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Abstract: This paper shows the first step in analog (and mixed signal) abstraction utilized in
large-scale Field Programmable Analog Arrays (FPAA), encoded in the open-source SciLab/Xcos
based toolset. Having any opportunity of a wide-scale utilization of ultra-low power technology both
requires programmability/reconfigurability as well as abstractable tools. Abstraction is essential
both make systems rapidly, as well as reduce the barrier for a number of users to use ultra-low
power physical computing techniques. Analog devices, circuits, and systems are abstractable and
retain their energy efficient opportunities compared with custom digital hardware. We will present
the analog (and mixed signal) abstraction developed for the open-source toolkit used for the SoC
FPAAs. Abstraction of Blocks in the FPAA block library makes the SoC FPAA ecosystem accessible to
system-level designers while still enabling circuit designers the freedom to build at a low level.
Multiple working test cases of various levels of complexity illustrate the analog abstraction capability.
The FPAA block library provides a starting point for discussing the fundamental block concepts of
analog computational approaches.

Keywords: FPAA; Analog Abstraction

1. Motivation and Need for Analog Abstraction

Although developing abstraction of analog is considered an unlikely dream, this paper shows the
first step in analog (and mixed signal) abstraction utilized in large-scale Field Programmable Analog
Arrays (FPAA), encoded in the open-source SciLab/Xcos based toolset (Figure 1). Often, individuals
often state confidently that developing a hierarchical representation for analog circuits and systems is
incredibly difficult, unlike the simple digital circuit and system representation, even those trained in
analog design. Analog systems require so many different circuit combinations, with many detailed
and complicated decisions. Digital systems are naturally hierarchical, composed from NAND or NOR
logic gates, multiplies and addition units, and a range of processors with associated memories. Digital,
as currently taught, naturally moves from device to circuit to Gate to Module to System., and analog
just seems nearly impossible to make a similar story.

Are digital systems naturally hierarchical, and is analog processing nearly impossible, or are the
perceptions a product of historical development? Digital required hierarchy and a computational
framework (e.g., [1]) in its early development (1940s and 1950s) to compete with existing physical
(e.g., analog) computing devices, a framework that allowed it to accelerate through the Moore’s
law [2,3] and VLSI design [4] eras, in order to become the usual computational choice today (Figure 2).
Analog computation was less and less used or taught in education. Without significant analog
implementations available, particularly those accessible to some non-analog Integrated Circuit (IC)
designers, any discussion of analog computation is effectively theoretical.
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Figure 1. Analog Abstraction into fundamental blocks enables implementation into configurable
systems, similar to digital counterparts. Analog (or mixed-signal) circuits, such as a classical sensor
system with a variable gain amplifier (top), or analog computation, such as an acoustic word
classifier (second), are built from a common high-level approach. This discussion is beyond a
theoretical discussion because of the existence of configurable devices, such as the SoC large-scale Field
Programmable Analog Array (FPAA, die photo shown).

Traditional analog system design and computing still resembles its roots in the 1950s and 1960s,
where every problem is hand crafted by a circuit expert to create a miraculous solution (Figure 2).
The design often tends to be bottom-up, and reuse of previous solutions and approaches is not common.
Such approaches don’t enable wide-spread development using these techniques, unlike the wide use of
digital design techniques.

Analog computation [5] becomes relevant with the advent of FPAA devices (Figure 2), particularly
the SoC (System on Chip) FPAA devices [6] and resulting design tools [7] (Figure 4). FPAA requires an
analog computation framework (Figure 2) to reach its large potential. The discussion of resolution
and computational noise and computation energy has recently been addressed [8], showing a balance
between analog and digital computation, each with their own optimal regions. Analog abstraction
and hierarchy, including the capability of top-down analog computing, is fundamental for practical
analog computation.

The abstraction and tool framework will focus on the SoC FPAA family of devices, although
the techniques would be applicable to other FPAA devices, as well as applicable to general analog
implementations and other real-valued (physical) computing systems. Analog abstraction will
focus on algorithmic abstraction, such as filtering, subband processing, and classification, as the analog
equivalent of multiply and addition tend to be circuits requiring simply one (or a few) transistors per
input vector component [9]. These presented techniques are only the beginning of these directions.
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Figure 2. Digital Computation builds from Turing Machines as the foundation for computer
architectures, computer algorithms, and resulting numerical analysis. All digital computing devices
are based on this framework. Although traditional analog computation has little computational
framework, recent opportunities in configurable implementation of analog/mixed-signal computation
has created interest as well as initial results towards building these systematic design approaches,
This effort considers analog and mixed signal abstraction centered around the tool efforts required for
system-level FPAA design. These techniques are only the beginning of these directions.

This discussion presents the first step in analog (and mixed signal) abstraction utilized in an
FPAA encoded in the open-source SciLab/Xcos based toolset. Reviewing the SoC FPAA ecosystem
and energy efficiency discussions (Section 2) provides the background for developing abstraction.
This background enables developing design approaches for abstraction and resulting library blocks
(Section 3). We instantiated abstraction in tools (Section 4) is split into system design (Section 4.1) and
circuit level design (Section 4.2) with a transition between levels. The SoC FPAA approach is aimed
primarily for system design while still enabling circuit level design. The discussion then proceeds to
show the abstraction and complexity of multiple working test cases, illustrating analog abstraction
capability (Section 5). We conclude by discussing the FPAA block library (Section 6), discussing the
implications for the existing library as well as speculation on fundamental block concepts of analog
computational approaches.

2. Energy Efficiency and SoC FPAA Ecosystem

This discussion will develop the start of an analog and mixed signal abstraction resulting
from a number tool efforts required for system-level FPAA design. Design tools are a practical
instantiation of abstraction (Figure 1). Analog computing enables both improved computational
efficiency (speed and/or larger complexity) of ×1000 or more compared to digital solutions
(as predicted by [9]), as well as potential improvements in area efficiency of ×100. Multiple analog
signal processing functions are a 1000× factor more energy efficient than digital processing, such as
Vector-Matrix Multiplication (VMM), frequency decomposition, adaptive filtering and classification
(e.g., [6] and references within). Biologically-inspired classifier techniques open the opportunity for
configurable biologically-inspired, energy-efficient classifier approaches (1,000,000× over custom
digital solutions) [10] for context-aware applications.
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Figure 3 illustrates the energy impact for cloud computation, on-device digital computation,
and FPAA assisted computation. Many portable and wearable devices are constrained by their
energy-efficiency. Digital communication typically dominates the overall energy consumption [10].
Cloud based computing removes issues of real-time embedded (e.g., fixed point arithmetic) to be
done on some far away (and supposedly free) server using MATLAB-style coding, a high-level
language utilizing double-precision numerics where the numerical algorithms are already developed.
Computation done off of the device is not seen, and considered effectively endless, eventually resulting
in energy and resulting infrastructure required still has significant impacts. The host system still
must constantly transmit and receive data through its wireless communication system to perform
these computations. The network connectivity must have a minimum quality at all times; otherwise,
performance noticeably drops. One often assumes that the cloud is nearly free for a small number of
users. As the product scales to the consumer market, these assumptions can break down. Although the
local digital device computation (for a good wireless network) requires similar energy for cloud and
on-device computation (at a 100MMAC(/s) level), physical computation, such as FPAA empowered
devices, enables factors of 1000× improvement in the overall power requirements.
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Figure 3. Comparison of Cloud computation, on-device computation, and FPAA computation.
For cloud computation and for on-device computation, we only consider the energy required for
communication. All devices might have an RF radio; we consider just the part required for this
core computation. For FPAA computation, we include the entire device. If cloud computation were
considered free, then cloud and on-device computation would appear to be of similar complexity.
FPAA computation dramatically decreases the resulting on-device computation.

The SoC FPAA ecosystem (Figure 4) is built around the SoC FPAA family of devices, such as [6],
providing user-friendly infrastructure for system design. The infrastructure could be utilized for
the earliest of FPAA devices (e.g., [11]). These FPAA devices use Floating-Gate (FG) devices for
ubiquitous small, dense, non-volatile memory throughout the 350 nm CMOS IC. SoC FPAA devices
can scale to smaller IC process nodes with improved energy efficiency, increased bandwidth/clock
rates, and reduced system area, all improving quadratically with decreasing linewidth [12] We expect
future FPAA devices to be built to this standard. Early recognition of FG switches (e.g., Computational
Analog Blocks (CAB) selection crossbars) as computational elements [13] both enabled a wide range of
computations (e.g., VMM [14]), as well as brought creative energy to the routing infrastructure (history
described in [6]) and resulting system capabilities. In such architectures, the CAB components are
often the boundary conditions for the computation, not the core computation.
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Figure 4. SoC FPAA approach consists of key innovations in FPAA hardware, innovations and
developments in FPAA tool structure as well as innovations in the bridges between them. One typically
focuses on what circuit and system applications can be built on the FPAA platform, but every solution
is built up for a large number of components ideally abstracted away from the user.

Over a decade of consistent FPAA development and application design has roughly converged
on a typical mixture of several medium level components per CAB (OTAs, FG OTAs, T-gates),
along with a few low level elements (transistors, FG transistors, capacitors). Comparing the CABs of
early papers [11] to the CAB topology of recent FPAA designs (Figure 5, adapted from Figure 2
in [6]) shows some similar characteristics, validated by numerous circuits designed and measured
in these architectures. A few CABs might be specialized for larger functions (e.g., signal-by-signal
multipliers [6], sensor interfacing [15], neurons [16]), showing their relative importance in these
discussions. Most of these elements have at least one FG parameter that is part of the particular device
used. For small to moderate CAB components, the complexity of the resulting device is roughly
proportional to the number of pins available for routing. Three terminals of an nFET transistor
has similar system complexity to three terminals of an FG OTA. We expect some small shifts in
these components in future FPAA devices, such as dedicated current-conveyer blocks, but generally,
the CAB level components are stable. The number and size of FPGAs Look Up Tables (LUT) vary from
architecture to architecture; FPAA CABs vary similarly.

FG circuits enable a large potential circuit design space that can be tuned around mismatches
(e.g., [17]). All Transconductance Amplifiers (OTA) have an FG transistor to set its bias current; the bias
current can be directly programmed between 50 pA and 10 µA with better than 1% accuracy at
all current levels [18]. FG OTAs are chosen for programming input offsets (FG charge) as well as
programming the linearity (capacitor elements) and open-loop gain of the OTA. For many applications,
one considers the OTA devices as a differential-input, voltage-output amplifier.
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Figure 5. RASP 3.0 functional block diagram illustrating the resulting computational blocks and
resulting routing architecture. The infrastructure control includes a microprocessor (µP) developed
from an open-source MSP430 processor, as well as on chip structures include the on-chip DACs,
current-to-voltage conversion, and voltage measurement, to program each Floating-Gate (FG) device.
The FG switches in the Connection (C) Blocks, the Switch (S) Blocks, and the local routing are a single
pFET FG transistor programmed to be a closed switch over the entire fabric signal swing of 0 to 2.5 V.
Eight, four-input Boolean Logic Element (BLE) lookup tables with a latch comprise the CLB blocks.
Transconductance amplifiers, transistors, capacitors, switches, as well as other elements comprise the
CAB blocks. (Adapted from Figure 2 in [6]).

The SoC FPAA [6] ecosystem represents a device to system user configurable system. An SoC
FPAA implemented a command-word acoustic classifier utilized hand-tuned weights demonstrating
command-word recognition in less than 23 µW power utilizing standard digital interfaces [6]. Multiple
analog signal processing functions are a factor of 1000× more efficient than digital processing, such as
Vector-Matrix Multiplication (VMM), frequency decomposition, adaptive filtering and classification
(e.g., [6] and references within). Embedded classifiers have found initial success using this SoC FPAA
device towards command-word recognition [6], and accoustic (and biomedical) sensor classification
and learning (e.g., [19]) in 10–30 µW average power consumption. Floating-Gate (FG) devices empower
FPAA by providing a ubiquitous, small, dense, non-volatile memory element. The circuits compute
from sensor to classified output in a single structure, handling all of the initial sensor processing and
early stage signal processing. This ecosystem scales with newer ICs built to this standard, as expected
by all future FPAA devices [12]. The µP is clocked at 20 MHz, and can be clocked at least to 50 MHz,
consistent with other digital computation in 350 nm CMOS; at smaller linewidth processes, the highest
clock rate increases.
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Figure 4 shows a high level view of the demonstrated infrastructure and tools for the SoC
FPAA, from FG programming, device scaling, and PC board infrastructure, through system enabling
technologies as calibration and built-in self test methodologies, and through high level tools for design
as well as education. The current infrastructure enables a discussion of the analog block abstraction.

This ecosystem and abstraction allows us to talk about approaches for future FPAA devices
in scaled down technologies (e.g., 130 nm and 40 nm) [12]. Development of FPAA devices in
350 nm CMOS has enabled a powerful platform to iterate on FPAA designs, while still having several
engineering applications. One expects future FPAAs in a range of processes for a range of bandwidths
and clock frequencies. The development of a 40 nm SoC FPAA device [20] showed that FG enabled
analog and digital design is fairly similar to design at the 350 nm node. The FG devices eliminate most
issues of threshold voltage mismatch, the primary issue in porting analog and digital designs to 40 nm
and smaller device nodes. Avoiding threshold voltage mismatch by FG devices breaks the typical
viewpoint that one wants large transistors for analog as opposed to using small transistors for digital
operation. Smaller voltage headroom and lower transistor gain need to be considered for any design,
where the drop from 2.5 V supply at 350 nm FPAA to a 1 V supply at 40 nm is a small effect, particularly
for circuits operating with subthreshold bias currents. Transistors at 40 nm CMOS are mostly operating
with subthreshold or near subthreshold bias currents. As a result, one expects little change in device
modeling or in system abstraction scaling between 350 nm and 40 nm CMOS that likely continues
when scaling to smaller process nodes. The device and circuit modeling would be similar, although
the simulation parameters would likely change for a new IC process (350 nm→ 40 nm). One can
also utilize digital devices to assist with any analog functionality as a result of scaling, just as one can
utilize more analog devices to assist with numerical computation.

The open-source toolkit is a developed Analog-Digital Hardware-Software CoDesign environment
for simulating and programming reconfigurable systems [7]. The analog (and mixed signal) abstraction
is developed in this open-source toolkit used for the SoC FPAAs. This tool simulates, designs, as well as
enables experimental measurements after compiling to configurable systems in the same integrated
design tool framework. The simulation tool enables current-voltage and individual transistor level
simulation, as well as abstracted system-level simulation. High-level software, x2c, in Scilab/Xcos
(open-source clone of MATLAB/Simulink) converts high-level block description by the user to a
modified blif ( Berkeley Logic Interface Format) format, verilog and assembly language. This tool
uses modified VPR [21] code for global place and route while utilizing its own code for local place
and route functions. The resulting targetable switch list is targeted on the resulting configurable
analog–digital system.

3. Tool, Abstraction, and Initial Block Library Design Approach

One might wonder if fundamental analog building blocks, both in hardware and in the software
tools, can be reasonably determined in a similar way one uses look-up tables and flip-flops for FPGA
designs. Digital FPGA components did not start off being obvious, starting with Programmable
Array Logic (PAL) and Programmable Logic Array (PLA) approaches. The approaches used came
from the same individuals who were working on look-up tables and and-or logic components.
There was not a methodology, but rather a good approach that when scaled up has been effective.
Today, these approaches seem sufficient for most tasks, particularly since FPGA architectures are
partially hidden from their users.

Analog computation has not had a similar set of blocks because analog computation did not
build up a computational framework [5] to enable transitioning to these higher levels. The rise of
FPAA approaches has become the testbed to begin to build this framework. The tools designed to
enable a non-circuits expert, like a system applications engineer, to investigate particular algorithms.
Analog block library are similar to a high level software definition or library (e.g., we will show
later in Figure 6). The analog Scilab/Xcos system is a visual programming language in the same
tradition as Simulink, building on aspects of visual programming languages [22,23], and data flow
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languages [24,25]. Graphical algorithms are popular for Graphical FPGA tools, such as the recent and
independently developed open-source tool, Icestudio [26]. Labview is a non-open-source related
approach that does have some aspects to connect to physical instruments (e.g., [27]), and with
ODE-based infrastructure might be adapted to create a similar flow. The Scilab/Xcos blocks are
core blocks where there are not lower level pictures of these components, although many of them are
described as part of this discussion. Higher level abstraction is possible with blocks as we will see
throughout this technical discussion.
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Figure 6. Illustration of several existing FPAA blocks, both level 1 and 2, for infrastructure and
computation. Level = 2 blocks tend to correspond to CAB (Computational Analog Block) elements in the
FPAA. Not all blocks are shown, but representative samples; the list will grow with further innovations.

This new capability creates opportunities, but also creates design stress to address the resulting
large co-design problem (Figure 7). The designer must choose the sensors as well as where to implement
algorithms between the analog front-end, analog signal processing blocks, classification (mixed signal
computation) which includes symbolic (e.g., digital) representations, digital computation blocks,
and resulting µP computation. Moving heavy processing to analog computation tends to have less
impact on signal line and substrate coupling to neighboring elements compared to digital systems,
an issue often affecting the integration of analog components with mostly digital computing systems.
Often the line between digital and analog computation is blurred. For example, data-converters,
or the more general case of analog classifiers, typically have digital outputs. The digital processor
will be invaluable for bookkeeping functions, including interfacing, memory buffering, and related
computations, as well as serial computations that are just better understood at the time of a particular
design. Some heuristic concepts have been used previously, but far more research is required
in building applications and the framework of these applications to enable co-design procedures
in this space.

Analog computation directly implements dataflow parallelism. Analog executes as data appears.
This representation allows parallel algorithms by design. Analog computation optimally merges data
and computation, typical of data flow computation. The event data flow graphs fit well with neural
computation/modeling, particularly for low average rate firing systems. Event (asynchronous) and
clocked (synchronous) systems would be pipelined data flow systems [25]. The µP primarily enables
event driven processing as well as interfacing to outside synchronous digital world. Tool compilation
will state whether enough resources are available, including computational components and data
communication. The need for deep FIFOs, as in digital data flow implementations [24], is rarely
needed except for final data logging and debugging.
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Figure 7. Enabling programmable and configurable computation from the sensors to the final stored
digital results in a huge co-design problem. Unlike the typical co-design concerns between partitioning
code between digital computation (e.g., FPGAs) and µP, this discussion has potentially five layers
of heterogeneous opportunities requiring informed decisions for near optimal designs in a finite
amount of time.

4. System Level (Level = 1) versus Circuit Level (Level = 2) Design Environment

The structure of the Scilab/Xcos FPAA toolset was developed to enable both analog circuit design
as well as system level design. The dataflow tool representation allows for a heterogenous mixture of
courser-grain system concepts (Level = 1) as well as fine-grain circuit blocks (Level = 2). Figure 8
shows the considerations required for system (Level = 1) design. Definitions separating system level
(Level = 1) and circuit level (Level = 2) started with an earlier FPAA structure [28], but only fully
realized with the SoC FPAA structure [7]. Previous experience showed that circuit design was not
compatible with system designer’s expectations of block diagrams (e.g., Simulink, Xcos); the definitions
simplified the design process while not inhibiting either circuit-level or system-level design.
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Figure 8. Illustration of Level = 1 requirements. These requirements enable level = 1 solutions to fit a
typical graphical dataflow system, as one would expect in Simulink or Xcos. (a) level = 1 requires that
block inputs and outputs are voltages, enabling voltage broadcast, and eliminating difficulties with
current summation for the tool; (b) a current input (or output) must have another block that converts
the signal representation, in a linear or nonlinear manner, to voltage inputs (or output). Common
transformations from input voltage to output current include MOSFET transistors or Transconductance
Amplifiers (TA), both frequently available on-chip; (c) all signals to the blocks must be vectorized to
represent input data buses (n signals), not just individual signals. This requires that block definitions,
both in simulation and in hardware targeting, must enable parallelized representations (e.g., n blocks).



J. Low Power Electron. Appl. 2018, 8, 47 10 of 24

4.1. Level = 2: Enabling Circuit Designers to Build Level = 1 Blocks

Circuit level design (Level = 2) is straightforward for circuit designers, particularly analog
designers. The goal of Level = 2 modeling would be to design, test, model, and build Level = 1
blocks that can be used by system designers. Each block represents a circuit element, either an
element in the CAB (e.g., transistors, OTA) or a circuit block. Every line represents a single circuit
connection providing current–voltage constraints. The tool directly compiles these elements into
hardware, as well as simulates these circuits in Scilab/Xcos environment modeling the current-voltage
relationships and interactions between blocks. The transistor simulation utilizes the analytic EKV
model, only requiring six parameters for simulation; since we know the particular transistor of interest,
whether it is 350 nm or 40 nm, and not every possible transistor dimension (e.g., W, L), this modeling
is sufficient for these devices [29].

A Level = 2 block design is complete when encapsulated into a level = 1 model. The tools allows
the user to graphically macroblock [30] CAB components into a block compiled into a single CAB.
Every Level = 1 block uses a macromodel simulation for system simulation [7]. The model should
closely correspond to experimental data, often encapsulating the characterization measurements and
analysis performed to verify the block. Level = 2 blocks also utilize a tightly modeled macro modeled
simulation for its circuit elements (e.g., OTA, FG OTA); the open availability of these models can assist
designers in building their own Level = 1 models [29].

A designer Macromodeling circuit behavior enables the analog knowledge to be codified for
future users and designers. The steps required in macro modeling are similar to the measurement and
parameter fitting required for all successful designs. Macromodeling, starting from an op-amp model
in 1974 [31], looks to create a nonlinear model to reproduce circuit responses as close as possible [32]
using simpler digital numerical models. Models look to utilize generalized, low-order polynomials
around a single fixed operating point [33–37], and some models utilize the nonlinear dynamics of the
transistors [29,38–40]. These techniques often are coupled with tool design approach, particularly joint
verification of digital and analog systems [41–44].

Our device models are derived to be generally applicable over a wide range of CMOS processes.
The abstracted model parameters correspond to measured parameters from a group of SoC FPAA
devices [6]. The abstracted model parameters are at a similar level to parameters published in technical
papers that do not necessarily indicate any particular IC fabrication process details. Our devices were
fabricated on a commercially available 350 nm CMOS process that one SoC FPAA was fabricated [6].
We would approach building models for other SoC FPAA devices along similar lines. One could
directly use foundry data or SPICE simulations from foundry information to build these models,
although that was not our approach. One taking this approach must be aware of inaccuracies in
these models as well as understand the resulting IP restrictions resulting from a particular IC foundry.
We expect extracted parameters at the similar level as published simulation data would be acceptable
in these cases. Such cases could be valuable when investigating a new IC process when one does not
have access to measured data.

4.2. Level = 1: Scilab/Xcos System Design Tools

System (Level = 1) design requires constraining the circuit representations just enough,
and no further, for circuit design to directly fit into the data flow representation of Xcos environment.
Level = 1 definitions are the minimum definitions required for circuit functionality (Figure 8) to
align circuit concepts with Xcos dataflow approaches [24,25]. First, the blocks communicate using
voltage signals, and the voltage signals must be abstracted to a single line (e.g., differential signals are
represented by one line). Individual blocks can have internal current representations using voltage
interfaces. Most blocks using current signals have internal voltage node(s) that can be communicated,
so the constraint tends to have minimal issues. These constraints enable simpler and scalable ODE
solutions instead of the nested current-voltage Level = 2 numerical ODE simulations. Standard
single-ended digital design fits these definitions (e.g CMOS logic gates); the tools compile Verilog
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descriptions for compiled digital components. Second, lines represent a single or signal vector
(signal bus), and each block must allow for the parallelization required for these signals.

Figure 9 shows representative Level = 1 blocks and their circuit representation. Each block
represents core function, a more course-grain function [24], built out of FPAA components, that are not
viewable in the tool. This practice is similar for digital computation, where few designs are developed
at the level of logic gates or multiplication & addition, but rather most design in higher level algorithms
(e.g., Cepstrum, Image Filtering, Classification) already encoded into libraries (e.g., MATLAB, Python).
System level design should enable the user to build solutions without detailed knowledge of the
underlying analog or mixed signal circuits, in the same way most users design digital algorithms
without detailed knowledge of the underlying logic design. This abstraction provides a useful
comparison between analog computations and digital computations.
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RefRef
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In

(level=2) (level=1)

AC Coupled AttenuatorTransimpedance Amplifier / Converter

(level=1)

TIAIn Out
AC 

Attenuate
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Figure 9. Example FPAA blocks following Level = 1 definitions. Hysteretic Differentiator block uses
nonlineary dynamics to find zero crossings, minimum and maximum signal values. Transimpedance
Amplifier (/converter) enables current output circuits to be represented at Level = 1 blocks, such as in
VMM computation. The circuit also is important for sensor interfacing applications. An AC coupled
attenuator allows for precise level-shifted small signals to be applied to a circuit; selecting the input
capacitor affects the input attenuation. Voltage can be amplified using the open loop FG OTA block in
Figure 1, where the gain (e.g., 10–50) is chosen by coupling capacitors.

Abstraction for graphical languages is necessary for efficient design, both for analog and digital
languages. One application of hierarchical design is reducing on-screen complexity in graphical
representations. Multilevel abstraction enables efficient graphical descriptions. If you try to graphically
or in text keep everything together, it does not work. Deutsch limit can not have more than 50 visual
primitives on the screen at the same time [45]. Multiple class projects using FPAA devices at Georgia
Tech (e.g., [46,47]), as well as using related graphical tools like Labview for freshman robotics courses
(e.g., ECE 1882), verify the need to keep the number of on-screen visual primitives smaller than 50;
keeping the number of blocks below 25 seems important for debugging possibilities.

The few early attempts at analog synthesis in highly constrained spaces shows the hope of
eventual analog synthesis (e.g. [48]). These systems attempt to do some initial macromodeling [49]
and some symbolic representations [50] to eventually generate IC layout [51].

The definition of AMS languages (e.g., Verilog AMS, VHDL-AMS, Verilog-A), with some partial
integration into IC design tools of Cadence [52] and Mentor Graphics [53], provide an alternate
language framework to eventually implement the concepts we have described, but now in an IC design
framework. The primary use of AMS languages is to rapidly include a new physical/analog component
or circuit into some form of a SPICE model [54,55]. The AMS model tends to be to for transistor models
(e.g., MOS EKV v2.6 [56]), for simple circuit components (e.g., [57] ), for specific abstracted linear
system modeling (e.g., [58]), or for high level electrical models of mechanical systems to interface into
electrical devices [59]. AMS is primarily a way to add devices into the Cadence analog simulation
capabilities. These capabilities are extensions of voltage controlled current sources. Modelica and
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AMS languages have similar capabilities [60], where one can transfer between the two approaches
with some optimization work. Given that Modelica, as part of Scilab/Xcos, is already available and
utilized for our lowest level framework (Level = 2) in the tool flow, at a level at least equal to what is
used in AMS languages, our approach shows what is possible with the potential of higher analog and
mixed-signal abstraction.

Although an AMS language implementation could be utilized as the starting point for abstraction
for analog IC design, considerable effort and infrastructure are required beyond the current state of
these tools. Our techniques could be utilized with Cadence tools and to extend things if there is interest
because our tools and techniques are open source. Although a language definition exists, the language
has not been used, developed, etc to have any connection to real hardware or real synthesis. These
tools are rarely used for developing frameworks, and when discussed, are entirely theoretical [61,62],
effectively being too simple for practical implementations or not based in any physical implementation.
These abstraction approaches highly constrains the system to simply analog pre- and post- processing,
assuming simple linear system models [62,63]. One might find theoretical discussions of netlist
partition strategies, important aspects for synthesis and abstraction, and yet separated from any analog
circuit design concepts [64]. One sees a framework, but no synthesis or anything built. There is
a strange sense that defining the language means something is built, but does not actually show
abstraction; it just gives a framework to be illustrated [63]. AMS languages effectively are still only of
limited interest, although models have been available for over 20 years.

5. Illustration of Complexity Available for Analog Abstraction

This section shows multiple examples demonstrating the design of many levels of
analog/mixed-signal abstraction, showing the new capabilities and patterns in analog abstraction.
The examples start with simple circuit elements and work towards analog computation, showing
the complexity as well as abstraction throughout the process. FPAA abstraction, and resulting tool
implementation, must involve compilation and simulation. These concepts introduce the abstraction of
a complex circuit element, both in its suprising layers of required abstraction, as well as the amount of
abstraction required for instrumenting the computation. Analog signal processing using these blocks
requires a higher layer of abstraction, and computation, like classification and learning, requires even
high layers of abstraction. These blocks show the large number of abstraction layers, and the constant
reuse of components. The block abstraction concepts and tool design developed in an ethos of FPAA
experimental design and measurement experience. Most of the application circuit implementations
were not envisioned until after the SoC FPAA ICs were fabricated.

We have already seen a few representative Level = 1 blocks and their circuit representation
(Figure 9). These blocks use a small number of components for input signal interfacing (AC Coupled
Attenuator), for output signal interfacing (Transimpedance Amplifier), and for a range of linear and
nonlinear (Hysteretic Differentiator) functions.

FG OTAs can be used for a number of applications required in analog circuit techniques. One can
use these blocks to gain a signal between 10 and 100 around a DC value. Two OTA devices can build a
divide by 10 or another value around a DC potential. Analog circuits often need to tune the particular
input or output signal range between components. Two OTAs are be used to build the low-pass filter
second-order section block definition (e.g., [65]). OTA blocks are important for building on music
synthesis blocks [66], including the current block, CurrentStarvedInverter.

A simple second-order bandpass filter block (simulation and compilation) shows significant
analog/mixed-signal abstraction (Figure 10), providing a useful example showing the number of
levels of a few fundamental components required for reusable analog elements. The multiple levels of
analog abstraction is significant in a typical implementation, levels that can be abstracted from the
designer who only needs to use higher level blocks ( blocks in measurement setup of Figure 10b).
The bandpass block, a Gm-C C4 bandpass filter topology, is deceptive because underlying the simple
block are multiple levels of abstraction where FG elements are used throughout each structure,
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as well as tunable capacitor banks (Figure 10a). FG elements eliminate biasing issues through
programable parameters; programmable parameters are essential for any abstractible physical system.
FG enables abstraction by programmable components and abstraction makes users not unnecessarily
focus on these details. IC designers want to see circuit details (Figure 10a), and are typically suprised
at the detailed levels.
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Figure 10. Analog Abstraction, abstracted from the typical user, has multiple levels of depth. The measuring a
bandpass block illustrate these levels of complexity (the Capacitively Coupled Current Conveyer, or C4, Gm-C,
device). (a) components in the C4 bandpass filter block. This block is directly parallelizable, so one element is
shown for clarity. The filter requires two FG OTAs and one capacitor, corresponding to CAB (Level = 2) elements.
The capacitor block allows for scaling the number of capacitors with six equal sized devices. The FG OTA is
a dedicated component using selectable capacitive inputs to a regular OTA device found in the CAB elements.
The floating-gate charge can be programmed through measurements of In and Ip and abstracted through the
tool. The OTA device uses an FG bias current source for a typical 9-transistor OTA topology [65]; (b) typical
setup for end-to-end use (experimental measurements) of the bandpass filter block. The blocks for testing show
additional instrumentation blocks that are all part of the complete compiled system. The DC Voltage block uses an
FG OTA device, configured for unity-gain, programmed (modifying Q+ and Q−) for a particular voltage output.
The Arbitrary waveform block uses the digital µP to supply signals on a DAC, routed to the desired input block.
The Ramp ADC block also uses µP control to build a converter from an OTA, T-gate switches (CAB elements),
and FG elements available in routing.

The blocks for testing require additional instrumentation blocks that are all part of the complete
compiled system (Figure 10b). The set of blocks is the entire system. The blocks for instrumentation to
test a component is part of the computation, illustrating the co-design trade-off in these areas. The DC
voltage block is one FG OTA, set in unity gain configuration, and programmed with the required
charge to set a DC voltage, eliminating the need for biasing structures (not tunable) or biasing DACs
(large elements). The core structure looks like a highly sophisticated analog system design effectively
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built through a few blocks, simple and robust enough to be a user’s first day potential example.
Typically, most analog/mixed-signal systems take a long time to build, and an even longer time to
instrument. These techniques immediately show the issues and blocks to build, and eliminates the
arbitrary (and unhelpful) lines between design and test.

Moving to signal processing applications requires even higher levels of abstraction (Figure 11),
particularly when considering computations like frequency decomposition (e.g., continuous-time
wavelet transforms). The previous bandpass filters and amplitude detection block are key components
for an exponentially scaled wavelet frequency decompostion (Figure 11). The computational chain
requires a parallel bank of C4, a frequency decomposition, Amplitude Detection, or modulation to
baseband, and an LPF. The core block fits into a single CAB and replicated for the number of required
bands (Figure 11). Compiling a block into a single CAB results in a modular structure with minimal
internal capacitance.
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Figure 11. Tool blocks for acoustic subband computation: bandpass filter bank, amplitude detection,
and time window filtering for later processing. Measuring this block introduces the amplitude
detection and first-order LPF blocks, both requiring one OTA each. These three elements make
up an subband compute block (Figure 1). The structure requires the scanner block, targeted as a set of
T-gate switches and shift register in routing between the CABs and C block routing, to multiplex the
multiple signals. The scanner is controlled by digital output block taking µP signals into the CAB.
The measure voltage block, a low-frequency (200SPS) block utilizing the 14-bit ramp ADC in the
programming infrastructure [18] to connect with the digital system. The approximate gain from In
through the ADC is nearly 1 and calibrated on-chip [17].

Table 1 summarizes representative available SoC FPAA interfacing blocks. The particular
specifications directly affect the measurements possible for the resulting computation.
This measurement illustrates the measure voltage block, effectively a slow speed (200SPS),
high-resolution (14-bit) voltage measurement. The structure uses the FG programming circuitry,
including the 14-bit measurement ramp ADC, still available in run mode. Measured data for this
operation is shown in Figure 3 of [6]. The particular voltage measurement location can be multiplexed
through the programming selection circuitry.
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Table 1. Summary of representative SoC FPAA interfacing blocks.

Summary of Typical Input Devices for the SoC FPAA Structures (20 MHz Clock)

Name Type Bits Rate Range

DCVoltage Compiled Analog Circuit ≈14 DC-200SPS 0–2.5 V
DC_voltage µP controlled DAC 7 0–2.5 V (or 0.2–2.1 V)

ARB Gen µP controlled DAC 7 approx1 MSPS 0–2.5 V
GPIO_in µP controlled GPIO 16 (bus) 10 MSPS 0–2.5 V

Summary of Typical Output Devices for the SoC FPAA Structures

Name Type Bits Rate Range

meas_volt (ADC) ramp + FG input 14 200 SPS 0–2.5 V (or 0.1 to 2.4 V)
ADC1/2 2 IP block 8 kSPS 0–2.5 V
Ramp_ADC ramp 8 kSPS 0.1–2.4 V

The step towards analog/mixed-signal computation, such as a classifier or learning classifier,
requires more additional abstraction levels comprised of multiple modular components (Figure 12).
Modular components are essential results for compiling these circuits into an FPAA structure. Six to
either abstraction levels, typical of digital computation, are common for implementing this level of
computation. These systems allow for sensors to classified symbolic data, a significant challenge for
any system and interface design utilizing popular neural network accelerator hardware solutions.
The front-end to the classifier stage could be chosen to the front-end frequency decomposition (Figure 11
abstracted into Figure 12a), or a continuous-time delay line approximation (Figure 12b). The choice of
a front-end stage can be dependent on the signal classification algorithm as well as other nontechnical
factors. The ladder filter basis function uses a number of coupled Gm-C components with a similar
complexity per output as the bandpass filter frequency decomposition.

Both approaches (Figure 12a,b) perform the final classification using a VMM+WTA classifier
structure. The VMM items are FG local routing transistors. Unlike traditional FPGA architectures,
which have optimized architectures for multipliers (and adds) and memory access to the computation,
VMM in FG enabled FPAA devices is simply routing to the next computation with the non-volatile
values locally stored. The structure used a digital input block to move the data from the circuit output
into the µP SRAM. Recent results show that this VMM+WTA classifier is capable of learning, utilizing
additional analog circuit, interfacing, and µP control (more assembly code), in a similar structure [67].

As another Classification and Learning example, abstraction techniques for analog classification
can be extended to neuromorphically inspired approaches. The measurement structure shows a
full layer of synaptically connected neurons, similar to the dynamics shown in custom ICs [68],
with Level = 1 abstraction of neural blocks using the transistor channel model definitions (Figure 13).
This block could specify the SoC FPAA [6] compilation of a network of 92 biologically modeled
neurons each with 12–14 synaptic inputs and 10–12 network inputs. Learning techniques from the
VMM + WTA classifier could be adapted for this network [67]. One could create a software interface to
directly utilize the PyNN [69] neural representation for simulation or compilation. PyNN shows
promise as a tool to unify multiple groups through an open community type tool used by multiple
academics. The approach would extend to other neural network applications and approaches in a
straightforward manner.
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Figure 12. Compilation of classification architectures with full end-to-end sensor to classified data in
simple graphical code definitions. (a) signal processing and classification block chain with n input and
m output VMM + WTA classifier block. The chain uses a digital input block to get the results from
the VMM + WTA classifier; (b) implementation of a classifier network using an approximate delay
line. This approximate delay line is an example of a ladder filter network, a Gm-C realization of a
prototypical LC delay line; other LC filters and PDE approximations (wave guiding networks) would
utilize this framework.

The core Hodgkin-Huxley (HH) model circuit (Level = 2) is an FPAA adaptation of the original
channel neuron circuit [70]. Different applications result in different methods to supply the input
current from input voltage(s) creating different blocks. For both cases, all components are chosen to
embed the structure in a single CAB, macroblocking the design. One case uses an OTA to transform
between voltage input to a single, direct current input into the neuron element(s). The membrane
voltage (Vmen) is buffered to the output. The measurement structure requires similar complexity to
other circuits with an input, output, and two DC voltage biases (Ek, ENa) for all circuit instances.
EK and ENA are the same biological supply for all neurons and therefore shared between blocks.

Synaptic elements to combine synaptic and neuron activity utilize the local routing FG transistors,
adding another level of complexity that is abstracted through the high-level tool framework.
The outputs are a triangle ramp that pre-computes the modeled charge concentration reaching the
post-synaptic terminal. The number of synapses is limited, in this approach, by the number of
local input routing lines. The inputs require a triangle ramp processing from their initial digital
events. The ramp element can integrate directly on the line capacitance or can be buffered depending
on the resulting synaptic current consumption. The routing DC Voltage block sets DC voltages
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using only routing fabric, using an FG pFET voltage follower, enabling dense setting of DC voltages.
By characterizing one element, one gets a nearly ubiquitous voltage supply circuit that can be routed
on any local line. Each CAB has local routing to Vdd and GND lines, so this component is always
available with nearly no cost.
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Figure 13. Blocks based on transistor channel model for neurobiological systems, enabling compilable
networks of neurons and synapses. From one core HH model circuit, one can develop a set of parallel
neuron blocks, as well as a set of parallel neuron and synapse block in the FPAA fabric. FG switch
elements model the programmable synapse elements. Triangle Generator Block creates the presynaptic
waveforms required for biological synapse response. The DC voltage block in Routing (R) uses two
routing elements, nominally in a voltage follower configuration, to enable a programmed voltage
source on any local CAB routing line (and can be routed into the fabric). The nFET current mirror block
(Level = 2) corresponds to the nFET current mirror available in the CABs.

6. Collection of FPAA Blocks→ Analog Computational Benchmarks

The FPAA block list (Figure 6) opens the discussion of fundamental block concepts of analog
computational approaches. The current list of blocks in the Xcos/Scilab FPAA infrastructure (Figure 6)
are fundamental circuits and blocks at two levels of depth (Level = 1 and 2). Table 2 summarizes
the names of these blocks. Mead’s initial analog VLSI work already mentioned many of these core
elements [65]. The addition of analog programmability and configurability enables both system level
design as well as realistic systematic building up of these concepts. The block library shown allows
for core analog circuit design through high-level applications, including acoustic, speech, and vision
processing, as well as computation using networks of neurons which includes applications in optimal
path planning.
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Table 2. Summary of important Level = 1 and Level = 2 blocks that include the complete block
attributes of compilation, simulation, and documentation.

Computation (Level 1) Signal Processing (Level 1) Instrumentation (Level 1) Components (Level 2)

vmmwta lpfOTA RAMP_ADC nfet
SubbandArray Hyst_diff DC Voltage pfet

LadderFilter Min_detect Digital Input FG_pfet
hhneuron Max_detect Digital Output MITE
InfNeuron OTA_buf Arb Waveform nmirror_w_bias
c4_sp common_source Measure Voltage OTA

common_drain Scanner I_SenseAmp
common_drain_nfet TIA wta_new

LPF_SOS VolDivide vmm12x1_wowta

Reuse of analog blocks (e.g., Figure 6) should reach a way similar to digital blocks, whether in
custom circuits or in configurable (e.g., FPGA) platforms. Analog designers are known to be artistic
in their craft and in the way they approach their craft. A master painter rarely reuses a part of
another artist’s work, but rather the painter will add their artistic skill (e.g., optimizations) to the
effort. Many companies (e.g., [71]) have tried to automate the analog design process, but failed because
the solution was aimed for analog IC designers. A configurable analog/mixed-signal system-level
platform, instead of relying on custom analog design, would create a demand for analog abstraction and
automation. Abstracting analog design for system designers increases the chance of automation to be
utilized. Reuse of analog blocks, similar to use in digital Verilog or C libraries, is both an opportunity
for rapid growth of analog computing systems, as well as essential to the growth of the field. The FPAA
system utilizes a number of blocks (Table 1 shows some representatives).

The blocks available give some insight on what we see for abstraction of analog functionality.
The block library in Figure 6 is still a subset of blocks currently used. It would be hard to write down
every digital algorithm, but both sets of computations usually arrive from a subset of fundamental
primitives; specialized applications will always exist. Table 3 illustrates some of the resulting
compiled FPAA computations, and some values of their resulting utilization on an SoC FPAA
device. Related computations in telecommunications, such as VMM for beamforming and DCT
computation, Viterbi and HMM classification, and computation of PDE solutions provide a fairly
complete coverage of computations, particularly sensor computations. A computing approach
based on large number of coupled ODEs [8] has tremendous potential. The capability for vectorized
computations and representations enables system thinking. VMM is a fundamental operation in both
analog and digital computation, providing a conceptual bridge between the approaches. Analog VMM
implementation in routing fabric results in a huge advantage for analog computing opportunities.

Table 3. Compiled SoC FPAA computations.

Block Type CAB CLB I/O CAB I/O Ports Energy/Power FG Devices

ĀBC + ABC̄ [6] 0 1 0 4 63
Shift register [6] 1 0 0 4 25 nW 55
VMM + Shift register [6] 1 0 0 4 400 nW 55
DAC + Common Drain + ADC [30] 1 0 1 1 40
Hodgkin Huxley Neuron [72] 1 0 1 4 <2 µW 32
BPF (C4) + Min. detector + LPF (10 kHz) [29] 5 0 1 2 ≈4 µW 12
12 Parallel BPF + Energy Filter banks (accoustic) [73] 12 0 1 2 ≈13 µW 144
VMM + WTA Classifier: XOR
(Universal approximator) [6] 3 0 4 2 <2 µW 222
Command word recognition [6] 19 0 0 4 23 µW 995
Analog classifier [74] 19 0 0 4 23 µW 995
On-Chip Accoustic Learning/Classification [19,75]
Total Available in SoC FPAA 98 98 ≈ 600,000

The block library in Figure 6 is still a subset of blocks currently used because new blocks are being
generated. Users of these tools have their own creative directions when solving application challenges,
resulting in new innovations. These tools enable a similar case to a software library definition, enabling
these capabilities for analog and mixed-signal design. The tools support these new innovations, and the
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authors encourage building up shared library spaces. An open FPAA infrastructure potentially fulfills
the possibility of an open configurable architecture, unlike most commercial FPGA devices (e.g., [76,77]).
A number of blocks are still not finished, and one expects a list is never completely finished. One expects
eventually to have a complete set of ADC blocks, such as successive approximation, algoithmic, and
pipeline architectures, a number of image processing blocks, communication circuits, and mixed signal
computation such as distributed arithmatic linear phase computation [78].

Benchmark circuits are a way to codify what one means by computing. Defining an analog
block library sets the stage to set up benchmarks circuits. The fundamental computation levels show
potential parameterized set of benchmark circuits:

• VMM + WTA acoustic classifier,
• Neuron + moderate number of Synapses,
• Analog filter with approximately linear phase constraints,
• Biomedical signal regression and/or classification,
• Image convolutions and/or classification,
• Dendritic Classiciation,
• Spatio-Temporal PDE solution, such as Path planning of a given network size.

A settled set of benchmark circuits enables both the characterization of existing configurable
devices, as well as opening up research into optimal FPAA architectures. Analog benchmark circuits
illustrates the meaning of computing.

7. Analog Abstraction: Summary and Implications

We see the first step in analog (and mixed signal) abstraction utilized in FPAA, encoded in the
open-source SciLab/Xcos based toolset. The analog (and mixed signal) abstraction developed for
the open-source toolkit used for the SoC FPAAs. Abstraction of Blocks in the FPAA block library
makes the SoC FPAA ecosystem accessible to system-level designers while still enabling circuit
designers the freedom to build at a low level. The test cases in the previous sections show various
levels of complexity illustrating the analog abstraction capability. Abstract analog blocks, with
digital components, into higher level abstractions enabled by the Scilab/Xcos toolset illuminates
the higher-level representations for analog computation.

Although many aspects of analog abstraction are still yet to be discovered, they have hopefully
shattered the view that analog devices, circuits, and systems are not abstractable. This abstraction
is explicitly implemented in tools that enable CAD design, simulation, and compilable physical
design. In no way have we made all of the blocks ever needed, but the framework is established to be
evolved with new discoveries. Having any opportunity of a wide-scale utilization of ultra-low
power technology both requires programmability/reconfigurability as well as abstractable tools.
Abstraction is essential both make systems rapidly, as well as reduce the barrier for a number of
users to use ultra-low power physical computing techniques.

In practice, two views are likely for analog computing, first, that analog device, circuits,
and systems are just not abstractable like digital systems, and, second, that analog abstraction is
incredibly difficult because one can not abstract analog functionality and computation in a similar
way to digital computation. As mentioned earlier, sometimes macromodeling is used in larger analog
projects to make simulation tractable and related uses, so some level of analog abstraction is considered
by a few in the larger design community. Effectively, these two views are two sides of the same
viewpoint since the effective perceived difference between these two viewpoints is between nearly
impossible and not possible. This work challenges these viewpoints by explicitly demonstrating
multiple layers of analog abstraction. These demonstrations lead to developing initial computing
blocks libraries that compose a large number of analog signal processing and computation. Designing
FPAA applications highly encourages creating reusable abstractable libraries.
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The lowest level of analog abstraction occurs at a higher level than the lowest digital abstraction.
Digital is built by simple operations, and yet it is constrained by these few operations—typically
delays, arithmatic operations, and comparisons in a sampled time environment. Multiply-accumulate
is a significant digital structure compared to a 1–10 transistor analog circuit. Analog circuits have a
richer set of functions, starting from some common digital functions, as well as additional dynamic
components (e.g., low-pass filters). Dataflow architectures become a useful framework for users to
utilize these concepts. guiding the user’s intellectual framework, similar to early MATLAB guiding
users towards developing vectorized code for higher performance.

Analog/mixed signal can have abstraction built similarly to digital computation, since there are
no fundamental limitations of analog abstraction to digital abstraction. Some aspects will be more
advantageous than others. Nothing fundamentally constrains analog approaches. Achieving these goals
requires wide use of these techniques with a number of component libraries. Abstraction challenges center
around developing a community of users developing various analog system level libraries. Growing
a community requires effort and time, as well as resources to demonstrate a range of competitive
applications. A commercial source of SoC FPAA devices would accelerate the development of these
communities. As these libraries develop, code management techniques for the physical modules/routines
will need to be developed. We expect that there will be specialized libraries where individuals require
these techniques. A larger library helps refine the fundamental components while classifying particular
blocks as needed. The abstraction is clear for the 100 s of digital standard cell library elements.

Analog/Mixed signal abstraction development could result in multiple new opportunities.
Abstraction would potentially allow for topological optimization (e.g., Genetic Algorithms) to
optimize a design for a particular application if appropriate system metrics can be described for
the optimization. One can visualize extending these concepts outside of SoC FPAA compilation, or any
FPAA compilation, to custom IC design approaches. One could extend the toolset from targeting FPAA
devices to generating from the same high-level blocks, as either IC layout or the required files for IC
layout, or directly generating IC layout. These correct by design concepts could open up translating
FPAA solutions to custom IC solutions utilizing analog and digital standard cells, decreasing the
transition cost between these solutions.
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