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Abstract: Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and
high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility
indices have been employed to evaluate the compatibility of crude blends from the thirty individual
crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and
the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The
ratio of solubility blending number to insolubility number was found to best describe the desalting
efficiency, and therefore could be considered as the compatible index that best models the crude
oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to
model, and predict the compatibility of crude blends.

Keywords: crude oil; crude oil characterization; compatibility; compatibility modelling; intercriteria
analysis; desalting efficiency

1. Introduction

The cost of crude accounts for between 80 and 90–95% of the total running costs of
refineries, and therefore is the single most important determinant for the profitability of
an oil company [1–3]. Therefore, refiners seek ways to process cheaper petroleum crudes,
while minimizing the risk of equipment failure and unplanned shut down [4]. The cheaper
crude oils, also called “opportunity crudes” are usually heavier with a higher concentration
of compounds containing heteroatoms such as sulfur, nitrogen, oxygen, and metals [4–7].
Typically, in a refinery a blend of crude oils is processed rather than a single crude oil
to ensure that an optimum product mix can be obtained at minimum costs. Refining
margins can be improved by co-processing heavy crude oils with light crude oils [8].
Unfortunately, the co-processing heavy with light crude oils is frequently connected with
incompatibility issues [9–12]. This can explain why the crude oil incompatibility has been a
subject of numerous investigations [13–22]. Different methods have been developed, tested,
and proposed to assess crude oil incompatibility [8,10–12,23–48]. Some of these methods
employ sophisticated equipment and procedures, which, unfortunately, are unavailable
in refineries for regular monitoring of the optimal crude oil blending and are suitable for
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blends of two crude oils. For each additional crude oil added to a blend, the number of lab
tests required to ascertain the range of incompatibility goes up exponentially making the
determination of crude oil compatibility intractable in laboratory testing [42]. On another
hand, some authors [8,34,39,44] reported that different procedures may qualify certain
crude oil blend as compatible or incompatible depending on the used crude oil properties
and laboratory conditions. In this study, we characterized thirty crude oils from all over
the world, twenty two of which were processed in the Lukoil Neftohim Burgas (LNB)
refinery. Nine crude oil compatibility indices, easy to apply in refineries, were employed to
assess the colloidal stability and the affinity to form precipitation during blending. Then
these indices were contrasted with the performance of LNB crude desalting units during
processing different crude blends to discriminate those indices which are best linked to
the desalting efficiency. Desalting efficiency is related to crude compatibility, lowering
it when crude blend is incompatible [14]. Poor desalting was reported in our previous
studies to lead to upset and emergency shutdown of one of the LNB middle distillate
hydrotreaters [17,49] due to excessive fouling with ammonium chloride settled down in
the hydrotreater water coolers.

Crude compatibility is still an ill-defined area in terms of its measurement and evalua-
tion [38]. Most studies relate crude incompatibility to a higher fouling rate [2,15,16,18,21,22,27].
Little is published about the relationship of crude incompatibility to desalting efficiency.
Moreover, there is a lack of reports indicating the dependence of crude desalting effi-
ciency on the compatibility indices employed to characterize crude compatibility. That was
the reason why we performed this study with the aim to discuss the relations between
crude oil compatibility indices and desalting efficiency. Additionally, we investigated the
relationships between petroleum characterization parameters and the compatibility indices.

2. Materials and Methods
2.1. Crude Oil Characterization

Thirty crude oils originating from Russia, Azerbaijan, Kazakhstan, Turkmenistan,
Libya, Egypt, USA, Venezuela, Equatorial Guinea, Saudi Arabia, Kuwait, Greece, Albania,
Italy, Tunisia, and others were investigated in this work. These thirty crude oils include
light low sulfur, light sulfur, intermediate low sulfur, intermediate sulfur, intermediate high
sulfur, heavy high sulfur, and extra heavy high sulfur crudes. Twenty-two of them were
processed in the LNB refinery, and eight of them were considered for possible processing
in the refinery.

The crude oils were fractionated in a true boiling point (TBP) Euro Dist System from
ROFA Deutschland GmbH, designed to perform according to ASTM D-2892 requirements.
The atmospheric residue from the TBP column was fractionated in a Potstill Euro Dist
System according to ASTM D-5236 requirements. The density of the crude oils and their
fractions was measured in accordance with ASTM D 4052. Sulphur content of the crude
oils and their fractions was determined in accordance with ASTM D D4294. Pour point
was determined in accordance with requirements of ASTM D 5853. Water and sediment
content analyses were performed according to the procedures described in ASTM D 4006
and ASTM D 473 respectively. Method ASTM D 445 was applied to measure the crude oil
kinematic viscosity. Chloride content was determined by applying the standard method
ASTM D 3230. Acid number of crude oils was measured by potentiometric titration in
accordance with ASTM D 664. SARA (saturates, aromatics, resins, asphaltenes) analysis
of the crude oils was done by employing liquid chromatography following the procedure
described in [50]. The methods used to characterize vacuum residue applied in the LNB
refinery are explained in detail in our earlier studies [51–53].

For the purposes of defining the compatibility indices, solvent power and critical
solvent power according to the procedure described in [42], the investigated crude oils and
their blends with n-heptane were characterized for their distillation properties according to
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ASTM D 7169 (HTSD). These distillation characteristics along with density were employed
to estimate the characterization factor (Kw) as shown in Equation (1).

Kw =

3
√

1.8[ T10 + T30 + T50 + T70 + T90
5 + 273.15]

d15
(1)

Table 1 summarizes the properties of all crude oils investigated in the current study.
The SARA analysis of the crude oils is shown in Table 2. Table 3 presents the properties of
the crude oil fractions.

2.2. N-Heptane Dilution Test

The solutions of the selected crude oils and n-heptane were prepared at varying ratios
between the crude oil and the normal paraffin. One sample tube contained 100 wt.% crude
oil. The samples were thoroughly mixed and allowed to equilibrate and then centrifuged.
The centrifuging process was carried out in a conventional centrifuge at 5000 rpm for
30 min. Supernatant oil liquid was removed from the centrifugal tube. The sediment was
subsequently washed in n-heptane and dried. The drying process was carried out at 105 ◦C
for 8 h. The recovered sediment was calculated in wt.% of the base of crude oil and plotted
against the weight percent of n-heptane of the solution of the particular sample tube.

2.3. Compatibility Indices
2.3.1. Crude oil Solvent Power and Critical Solvent Power

The solvent power of the crude oils was calculated as described in [42] and shown in
Equation (2).

Sp =
Kco− Khp
Kt− Khp

× 100 (2)

Kw—characterization factor of n-heptane = 12.72 [54].
Kw—characterization factor of toluene = 10.15 [54].
The point of initial sediment precipitation, obtained from the n-heptane dilution test

was used for determination of critical solvent power of the crude oil. Equation (2) is also
used to estimate the critical solvent power. In that case, however, Kw, characterization
factor of the blend crude oil of n-heptane at the point of initial sediment precipitation,
is used.

The solvent power of the petroleum blends was calculated by the use of Equation (3):

Sp blend = ∑ Xi× Spi (3)

The petroleum blend is considered compatible when its solvent power is greater than
the critical solvent power of the crude oil having the highest critical solvent power in
the blend.

2.3.2. Compatibility Indices Based on Petroleum SARA Analysis Data

Colloidal instability index (CII) was calculated by using Equation (4) and the SARA
data of the studied crude oils.

CII =
Sat + Asp
Aro + Res

(4)

In addition, the stability criteria expressed as ratios Sat/Aro and Res/Asp were esti-
mated too.
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Table 1. Properties of investigated crude oils.

Crude Oil
D,

kg/L
S,

wt.%
Water,
vol.%

Sediment,
wt.%

Chlorides,
mg/kg

Pour
Point, ◦C

Vis,
mm2/s at
at 40 ◦C

Distillation ASTM D
2892, wt.%

Distillation ASTM D
5236, wt.%

Simulated Distillation ASTM D7169,
◦C

IBP–110 110–180 180–240 240–360 360–540 540–FBP IBP 5% 10% 30% 50% 70% 90% 95% FBP

Albanian 1.0014 5.64 −3 236 2.0 4.7 4.4 14.8 25.2 48.2 83 94 162 312 442 595 683 709 811
Arabian
Heavy 0.8916 2.967 0.1 0.01 11 −36 23.4 6.94 8.94 8.13 19.94 24.54 30.51 75 103 139 257 369 489 650 687 768

Arabian
Light 0.863 1.89 0.025 0.01 7.7 −36 5.87 9.98 11.72 9.07 21.38 23.92 22.93 73 124 163 292 404 514 651 693 811

Arabian
Med 0.868 2.4 0.025 0.01 17 −36 9.44 8.88 12.03 8.65 19.99 23.8 25.65 70 110 150 270 386 505 652 693 818

Aseng 0.8722 0.258 0.05 0.0048 4 36 8.64 5.88 9.06 9.47 23.66 38.15 13.75 85 119 163 285 376 450 564 621 711
Azeri Light 0.8483 0.2 0.025 0.01 28 −12 4.82 9.09 12.22 10.42 25.93 26.58 14.76 76 101 132 238 321 423 580 649 730
Basrah
heavy 0.9202 4.08 −30.2 28.3 5.99 8.25 8.4 17.63 24.22 34.51 75 111 156 295 418 546 668 695 753

Basrah
light 0.884 3.31 0.5 0.02 31 −36 10.9 9.03 10.44 7.68 18.51 24.19 29.15 75 106 143 273 392 516 664 700 806

Boscan 1.0024 4.77 0.35 −32.8 31.3 1.26 2.26 3.58 11.855 31.5 49.5 101 227 285 435 558 640 688 707 757
Bozachi 0.9062 1.571 −21 51.9 2.37 4 6.82 18.66 34.47 32.67 89 177 226 332 431 541 660 697 816
Cheleken 0.8541 0.4 6 12.3 5.53 10.04 11.25 28.41 27.22 16.55 90 133 169 268 350 440 592 650 750
CPC 0.7954 0.55 0.025 0.01 29 −36 1.87 17.84 19.48 12.66 24.1 18.09 6.83 76 94 114 198 273 361 499 568 715
El Bouri 0.8763 1.72 0.15 0.0094 18 0 14.5 5.38 8.88 8.23 18.77 31.03 26.71 64 125 165 296 401 504 643 682 791
Kazakh 0.8876 0.4 1.1 0.022 81 21 2.31 5.82 5.96 5.82 19 39.05 23.35 101 200 260 376 444 529 655 697 823
Kirkuk 0.8538 2.26 0.25 0.005 71 −36 8.3 11.19 12.88 10.3 20.3 23.9 20.43 36 99 132 241 345 459 627 672 797
Kumkol 0.877 0.22 0.025 10 5.01 10.99 12.91 10.15 22.74 28.6 13.61 84 131 180 328 417 506 648 690 806
Kuwait
Export 0.8913 2.69 0.025 0.01 15 −36 12 8.23 10.12 8.4 19.99 24.1 28.16 79 110 151 274 388 506 656 691 754

Okwibome 0.8673 0.202 0.05 0.0058 4 −36 7.19 10.58 11.16 34.9 29.31 6.86 85 114 150 251 317 398 502 571 692
Oryx 0.9192 4.209 5.55 8.85 7.51 16.2 24.47 37.42 72 124 162 302 431 570 676 707 826
Ras Gharib 0.9424 3.44 0.25 0.0148 124 9 95 3.98 6.48 7.27 14.41 26.65 40.21 114 209 271 414 517 616 690 714 838
Urals 0.874 1.44 0.075 0.01 24 −6 8.23 7.22 9.59 8.31 21.3 27.31 25.27 76 107 150 273 378 487 644 686 770
Rhemoura 0.8728 0.75 0.15 0.02 151 6 5.64 9.43 12.57 9.24 21.59 25.99 20.18 71 103 137 249 350 458 611 663 783
Siberian
Light 0.8538 0.57 0.075 0.01 34 −9 6.24 8.63 11.39 9.09 23.07 28.09 18.73 75 98 138 254 352 451 604 659 732

SGC 0.8924 2.26 1.15 0.01 30 −21 26.6 11.54 8.97 6 18.14 24.29 30.06 69 100 142 294 416 539 666 703 828
Prinos 0.8875 3.71 0.075 0.01 42 −21 4.3 10.07 11.6 8.59 22.4 26.04 20.3 76 105 137 251 349 445 610 666 739
Val’d Agri 0.8327 1.96 0.05 0.04 −21 2.9 14.19 15.56 12.43 22.73 20.51 13.58 74 91 110 204 303 416 582 653 734
Varandey
blend 0.8667 0.625 0.08 0.001 23.3 −12 5.36 7.28 10.77 11.39 25.43 29.21 14.92 93 150 185 279 362 450 598 656 784

Tempa
rossa 0.9401 5.35 −42 47.81 7.15 8.63 7.24 15.66 22.74 37.58 39 119 157 295 428 565 677 707 842

Forties 0.817 0.679 0.2 0.01 113 −36 2.67 18.1 15.8 10.4 20.3 22.6 11.9 36.0 83.0 108.0 206 312 427 585 647 750
Kuwait M 0.8313 1.049 9.44 10.7 16.3 13.2 24.4 18.9 15.5 36 96 126 212 306 410 555 616 719
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Table 2. Crude oil SARA analysis.

Crude Oil Sat, wt.% Aro, wt.% Res. wt.% C7 Asp.,
wt.%

C5 Asp.,
wt.%

Albanian 24.4 58.0 2.74 14.86 17.6
Arabian Heavy 51.3 39.7 2.92 6.07 9.0
Arabian Light 59.9 35.8 1.54 2.77 4.3
Arabian Medium 58.4 35.1 2.79 3.74 6.5
Aseng 57.1 42.4 0.06 0.51 0.4
Azeri Light 64.6 34.6 0.60 0.20 0.8
Basrah heavy 43.4 43.8 3.20 9.56 12.8
Basrah light 53.5 38.4 2.82 5.25 8.1
Boscan 24.2 57.5 4.72 13.61 18.3
Bozachi 47.2 50.8 1.41 0.59 2.0
Cheleken 62.7 35.2 1.11 0.95 2.1
CPC 82.7 16.5 0.43 0.38 0.8
El Bouri 55.8 36.9 2.61 4.67 7.3
Kazakh 52.5 45.5 1.32 0.70 2.0
Kirkuk 62.8 30.1 1.98 5.15 7.1
Kumkol 55.6 44.3 0.07 0.05 0.1
Kuwait Export 51.4 41.3 2.57 4.67 7.2
Okwibome 58.6 41.3 0.12
Oryx 43.7 44.8 11.55
Ras Gharib 37.7 51.8 10.45
Urals 56.5 39.0 0.88 3.56 4.4
Rhemoura 56.9 36.8 1.63 4.68 6.3
Siberian Light 62.8 34.3 1.44 1.46 2.9
SGC 51.1 40.4 2.00 6.55 8.5
Prinos 52.5 39.6 1.79 6.09 7.9
Val’d Agri 69.7 27.6 1.50 1.15 2.7
Varandey blend 58.8 39.2 0.87 1.14 2.0
Tempa rossa 38.3 44.1 3.76 13.83 17.6
Forties 75.1 23.8 0.31 0.86 1.2
Kuwait M 70.2 27.2 1.00 1.60 2.6

2.3.3. Oil Compatibility Model

Wiehe [26,27] first introduced the concept of oil compatibility model. It consists of
defining the solubility and insolubility blending numbers and the ratio between them.

The ratio SBN/IN (solubility blending number/insolubility number) was estimated
using the information obtained from the n-heptane dilution test [10] and employing
Equation (5) [55].

SBN
IN

= 1 +
Vh

Voil
(5)

where,
Vh is the maximum volume of n-heptane (mL) at which the blend n-heptane–petroleum,

where the crude oil volume is Voil (mL), does not form a precipitation of asphaltenes.
SBN was calculated using the crude oil solubility parameter and solubility parameter

of n-heptane and toluene (Equation (6)). The solubility parameters (δ) for toluene and
n-heptane were taken from literature [56] where δT = 18.3 MPa 0.5 and δH = 15.2 MPa 0.5.

SBN = 100
[

δco− δH
δT − δH

]
(6)
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Table 3. Properties of crude oil wide fractions.

Crude Oil

IBP–110 110–180 180–240 240–360 360–540 540–FBP

D,
kg/L

S,
wt.%

D,
kg/L

S,
wt.%

D,
kg/L

S,
wt.%

D,
kg/L

S,
wt.%

D,
kg/L

S,
wt.%

D,
kg/L

S,
wt.%

C7 Asp,
wt.%

C5 Asp,
wt.%

CCR,
wt.%

Vis,
mm2/s

Albanian 0.690 0.29 0.7902 1.05 0.850 1.99 0.913 3.69 0.986 5.59 1.080 30.8 36.5 24.2
Arabian Heavy 0.679 0.03 0.755 0.07 0.800 0.34 0.863 2.01 0.927 3.23 1.026 5.82 19.9 29.5
Arabian Light 0.677 0.09 0.758 0.14 0.799 0.25 0.851 1.36 0.919 2.51 1.004 4.86 12.1 18.8
Arabian Medium 0.701 0.07 0.768 0.13 0.802 0.31 0.854 1.55 0.915 2.75 1.005 5.27 14.6 25.5 20.7
Aseng 0.725 0.08 0.787 0.10 0.830 0.16 0.862 0.27 0.818 0.29 1.002 0.62 3.7 3.3 14.2 28
Azeri Light 0.734 0.06 0.779 0.07 0.815 0.07 0.851 0.14 0.901 0.25 0.959 0.54 1.4 5.4 9.5 19
Basrah heavy 0.693 0.03 0.760 0.18 0.804 0.55 0.878 2.70 0.947 4.30 1.045 7.36 27.7 37.0 28.9
Basrah light 0.709 0.06 0.768 0.18 0.803 0.43 0.858 1.96 0.937 3.94 1.006 6.14 18.0 27.7 23.8
Boscan 0.725 0.13 0.752 0.64 0.824 2.29 0.891 3.83 0.953 4.73 1.072 27.5 37.0 20.8 1028
Bozachi 0.721 0.01 0.777 0.04 0.817 0.19 0.853 0.75 0.910 1.42 1.006 3.10 1.8 6.1 16.0
Cheleken 0.716 0.08 0.765 0.09 0.802 0.11 0.836 0.22 0.886 0.42 0.974 1.20 5.8 12.5
CPC 0.702 0.15 0.771 0.28 0.807 0.26 0.846 0.76 0.891 1.16 0.931 1.32 5.6 11.9 9.2
El Bouri 0.711 0.01 0.774 0.04 0.817 0.17 0.861 1.24 0.910 1.90 1.040 3.37 17.5 27.3 25.47 139
Kazakh 0.710 0.03 0.768 0.02 0.808 0.05 0.851 0.21 0.893 0.36 1.009 0.94 3.0 8.7 10.9 17
Kirkuk 0.682 0.05 0.758 0.10 0.797 0.20 0.853 1.45 0.920 2.81 1.040 6.22 25.2 34.9
Kumkol 0.687 0.011 0.7632 0.02 0.801 0.04 0.830 0.10 0.875 0.21 0.952 0.53 0.37 0.92
Kuwait Export 0.697 0.06 0.764 0.10 0.800 0.27 0.856 1.68 0.920 2.99 1.007 5.68 16.6 25.7
Okwibome 0.712 0.07 0.763 0.08 0.818 0.10 0.877 0.19 0.931 0.29 0.998 0.50 1.7 12.9 9
Oryx 0.686 0.00 0.752 0.06 0.793 0.33 0.852 1.94 0.932 3.80 1.084 8.01 30.9 29.41 564
Ras Gharib 0.700 0.06 0.767 0.35 0.816 1.02 0.863 2.31 0.921 3.02 1.063 5.58 26.0 25.1 430
Urals 0.724 0.07 0.774 0.15 0.812 0.30 0.856 0.94 0.907 1.61 1.003 2.93 14.1 17.6 17.5
Rhemoura 0.725 0.05 0.777 0.06 0.817 0.10 0.854 0.52 0.910 0.97 1.006 1.90 23.2 31.3 23.7
Siberian Light 0.715 0.03 0.775 0.06 0.814 0.10 0.855 0.35 0.905 0.78 1.005 1.58 7.8 15.5 14.0
South Green Canyon 0.714 0.06 0.776 0.14 0.813 0.34 0.863 1.17 0.927 2.22 1.007 5.09 21.8 28.4 22.9
Prinos 0.704 0.17 0.788 0.40 0.821 0.72 0.867 2.61 0.942 3.90 1.039 9.14 30.0 38.8 32.82
Val’d Agri 0.683 0.04 0.761 0.07 0.802 0.29 0.862 1.73 0.935 3.29 0.999 6.47 8.5 19.5 21.4 80
Varandey blend 0.716 0.02 0.772 0.09 0.809 0.15 0.850 0.48 0.888 0.74 0.987 1.76 7.62 13.48 15.1 24.25
Tempa rossa 0.682 0.07 0.76 0.42 0.807 1.14 0.883 3.58 0.970 5.10 1.119 9.26 36.8 46.8 34.33
Forties 0.696 0.05 0.8 0.07 0.805 0.11 0.848 0.48 0.971 1.51 0.989 2.54 7.2 9.8 14.77
Kuwait M 0.680 0.05 0.755 0.066 0.795 0.09 0.847 0.86 0.912 1.86
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Solubility parameter of the crude oil was calculated on the basis of the crude oil
density and the correlation of Correra et al. [57] and shown as Equation (7).

δco = 24.042× d0.5 − 4.5989 (7)

Solubility blending number of the petroleum blends is the volumetric average for
those oils [47] and was estimated by applying Equation (8).

SBNmix =
∑ Vi × SBNi

∑ Vi
(8)

Table 4 summarizes all the compatibility indices employed in this work for all the
studied crude oils.

Table 4. Crude oil compatibility indices.

Crude Oil Sp Sp
Critical CII Sat/Aro Res/Asp δCO,

MPa0.5 SBN/IN SBN IN

Albanian 94.1 52.2 0.65 0.4 0.2 19.44 1.00 136.7 136.7
Arabian
Heavy 60.3 34.4 1.35 1.3 0.5 18.07 2.31 92.4 40.0

Arabian Light 36.5 27.8 1.68 1.7 0.6 17.69 1.55 80.5 51.9
Arabian
Medium 44.0 38.6 1.64 1.7 0.7 17.76 1.86 82.6 44.4

Aseng 44.1 29.1 1.36 1.3 0.1 17.81 1.86 84.3 45.3
Azeri Light 44.2 37.6 1.84 1.9 3.0 17.50 1.33 74.2 55.8
Basrah heavy 63.9 46.4 1.13 1.0 0.3 18.43 1.90 104.2 54.8
Basrah light 52.7 36.5 1.43 1.4 0.5 17.97 1.87 89.3 47.7
Boscan 68.9 48.2 0.61 0.4 0.3 19.45 1.00 137.0 137.0
Bozachi 45.2 36.9 0.92 0.9 2.4 18.25 2.33 98.5 42.3
Cheleken 37.5 25.3 1.75 1.8 1.2 17.58 2.24 76.7 34.2
CPC 24.2 31.2 4.92 5.0 1.1 16.79 1.00 51.4 51.4
El Bouri 43.3 41.4 1.53 1.5 0.6 17.87 1.34 86.1 64.2
Kazakh 29.6 19.4 1.14 1.2 1.9 18.01 1.55 90.8 58.6
Kirkuk 45.4 42.0 2.12 2.1 0.4 17.57 1.31 76.6 58.5
Kumkol 38.9 38.2 1.26 1.3 1.5 17.88 1.14 86.4 75.8
Kuwait
Export 55.4 42.0 1.28 1.2 0.6 18.06 1.88 92.3 49.1

Okwibome 50.1 31.6 1.42 1.4 17.75 1.85 82.3 44.5
Oryx 60.6 50.1 1.23 1.0 18.42 1.58 103.8 65.7
Ras Gharib 47.0 22.2 0.93 0.7 18.71 1.61 113.2 70.3
Urals 48.1 32.5 1.51 1.4 0.2 17.84 1.88 85.1 45.3
Rhemoura 52.9 41.2 1.60 1.5 0.3 17.82 1.32 84.6 64.1
Siberian Light 42.6 29.0 1.80 1.8 1.0 17.57 2.26 76.6 33.9
South Green
Canyon 53.3 38.4 1.36 1.3 0.3 18.08 1.88 92.8 49.3

Prinos 60.8 39.3 1.42 1.3 0.3 18.01 1.34 90.7 67.7
Val’d Agri 43.6 28.2 2.43 2.5 1.3 17.30 2.22 67.6 30.4
Varandey
blend 40.2 36.9 1.49 1.5 0.8 17.74 1.32 82.0 62.1

Tempa rossa 71.73 60.97 1.09 0.9 0.3 18.68 1.59 112.3 70.6
Forties 37.83 18.73 3.15 3.2 0.4 17.09 1.99 60.8 30.6
Kuwait M 37.67 37.67 2.54 2.6 0.6 17.28 1.0 66.98 66.98

3. Results
3.1. Relations between Compatibility Indices and Crude Oil Properties

The experimental strategy presented in the current study to determine the compatibil-
ity indices was accomplished in three stages explained below: (1) Preparing mixtures of
crude oil with n-heptane at different ratios; (2) determination of the onset of asphaltene
precipitation; (3) estimation of compatibility indices. Crude oils, investigated in this study,
exhibited different behaviors during the dilution with n-heptane. Figure 1 presents three
typical graphs of relation of recovered sediment to the n-heptane content in the crude
oil–n-heptane mixture. Most crude oils have behavior similar to that shown in Figure 1a.
Recovered sediment starts to increase rapidly at a given n-heptane concentration for each
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oil sample and this threshold is called initial sediment precipitation. As explained before
the initial sediment precipitation is used to estimate the crude oil solvent power and critical
solvent power by the use of Equations (1) and (2). Most of the studied crude oils had
solvent power below 60 and they could be classified as cyclohexane equivalent [28]. Crude
oil with solvent power of zero is equivalent to n-heptane, and a crude oil with a solvent
power of one hundred is equivalent to toluene [42]. Some of the light crude oils with
solvent power less than 44 and characterization factor Kw in the range 11.8–12.2 showed
behavior similar to that presented in Figure 1b,c. These light crude oils can be considered
as self-incompatible or near-incompatible [27]. Recovered sediment can decrease or remain
unchanged with increasing the quantity of n-heptane in the blend crude oil–n-heptane.
In our study crude oils with low asphaltene and high paraffinic content such as CPC,
Kuwait M, Azeri light demonstrated the behavior shown in Figure 1b,c during the n-
heptane dilution process. It is well-known that the sediment recovered during the crude
oil centrifuging process can be classified as inorganic and organic. Inorganic sediment is
represented by suspended impurities, such as sand, dirt, clay, or rust coming from the
crude oil production process [13,55]. Organic sediments include asphaltenes, and high
molecular waxes [13,55,58]. Sediment decreasing during the n-heptane dilution process of
Kuwait M crude oil might be a result of the mutual dissolving of waxes and asphaltenes.
Waxes can improve dissolution of asphaltenes because of the interaction between side alkyl
chains in asphaltenes and waxes [55,58–62]. The dissolution of the solids is accelerated
because of increasing volume of alkyl layers surrounding the asphaltenes polyaromatic
cores [60]. That is why, the proper determination of flocculation point of the mentioned
above light paraffinic low asphaltenes crude oils is very difficult and even impossible. Their
solubility power is close to that of the n-heptane. Additional in-depth study is required
to generate correct results for the compatibility indices based on the n-heptane dilution
test [10,26].
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Figure 1. Dependence of crude sediment content on the concentration of n-heptane in the blend crude oil–n-heptane for
light crude oils: (a) Basrah Light crude oil; (b) Kuwait M crude oil; (c) Azeri Light crude oil.

The relations between different crude oil properties and measured compatibility in-
dices shown in Tables 1–4 were examined by using the intercriteria analysis (ICrA). The
ICrA approach is specifically designed for datasets comprising evaluations, or measure-
ments of multiple objects against multiple criteria. In the initial formulation of the method,
the aim was to detect statistically meaningful relations between the criteria, in order to
eliminate future evaluations/measurements against some of the criteria, which exhibit
high enough correlations with others. The reader can find more information concerning
the application of ICrA in our recent studies and the references there [17,63]. ICrA defines
the relations between the studied criteria (parameters) in terms of intuitionistic fuzzy pairs
〈µ, ν〉 [17,63]. Depending on the values of µ and ν seen in pair, positive consonance, nega-
tive consonance, and dissonance between any pair of criteria (parameters) can be defined.
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Values of µ = 0.75 ÷ 1.00 and ν = 0.00 ÷ 0.25 denote a statistically meaningful positive
relation, where the strong positive consonance is exhibited at values of µ = 0.95 ÷ 1.00,
ν = 0.00 ÷ 0.05 and the weak positive consonance is exhibited at values of µ = 0.75 ÷ 0.85,
ν = 0.15 ÷ 0.25. Respectively, the values of negative consonance with µ = 0.00 ÷ 0.25 and
ν = 0.75 ÷ 1.05 represent a statistically meaningful negative relation, where the strong
negative consonance exhibits values of µ = 0.00 ÷ 0.05, ν = 0.95 ÷ 1.00 and the weak
negative consonance exhibits values of µ = 0.15 ÷ 0.25, ν = 0.15 ÷ 0.25. All other cases are
characterized as dissonance [17,63].

Table 5 presents the µ values of ICrA of the different compatibility indices summarized
in Table 4. It is evident from the data in Table 5 that the solvent power of the crude oil
weakly positively correlates (µ = 0.81) with the solubility parameter and solubility blending
number. The solubility blending number negatively weakly correlates with CII and ratio
Sat/Aro (µ = 0.20 and µ = 0.16 respectively).

Table 5. µ-value of the ICrA evaluation of relations between different compatibility indices.

µ Sp Sp
Critical CII Sat/Aro Res/Asp δCO SBN/IN SBN IN

Sp 1.00 0.79 0.40 0.36 0.57 0.81 0.48 0.81 0.62
Sp critical 0.79 1.00 0.64 0.60 0.71 0.57 0.34 0.57 0.57

CII 0.40 0.64 1.00 0.99 0.51 0.20 0.38 0.20 0.59
Sat/Aro 0.36 0.60 0.99 1.00 0.63 0.16 0.41 0.16 0.56
Res/Asp 0.57 0.71 0.51 0.63 1.00 0.74 0.51 0.24 0.29

δCO 0.81 0.57 0.20 0.16 0.74 1.00 0.33 0.99 0.75
SBN/IN 0.48 0.34 0.38 0.41 0.51 0.33 1.00 0.33 0.28

SBN 0.81 0.57 0.20 0.16 0.24 0.99 0.33 1.00 0.75
IN 0.62 0.57 0.59 0.56 0.29 0.75 0.28 0.75 1.00

Note: Green color means statistically meaningful positive relation; Red color implies statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation is. Yellow color denotes dissonance.

Figure 2 presents the discussed relations. Solubility power and critical solubility
power increase with and increase in SBN (Figure 2a). The relation between SBN and CII
can be described by a power function (Figure 2a) with a squared correlation coefficient
of R2 = 0.978. The relation between solubility parameter and Sat/Aro ratio can be also
described by a power function with a squared correlation coefficient R2 = 0.938. The com-
patibility indices solubility parameter, SBN and solvent power correlate with density [28,46].
The content of saturates and aromatics in the crude oil and its fractions also correlates
with density [63]. Therefore, the presence of a statistically meaningful relation between
solubility blending number, for example, and the indices determined based on SARA
analysis data can be expected. Indeed, this is confirmed by the data shown in Figure 2b,c.

The ICrA examination of the data in Table 6 revealed that the solvent power had a
weak statistically meaningful relation with the density, sulfur and asphaltene content in
the crude oil. Figure 3 depicts the relations between solvent power and crude oil density
(a) and sulfur content (b). The asphaltene content in the crude oil was also found to relate
to the solvent and critical solvent power (Figure 4). The C5 asphaltene content was found to
have a bigger impact on the solvent power than the C7 asphaltene content. In general, the
heavy crude oils, which have higher contents of sulfur, polar aromatics, and asphaltenes
exhibit higher solubility power because the polar aromatic compounds (resins) in the crude
oil are stabilizing agents that prevent the asphaltene precipitation [64]. Respectively, the
crude oils, which have higher saturate (low density) and lower asphaltene contents, can be
colloidal instable and they are more susceptible to cause sediment deposition during the
petroleum exploration and processing [65].
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Table 6. µ-value of the ICrA evaluation of relations between some compatibly indices and properties of the studied crude
oils of different origins.

µ
Density
at 15 ◦C Sulfur Pour

Point Sp Sp
Critical Vis C7 Asp.

CO
C5 Asp.

CO SBN/IN TAN Density
VR

Sulfur
VR

C7 Asp.
VR

C5 Asp.
VR

Density at 15 ◦C 1.00 0.73 0.44 0.78 0.72 0.79 0.76 0.76 0.50 0.56 0.78 0.69 0.70 0.69
Sulfur 0.73 1.00 0.24 0.81 0.74 0.74 0.88 0.87 0.48 0.45 0.82 0.95 0.86 0.86

Pour Point 0.44 0.24 1.00 0.35 0.38 0.41 0.32 0.30 0.40 0.54 0.36 0.25 0.33 0.30
Sp 0.78 0.81 0.35 1.00 0.79 0.76 0.83 0.81 0.48 0.50 0.80 0.78 0.81 0.79

Sp critical 0.72 0.74 0.38 0.79 1.00 0.71 0.74 0.73 0.34 0.53 0.76 0.72 0.75 0.75
Vis 0.79 0.74 0.41 0.76 0.71 1.00 0.76 0.77 0.57 0.51 0.75 0.70 0.72 0.69

C7 Asp. CO 0.76 0.88 0.32 0.83 0.74 0.76 1.00 0.94 0.46 0.48 0.85 0.86 0.94 0.92
C5 Asp. CO 0.76 0.87 0.30 0.81 0.73 0.77 0.94 1.00 0.47 0.47 0.84 0.84 0.89 0.89

SBN/IN 0.50 0.48 0.40 0.48 0.34 0.57 0.46 0.47 1.00 0.33 0.46 0.49 0.42 0.43
TAN 0.56 0.45 0.54 0.50 0.53 0.51 0.48 0.47 0.33 1.00 0.44 0.43 0.47 0.46

Density VR 0.78 0.82 0.36 0.80 0.76 0.75 0.85 0.84 0.46 0.44 1.00 0.81 0.84 0.82
Sulfur VR 0.69 0.95 0.25 0.78 0.72 0.70 0.86 0.84 0.49 0.43 0.81 1.00 0.86 0.86

C7 Asp. VR 0.70 0.86 0.33 0.81 0.75 0.72 0.94 0.89 0.42 0.47 0.84 0.86 1.00 0.96
C5 Asp. VR 0.69 0.86 0.30 0.79 0.75 0.69 0.92 0.89 0.43 0.46 0.82 0.86 0.96 1.00

Note: Green color means statistically meaningful positive relation; Red color implies statistically meaningful negative relation. The intensity
of the color designates the strength of the relation. The higher the color intensity, the higher the strength of the relation is. Yellow color
denotes dissonance.
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Figure 4. Dependence of solvent and critical solvent power on C5 and C7 asphaltene content of the studied crude oils:
(a) relation between Sp and C5 asphaltenes; (b) relation between Sp and C7 asphaltenes; (c) relation between Sp critical and
C5 asphaltenes; (d) relation between Sp critical and C7 asphaltenes.
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The following expression of the relation between solvent power and crude oil proper-
ties has been established (Equation (9)) by performing a multiple linear regression:

Sp = 34.76553 + 1.21187× C5Asp + 0.10604×Vis + 2.28072× S
R = 0.93 (coefficient of multiple correlation), standard error = 5.7%

(9)

In some cases, for light crude oils with SBN/IN ratio below 1.4 and solvent power below
44, which are considered to pertain to the group of incompatible and near-incompatible
crude oils (for example El Boury, CPC, and Azeri Light), the estimated solvent power
values by Equation (9) were out of the regression standard error (5.7%), but in the range of
uncertainty of the method for solvent power determination (5–15%), as reported in [42]
(Figure 5a).
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Figure 5. Agreement between the predicted and measured solvent power by Equation (9) (a), and by Equation (10) (b).

By performing a multiple linear regression, the following expression relating the
critical solvent power to the C5 asphaltene content, density of crude oil, and Conradson
carbon content of the vacuum residue was developed.

Sp critical = 14.01745 + 1.127921× C5Asp + 0.273233× CCRvr + 11.65823× D
R = 0.85 (coefficient of multiple correlation), standard error = 5.8%

(10)

The standard error of Equation (10) is in the range of uncertainty of the method for
critical solvent power determination (5–15%) reported in [42] (Figure 5b). The laboratory
experiments in LNB established that the typical error for solvent and critical solvent power
determination did not exceed 10%.

The regression Equation (9) suggests that the crude oils which have higher C5-
asphaltene content, higher viscosity, and higher sulfur content are stronger solvents. On
the other hand, regression Equation (10) implies that the higher C5-asphaltene content
crude oils are more difficult to dissolve and will require a stronger solvent to keep the
asphaltenes in solution and prevent their precipitation. These findings are in line with
those reported in our earlier study [17] showing that the higher asphaltene content crudes
require blending with crude oils whose vacuum residue has a higher Conradson carbon
content, and the petroleum has a higher density.

Similar to solvent power the SBN has a statistically meaningful relation with the crude
oil density, sulfur, and C5 asphaltene content (Figure 6). High sulfur crude oils with
high content of C5 and C7 asphaltenes are characterized by a higher solubility blending
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number. It is well-known that solubility-blending number cannot be a self-sufficient
parameter for crude oil compatibility evaluation [26]. The ratio between the solubility
blending number and insolubility number was established as a reliable indicator that can
determine the compatibility of the crude oils [27]. Figure 7 describes the SBN/IN ratios of the
investigated crude oils. As can be seen from the data in Figure 7 three zones can be defined:
incompatible zone SBN/IN < 1, near-incompatible zone 1 < SBN/IN < 1.4, and compatible
zone SBN/IN > 1.4. It is evident from these data that both light and heavy crude oils pertain
to the self-incompatible zone and near-incompatible zone, implying that all types of crude
oil could belong to the group of the self-incompatible and near-incompatible oils. For this
data set, no statistically meaningful relation was found between the insolubility number
and any crude oil property.
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3.2. Relation between Compatibility Indices and Crude Desalting Efficiency

Our previous study showed that the crude oil desalting efficiency is very important
for the performance of the downstream units [49]. The desalting efficiency is defined as
shown in Equation (11):

DE =
COsalt − desalted COsalt

COsalt
× 100% (11)

Poor crude oil desalting entails upsets and increased corrosion in downstream units [49].
During processing different crude oil blends a variation of desalting efficiency between
70 and 96% was registered. All the studied compatibility indices in this work were exam-
ined for their relation to the desalting efficiency. Only the solvent power and the SBN/IN
ratio were found to have a statistically meaningful relation with the desalting efficiency
as shown in Figure 8. As evident from the data in Figure 8 the ratio SBN/IN is strongly
related to the desalting efficiency than the solvent power. The crude oil blend with solvent
power above 49 have a lower desalting efficiency. The solvent power of the crude oil is
connected with its density and Kw-factor (Table 5). When the density of crude oil blend
increases (respectively solvent power), the difference between the densities of petroleum
blend and water decreases and water salinity diminishes. A crude oil with 0.898 specific
gravity with produced water salinity of 25% has a density difference about five times as
high as that of a crude oil with 0.973 specific gravity with produced water salinity of 3%
at 40 ◦C [66]. The extra-heavy crude oils and bitumen, heavier than water are diluted to
a dilbit of 0.97 specific gravity; the dilbit becomes lighter than the water phase, and the
water salinity is 0%, typically [67]. Thus, for desalting and dehydration of heavier crude oil
blends, the desalter will require more stringent operating conditions (temperate, type of
chemical additives, wash water ratio, or settling time) [68] and design due to lower salinity
in the diluted produced water in the desalter.
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During processing of near-incompatible crude oil blends (ratio SBN/IN < 1.4) a lower
desalting efficiency was registered. Figure 8b depicts the relation between ratio SBN/IN
and desalting efficiency, which is described by a second-order polynomial with R2 = 0.9527.
The insolubility number measures the degree of insolubility of the asphaltenes, and the
solubility blending number measures the solvency of the oil for asphaltenes. The criterion of
crude oil blend compatibility is SBNmix > INmax, that is the solubility blending number of the
mixture of oils must be higher than the insolubility number of any oil in the mixture [26].
The higher the SBNmix the better its stability. On the other hand, the SBN is related to
the asphaltene content in the crude oil (Figure 6). It is well-known that asphaltenes
in the crude oil, as a surface-active substance, cause the formation of higher stability
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oil/water emulsions [14]. The asphaltenes hinder separation of oil and water phases
during the desalting and dewatering because the asphaltene molecules easily gather at the
oil/water interface and undergo self-association, hence forming a rigid film at the oil/water
interface [14]. Moreover, solids such as high molecular paraffin and clay are adsorbed and
the mechanical strength of the interfacial film becomes more rigid than ever [69]. When
the crude blend is incompatible or near-incompatible and the asphaltenes are instable, the
process of self-association at the oil/water interface may be accelerated resulting in the
formation of a rigid film that deteriorates the desalting and dewatering efficiency.

A blend of 50.5 wt.% Urals, 20 wt.% CPC, 24.5 wt.% Arabian medium, and 5 wt.%.
Prinos (SBN/IN = 1.1, Sp = 42.9, Sp critical = 32.1) was processed in the LNB refinery. The
blend was determined as near-incompatible because the difference between Sp and Sp
critical was in the limits of 10% error and the ratio SBN/IN was below 1.4. A very low
desalting efficiency (70 ÷ 75%) was observed in the crude oil desalting unit.

The solvent compatibility indices and critical solvent power and solubility blending
number and insolubility number determined on the base of the n-heptane dilution test and
employment of Equations (2), (3), and (5)–(8) have been used to model the compatibility of a
four-component crude oil blend. Tetra-Plot was used for representation of the compatibility
of the four-component crude oil blend by using Equations (2) and (3) (solvent power and
critical solvent power) and the procedure described in [70]. Figure 9 presents the obtained
tetra-plot of crude oil blend Urals, CPC, Prinos, and Arabian medium crude oils by the use.
Critical zone of mixing separates the zones of compatibility (in green) and incompatibility
(in red) of the four-component blend. The critical curves of three-component blends are
depicted. The critical point of two-component blend is also shown in Figure 9. It can be
seen from these data that some of the critical points do not lie on the critical zone or curves.
Two-component blend CPC/Urals is incompatible in the ratio 65% wt./35% wt., but the
addition of a third crude oil, as Arabian medium for example, can improve the stability of
the petroleum blend and make it compatible.
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number. The data in Figure 10 do not significantly differ from the data in Figure 9. However,
the use of solubility blending number and insolubility number predicts a lower space of
incompatibility (Figure 10) than that employing solvent power and critical solvent power
(Figure 9). This implies that the compatibility indices of solvent power and critical solvent
power are more conservative and predict the incompatibility regions with lower degree
of freedom concerning the variation in concentration of the four investigated crude oils
for that case. Nevertheless, the compatibility indices of solubility blending number and
insolubility number are better related to the desalting efficiency, supposing that they
could be the more appropriate indices to assess crude blend compatibility reflecting the
commercial field performance.
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4. Conclusions

Nine crude oil compatibility indices were studied to evaluate the compatibility of
crude blends from thirty individual crude oils. These crude oils belong to light, medium,
heavy, and extra heavy, light sulfur, and high sulfur types. The compatibility indices,
solvent power, solvent blending number determined on the base of the n-heptane dilution
test were found to correlate with the petroleum density. The compatibility indices based on
petroleum SARA analysis data, colloidal instability index, saturates/aromatics, and others
also correlate with density. The solubility blending number and solvent power increase with
augmentation of contents of asphaltenes and sulfur. The critical solvent power enhances
with the magnification of crude oil density, content of crude oil asphaltenes, and vacuum
residue Conradson carbon content. The desalting efficiency deteriorates when crude blends
with lower ratio of solubility blending number to insolubility number and higher solvent
power are processed. The ratio of solubility blending number to insolubility number was
found to best describe the desalting efficiency, and therefore could be considered as the
compatible index that best models the crude oil blend compatibility.
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Nomenclature

Aro Aromatics
Asp Asphaltenes
CCR Conradson carbon content, wt.%

CCRvr
Conradson carbon content of the vacuum residue in crude oil (cut boiling above
540 ◦C), wt.%

CII Colloidal instability index
C5Asp C5 asphaltene content in the crude oil, wt.%
C7Asp C7 asphaltene content in the crude oil, wt.%
CO Crude oil
COsalt Crude oil salt content, mg/L
D Crude oil density at 15 ◦C, kg/L
d Crude oil density at 20 ◦C, kg/L
DE Crude oil desalting efficiency, %
desalted COsalt Content of salts in desalted crude oil, mg/L
FBP Final boiling point, ◦C
HD n-heptane Dilution
HTSD High temperature simulation distillation
IBP Initial Boiling point, ◦C
ICrA Intercriteria analysis
IN Insolubility number
Kw Watson characterization factor
Kco Characterization factor of the crude oil
Kt Characterization factor of the toluene
Khp Characterization factor of the n-heptane
LNB Lukoil Neftohim Burgas
Res Resins
S Crude oil Sulphur content, wt.%
SARA Saturates, aromatics, resins, asphaltenes
Sat Saturates
SBN Solubility number of crude oil
SBNi Solubility number of i crude oil in the blend
SBNmix Solubility number of the petroleum blend
SBN/IN Solubility blending number/insolubility number ratio
Sp Solvent power of the crude oil
Sp critical Critical solvent power of the crude oil
Sp blend Solvent power of petroleum blend
Spi Solvent power of i crude oil;
TBP True boiling point
T10 Boiling point of 10% of evaporate according to the HTSD or physical distillation, ◦C
T30 Boiling point of 30% of evaporate according to the HTSD or physical distillation, ◦C
T50 Boiling point of 50% of evaporate according to the HTSD or physical distillation, ◦C
T70 Boiling point of 70% of evaporate according to the HTSD or physical distillation, ◦C
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T90 Boiling point of 90% of evaporate according to the HTSD or physical distillation, ◦C
TAN total acid number, mg KON/g
Vh Volume of n-heptane, mL
Vi Volume of i crude oil in the blend, mL
Vis Crude oil viscosity at 40 ◦C, mm2/s
Voil Volume of crude oil, mL
VR Vacuum residue
Xi Weight fraction of i crude oil in the petroleum blend
µ Consonance
δco Solubility parameter of crude oil, MPa0.5

δT Solubility parameter of toluene, MPa0.5

δH Solubility parameter of toluene, MPa0.5
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