “environmental”) aspects [6–9]. Other studies [9] report LCC by describing the
economic burden of the product life cycle, alongside its environmental impacts. Recently,
Canaj et al. [10] provided a quantitative assessment of the environmental impacts, costs,
and eco-efficiency of crop production with reclaimed water.

The external environmental costs (hidden costs) are enormously important for feasi-
bility studies of wastewater collection, treatment, and reuse projects [11]. External costs are
unaccounted and uncompensated impacts (for one or more stakeholders) that are not re-
flected in the prices of the goods and services provided [12]. These costs affect third parties
and are borne by various actors in the supply chain. They are classified as environmental
costs if they have a direct impact on the environment, or social costs if they have a direct
impact on people’s well-being [13]. While internal impacts can be easily converted into
monetary units, external effects (or externalities) are not taken into account by the market
and must be quantified using economic valuation methods [11].

External cost analysis via monetization is gaining momentum in the development of
business models and more sustainable practices [14]. Monetization is the conversion of
environmental impacts caused by the release of environmentally harmful substances or
the use of natural resources to monetary units [15]. Monetizing LCA results is one form
of expressing environmental impacts in terms of costs [16]. The advantage of monetized
environmental impacts is that they can overcome the problem of trade-offs between the
many impact categories that an LCA normally analyzes [15]. Furthermore, the concept
extends beyond the economic dimension of sustainability [17].

A growing number of researchers are estimating the environmental external costs
of products and services by the monetary valuation of LCA results. Hamedani et al. [18]
applied monetized LCA to weigh the environmental benefits against the environmental
costs of biochar production from willow versus biochar production from pig manure.
Olba-Zięty et al. [19] used the ReCiPe midpoint method [20] to calculate the cradle-to-
farm environmental external cost of poplar wood chips in Poland. Similarly, Al-Qahtani
et al. [21] used a monetization analysis based on ReCiPe 2016 [20] to calculate the true costs
of different hydrogen production routes. In Israel, Greenfeld et al. [22] used environmental
pricing [12] to monetize the environmental impacts of integrated aquaponic farming
compared to separate systems. Huysegoms et al. [23] combined the ReCiPe endpoint with
monetization approaches (Stepwise 2006 and Ecovalue 08) to express the environmental
impact of the remediation project in a monetary value. Theregowda et al. [24] calculated
the environmental impact costs of air emissions from the tertiary treatment of municipal
wastewater for reuse in cooling systems. The True Price Foundation [25] has developed case
studies to quantify and monetize the external costs (both social and environmental impacts)
of bananas, apples, milk, bread, palm oil, and other agri-food products. To date, few
studies [11,16,26,27] have analyzed the external economic impacts of water reuse projects
without considering an integrated life cycle perspective and all crop growing processes
on arable land. It is obvious that the external cost analysis of wastewater reuse in crop
production via LCA is still at an early stage and more case studies are needed to advance
the research field. Bringing site-based “hidden” environmental costs will broadening the
perspective to identify options with the greatest combined economic and environmental
leverage. Moreover, stakeholders’ demand for life cycle-based information and sustainably
produced agricultural products is increasing [28].
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A monetized LCA was used in this study, along with life cycle costing, to calculate the
external environmental costs (EEC) and internal costs (IC) of crop cultivation irrigated with
treated municipal wastewater. The total cost was calculated by combining monetized LCA
and LCC results. Another goal was to compare the performance of crop systems irrigated
with reclaimed water and the reference situation where conventional groundwater was
used as a source of irrigation. The crops selected for the study were tomatoes, table grapes,
and artichokes growing in the Apulia region, Southern Italy. This assessment was used to
answer two research questions:

RQ1. What are the external and total costs of crop cultivation irrigated with re-
claimed water?

RQ2. How does the source of water (reclaimed vs. groundwater) affect the
cost performance?

This research makes useful practical and methodological contributions. First, it is
one of the few studies in the Italian and Mediterranean contexts to conduct a full-fledged
LCA to calculate the external environmental costs of crop production with reclaimed water.
Second, it enables the capitalization of knowledge about the financial (economic) and
non-financial (environmental) impacts of crop cultivation with treated wastewater via a
final composite economic–environmental indicator expressed in economic terms. Third,
it provides an outlook on the practical applicability of external environmental costs as an
input to the economic feasibility analysis of crop production using various water sources.

2. Materials and Methods
2.1. Assessment Framework

The assessment framework was divided into four basic steps (Figure 1):

(1) Make an inventory of relevant crop input-output data and convert it to actual envi-
ronmental indicators through the LCA approach.

(2) Apply economic weighting of LCA results and express results in economic terms as
external environmental costs (EEC).

(3) Calculate the internal cost (IC) through a simplified life cycle costing analysis.
(4) Combine EEC with IC to produce a final synthetic economic–environmental indicator

expressed in monetary terms, referred to as total cost.
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2.1.1. Modeling External Environmental Cost Via LCA

In this study, we modeled the EEC from the cradle-to-farm gate perspective (Figure 2).
This means that all process inputs and outputs were considered up to the farm exit gate.
The assessment included all crop growing processes on arable lands, such as fertilization,
irrigation with treated wastewater (including construction, operation, and demolition
stages of the targeted tertiary systems), and the consumption of fuel for operations, plant
protection, and transport. The direct air, soil, and water emissions on the field were also
taken into account. The temporal and geographical scope was set from 2010 to 2020 in
Southern Italy. The assessment follows an attributional LCA (ALCA) modelling the envi-
ronmental impacts generated by the production of one ton at the farm gate. A consistent
environmental cut-off was applied based on the LCA inventory to standard production
practices. This means that only costs directly related to LCA inventory items are considered
(e.g., raw materials, fertilizers, water, energy).
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2.1.2. Inventory Data

Table 1 summarizes the main primary data on inputs used to cultivate the soil surface
for each crop. While emissions were calculated using specific models, information on
production practices was gathered through literature surveys (tomatoes and artichokes) and
experimental sites (table grapes). These data were validated by experienced agronomists
and agricultural scientists. The key inventory data for tomato cropping systems were
retrieved from Vergine et al. [29]. The full-scale tertiary treatment was composed of sand
filtration, membrane ultrafiltration, and UV radiation with an overall energy requirement
of 1.68 kWh/m3. Energy consumption was made up of 51% filtration (sand filter plus
membranes), 34% sand filter backwashing, 8% membranes backwashing and chemical
cleaning, and 8% ultraviolet (UV) radiation. Fertilization was composed of 200 kg N/ha
(ammonium nitrate), 250 kg P/ha (triple superphosphate), and 150 kg K/ha (potassium
sulfate). The average gross irrigation requirement was 5000 m3/ha.
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Table 1. Input and output inventory data for crops under study.

Parameter Unit Tomatoes Table Grapes Artichokes

Location - Trinitapoli Acquaviva delle Fonti Trinitapoli
Treatment system m3/h 12 280 300

Type of system - Ultrafiltration + UV
disinfection

Disk filtration + UV
disinfection

Ultrafiltration + UV
disinfection

Input
Irrigation water m3/ha 5000 3160 3300
Electricity kWh/ha 8400 2085.6 1760
N-based fertilizers kg/ha 200 131.5 180
P-based fertilizers kg/ha 250 70 70
K-based fertilizers kg/ha 100 70 80
Diesel fuel kg/ha 572 205 323
Machine time h/ha 170 30 76
Pesticide kg/ha - 12.4 17

Farm Output

Crop Yield with reclaimed water ton/ha 80 21 8.5
Ammonia kg/ha 24.28 15.96 21.85
Dinitrogen monoxide kg/ha 4.16 2.74 3.75
Nitrogen oxides kg/ha 0.66 0.43 0.59
Nitrates kg/ha 263.75 173.41 237.37
Ammonia kg/ha 0.01202 0.00431 0.00679
Benzo(a)pyrene kg/ha 1.66 × 10−5 6.47 × 10−6 1.02 × 10−5

Cadmium kg/ha 6.02 × 10−6 2.16 × 10−6 3.14 × 10−6

Carbon dioxide, fossil kg/ha 1879.0 673.4 1061.1
Carbon monoxide, fossil kg/ha 6.85 2.45 3.87
Chromium kg/ha 3.01 × 10−5 1.08 × 10−5 1.7 × 10−5

Copper kg/ha 0.00102 0.00037 0.00058
Dinitrogen monoxide kg/ha 0.0721 0.0258 0.0407
Tetrachlorodibenzo-p-dioxin kg/ha 3.64 × 10-11 1.29 × 10−11 2.03 × 10−11

Methane, fossil kg/ha 0.097 0.035 0.055
Nickel kg/ha 4.22 × 10−5 1.51 × 10−5 2.38 × 10−5

Nitrogen oxides kg/ha 265.1 95.0 149.7
NMVOC kg/ha 3.11 1.11 1.76
PAH, polycyclic aromatic
hydrocarbons kg/ha 0.0020 0.0007 0.0011

Particulates, <2.5 um kg/ha 2.43 0.87 1.37
Particulates, >10 um kg/ha 0.162 0.058 0.091
Particulates, >2.5 um, and <10 um kg/ha 0.108 0.039 0.061
Selenium kg/ha 6.02 × 10−6 2.16 × 10−6 3.4 × 10−6

Sulfur dioxide kg/ha 0.61 0.22 0.34
Zinc kg/ha 6.02 × 10−4 2.16 × 10−4 3.4 × 10−4

The key inventory data for table grape production [10] was retrieved from the Co-
operative Society of Agricultural Producers “La Molignana” in Acquaviva delle Fonti
(40◦55′37.1′′ N; 16◦50′47.8′′ E). The full-scale tertiary treatment was based on surface filtra-
tion (disk filters) and UV disinfection to treat an equalized average flow rate of 6720 m3/day,
equal to about 280 m3/h. The reclaimed water was applied to the crops through drip irriga-
tion. TWW had an overall energy requirement of 33 kW or 0.66 kWh/m3. The N-fertilizer
was composed of biovegetal (3500 kg with 2% N), ammonium sulfate (150 kg with 27% N),
and calcium nitrate (200 kg with 15% N). Macronutrient requirements were 131.5 kg N/ha,
70 kg P2O5/ha, and 70 kg K2O/ha.

The key inventory data for artichoke production was retrieved from experimental
work in Trinitapoli [30,31]. The full-scale tertiary treatment [16] was based on five sand
filters (anthracite 1150 kg, quartz sand 4500 kg, and gravel support 2040 kg), eighty-four
ultrafiltration modules with triacetate hollow fiber membranes, a reinforced concrete tank
(180 m3), two horizontal pumps AISI 316 (2 × 11 kW), and an air compressor (5.1 kW). The
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electricity input for the UF unit was 66 kW. A dose of 100 mg sodium hypochlorite (NaClO)
was added for each m3 of water.

The emission factors for all the operations in the background system were taken
from Ecoinvent 3.1 [32]. The same database was used for the field combustion emissions.
The emissions to air of ammonia (NH3), nitrous oxide (N2O), and nitrogen oxide (NOx)
were calculated following the IPCC method [33]. The emissions to surface water and
groundwater of phosphorus (P, PO4

3−) were calculated using the SALCA-P model [34].

2.2. Cost Valuation

There are numerous methods for weighting LCA results (at both the midpoint and
endpoint levels). A review was presented by Arendt et al. [15]. The LCA indicators were
assessed through ReCiPe 2016 and then monetized using LCA-based conversion factors of
72,000 €/DALY and 11.5 × 106 €/species provided by Ponsioen et al. [35] and previously
used by Canaj et al. [16]. Weighting factors for each impact category are presented in
Table 2. To calculate the external cost for each impact category (y), Equation (1) was used.
The EEC per functional unit is the sum of all indicator costs.

External cost (y) =
Environmental impact (y)

Functional unit
× Monetization factor (y) (1)

Table 2. Environmental effect categories, units, and monetization factors according to ReCiPe 2016 [16].

Impact Categories Unit Monetization Factors

Fine particulate matter formation kg PM2.5-eq 14.00
Fossil resource scarcity kg oil eq 0.39
Freshwater ecotoxicity kg 1,4-DCB eq 0.008

Freshwater eutrophication kg P eq 2.00
Global warming kg CO2-eq 0.15

Human carcinogenic toxicity kg 1,4-DCB eq 0.24
Human non—carcinogenic toxicity kg 1,4-DCB eq 0.016

Ionizing radiation kBq Co-60-eq 0.00061
Land use m2a crop eq 0.10

Marine ecotoxicity kg 1,4-DCB eq 0.0012
Marine eutrophication kg N eq 3.10

Mineral resource scarcity kg Cu eq 0.20
Ozone formation, Human health kg NOx-eq 0.066

Ozone formation, Terrestrial
ecosystems kg NOx-eq 0.0093

Stratospheric ozone depletion kg CFC11-eq 38.00
Terrestrial acidification kg SO2-eq. 2.73
Terrestrial ecotoxicity kg 1,4-DCB eq 0.00013
Water consumption m3 0.045

Internal costs (cost-purchased physical inputs or production cost) were compiled
based on data presented in Table 3. Internal cost analysis follows the same functional unit
and the same system boundaries to input flows identified in LCA.

The calculations were carried out using OpenLCA 1.10.3 software [36].

3. Results
3.1. What Is the Size of External Environmental Costs of Crops Irrigated with Reclaimed Water?

Figure 3 presents the cradle-to-farm gate EECs of crops irrigated with reclaimed water
in the Apulia region (Southern Italy). The total EEC of 1 t of the crop at the farm gate was
estimated at 67.7 €/t for tomatoes, 80.1 €/t for table grapes, and 212.8 €/t for artichokes.
The difference between crops was mainly due to crop yield. The analysis confirms that
a high-yielding system has a lower impact per unit of the product obtained because it
requires less land to produce a given amount of food [37].
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Table 3. Input costs for internal cost analysis.

Parameter Unit Tomatoes Table Grapes Artichokes

Reclaimed water €/m3 0.24 0.53 0.42
Groundwater €/m3 0.1 0.62 0.37

Electricity €/kWh 0.12 0.12 0.12
Nitrogen fertilizers €/kg 1.60 0.33 0.33
P-based fertilizers €/kg 0.96 0.25 0.25
K-based fertilizers €/kg 2.40 0.55 0.55

Diesel fuel €/kg 1 1 1
Machine €/h 25 25 25
Pesticide €/kg - 12.40 17.00
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Looking at the process impacts (Figure 3a), irrigation and fertilizers are the primary
causes, followed by fieldwork operations and land occupation. This confirms the findings
of previous studies on open-field tomatoes [38], table grapes [39], and artichokes [40],
which identified irrigation and fertilization as the main environmental burdens. Irrigation
as a process accounted for 46% of EEC for tomatoes, 24% for grapes, and 20% for artichokes.
The irrigation cost depends on the water input and the technology used for water treatment
and distribution. As a result, the irrigation EECs are much higher for water-intensive
crops, reflecting the higher electricity demand for water treatment and distribution. The
size of the water treatment system also influences the magnitude of EEC. The analysis
of the impacts at the foreground (on-farm) and background (off-farm) levels reveals that
EEC is largely caused by the increased use of background processes (Figure 3b), i.e., the
production of raw materials, electricity, and infrastructure. Background processes account
for 75%, 67%, and 56% of the EEC of tomatoes, table grapes, and artichokes, respectively.
Figure 3c depicts the results by impact category. Global warming, fossil resource scarcity,
particulate matter formation, and terrestrial acidification were identified as the main causes
of EECs. Because tomatoes are an annual crop, about 11% is attributed to land use. Since
table grapes and artichokes are perennial crops, the land use contribution is much lower.
Land occupation takes into account the effects of land use, the amount of area involved,
and the duration of its occupation (changes in quality multiplied by the area and duration).
Other environmental cost categories contribute relatively little to the external costs of
crop production. Irrigation has the greatest impact on fossil fuel scarcity, with indirect
emissions associated with the Italian electricity mix (Figure 4). In terms of particulate
matter and global warming, a large part of the impact is related to mechanization (CO2
emissions from tractors) and chemical fertilizers (N2O and NH3 emissions into the air
from fertilizer production and application). Irrigation has a significantly larger impact
on the GWP and PMPF of tomatoes due to their higher water and energy consumption.
Acidification impacts are the results of fertilizer use and associated on-field emissions (NH3
and NOx).
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3.2. What Is the Total Cost of Crop Production with Reclaimed Water? The Role of Externalities

Figure 5 depicts the total cost per crop at the farm gate, which includes both internal
and external environmental costs per 1 t of product. The total cost of producing one ton
of crop was €119.4 for tomatoes, €344.4 for table grapes, and €557 for artichokes. Our
analysis shows that hidden costs associated with TWW-irrigated crops are significant,
accounting for 57%, 23%, and 38% of the total cost of tomatoes, table grapes, and artichokes,
respectively. This means that, for tomatoes, the environmental costs are larger than the
internal costs. Irrigation costs themselves accounted for 50%, 35%, and 38% of the total
cost of tomatoes, table grapes, and artichokes, respectively.
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Figure 5. The total monetized cost (sum of the internal and external environmental costs) of crops irrigated with reclaimed
water in the Apulia region (Southern Italy).

3.3. How Does the Performance of Crop Cultivation Irrigated with Reclaimed Water Compare to
Irrigation with Groundwater?

We further compared the cost of crop systems irrigated with groundwater (GW) and
reclaimed water (RW) to identify which sub-system had the most impact (Figure 6). Crop
yield and energy input differences were modeled. The annual crop yield of crops with
groundwater was considered as 85.7 t/ha, 23.1 t/ha, and 7.2 t/ha for tomatoes, table grapes,
and artichokes, respectively. The energy for irrigation was 0.34 kWh/m3 for tomatoes,
1.48 kWh/m3 for table grapes, and 0.247 kWh/m3 for artichokes. Water release was
modeled as reaching either the ocean (groundwater) or agricultural soil (treated water).
The water withdrawals from, or release to and from, natural resources was also considered.

Different studies performing comparative analyses of irrigation sources suggest that
the benefits of RW are both crop- and site-specific. Moretti et al. [41] found that the use
of treated wastewater for orchards achieved better outcomes for eutrophication-related
environmental burdens, while it performed worse for climate change, toxicity (humans
requiring freshwater), acidification, and water use. Romeiko [7] found that replacing
groundwater with reclaimed water as the irrigation source significantly increased the life
cycle of non-cancer impacts of corn, soybean, and wheat systems in China, but decreased
the life cycle of global warming, acidification, ozone depletion, smog formation, and
respiratory impacts. Azeb et al. [6] showed that irrigating cucumbers with reclaimed water
has quite a similar impact to groundwater for ionizing radiation, freshwater eutrophication,
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marine ecotoxicity, land occupation, and mineral resource scarcity. Furthermore, as many
case studies by Hernandez-Sanchez et al. [11] demonstrate, wastewater can be economically
feasible, with the benefits outweighing the costs. Our findings show that RW irrigation can
be just as profitable as, if not more profitable than, groundwater irrigation. This is because,
in an economic feasibility study, RW could compensate for a higher IC with a lower EEC.
This confirms the added value of monetary valuations of environmental impacts as an
additional input in the economic feasibility analysis.
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Figure 6. The total (internal + external) monetized cost of crops irrigated with reclaimed water (RW) and groundwater (GW)
in the Apulia region (Southern Italy).

As presented in Figure 6, using reclaimed water as an irrigation source reduces
EECs and total costs for table grapes and artichokes while increasing them for tomatoes.
Overall, our model shows that crop yield, energy expenditures, characteristics of the water
source, and irrigation volumes all influence performance. Most environmental impact
categories are reduced by RW, especially in well-optimized systems, i.e., when using
less energy for adequate wastewater treatment and management compared to pumping
deep groundwater. In the case of tomatoes, water treatment necessitates significantly
more energy than conventional groundwater, resulting in higher electricity costs. Cost-
effectiveness is also affected by the relatively small size of the water reclamation plant.
In the case of artichokes, the advantages of a higher yield with RW outweigh the costs
of energy and infrastructure for water reclamation. Furthermore, treatment costs are
comparable to groundwater costs. In the case of table grapes, the energy required for water
tertiary treatment and distribution is minor compared to the groundwater abstraction from
deep wells (>300 m). As a result, water reuse can help to reduce direct water and energy
costs as well as the external costs of environmental impacts. This assessment considered
water reclamation costs as borne by farmers. This is the case of only groundwater irrigation,
where all costs are private and borne by the farmers themselves. According to the current
local law, the burden of the investment cost for water reuse (tertiary treatment) is not
charged to farmers, but to all customers in the region [42]. Depending on the local situation,
another added value would be economizing fertilizer usage from the use of nutrient-loaded
waters. Considering these aspects can generate further positive results for water reuse.
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4. Conclusions

Economics remains one of the major barriers to the actual development of water reuse
projects. In this context, cost accounting incorporating hidden costs has become an impor-
tant issue in economic feasibility analyses. Combining life cycle costing with a monetized
life cycle assessment, this study quantified the internal and external environmental costs of
tomato, table grape, and artichoke cultivation with reclaimed water. The study investigated
the magnitude of external costs and their impact on total cost performance. Monetary
valuation of LCA impacts is an evolving field and there are still a lot of uncertainties
regarding the quantification of external costs. Therefore, the contribution of this study
is mainly methodological rather than numerical. Our analysis demonstrated that: (1) it
is possible to simultaneously synthesize economic–environmental aspects into a “global”
performance indicator; (2) at farm level there might be substantial hidden costs from life
cycle potential environmental impacts; (3) crop cultivation with reclaimed water could
result with environmental benefits of higher value than cost; (4) external costs via LCA
can serve as an integrated indicator to characterize important relationships and trade-offs
between the economic and life cycle environmental performance.

Uncertainty analysis was out of the scope of this study. Moreover, crop cultivation
has not only economic and environmental costs but also social costs and externalities that
were not considered in this study. Therefore, quantitative analyses based upon different
monetization methods including social externalities and uncertainty analysis are important
areas for future research. This will increase the robustness of the results and provide a
more accurate simulation of social and environmental externalities and their role in the
total external costs.
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